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Abstract
Purpose Clinical cone-beam computed tomography (CBCT) devices are limited to imaging features of half a millimeter in 
size and cannot quantify the tissue microstructure. We demonstrate a robust deep-learning method for enhancing clinical 
CT images, only requiring a limited set of easy-to-acquire training data.
Methods Knee tissue from five cadavers and six total knee replacement patients, and 14 teeth from eight patients were 
scanned using laboratory CT as training data for the developed super-resolution (SR) technique. The method was bench-
marked against ex vivo test set, 52 osteochondral samples are imaged with clinical and laboratory CT. A quality assurance 
phantom was imaged with clinical CT to quantify the technical image quality. To visually assess the clinical image quality, 
musculoskeletal and maxillofacial CBCT studies were enhanced with SR and contrasted to interpolated images. A dental 
radiologist and surgeon reviewed the maxillofacial images.
Results The SR models predicted the bone morphological parameters on the ex vivo test set more accurately than conven-
tional image processing. The phantom analysis confirmed higher spatial resolution on the SR images than interpolation, 
but image grayscales were modified. Musculoskeletal and maxillofacial CBCT images showed more details on SR than 
interpolation; however, artifacts were observed near the crown of the teeth. The readers assessed mediocre overall scores 
for both SR and interpolation. The source code and pretrained networks are publicly available.
Conclusion Model training with laboratory modalities could push the resolution limit beyond state-of-the-art clinical mus-
culoskeletal and dental CBCT. A larger maxillofacial training dataset is recommended for dental applications.

Keywords Super-resolution · Deep learning · Computed tomography · Cone-beam computed tomography · Musculoskeletal 
radiology · Dental radiology
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Introduction

Image quality plays a pivotal role in assessing muscu-
loskeletal and dental pathologies. The most common 
modalities in the field include magnetic resonance imag-
ing (MRI), radiography, ultrasound, and computed tomog-
raphy (CT) [1–3]. While MRI provides excellent soft 
tissue contrast and radiography is widely available, CT 
imaging is the superior method for imaging changes in 
bone [2, 4, 5]. Clinical cone-beam computed tomography 
(CBCT) imaging devices can achieve a voxel size of up to 
100–200 µm3 and are useful for detecting both orthopedic 
[6] and dental pathologies [7], joint trauma imaging [8], 
and radiotherapy planning [9, 10]. For example, CBCT 
has been recognized as the recommended modality for 
assessing wrist fractures [8, 11]. Despite the mentioned 
resolution, from the Nyquist’s theorem, the perceived spa-
tial resolution is at least twice lower, and thus, the visible 
clinical features in CBCT can only be of 500 µm in size 
[12]. This, however, is not enough to observe bone micro-
structural changes. The CBCT image quality is limited 
by radiation dose, motion, acquisition geometry, receptor 
size, and the focal spot size of the beam. Quality assurance 
phantoms, that is, tissue-simulating test objects allow for 
assessing the technical image quality of a CT device. The 
modulation-transfer function (MTF) or task-transfer func-
tion can be calculated to quantify the spatial resolution of 
clinical CT [13, 14], and the resolution limit is approxi-
mately seven line pairs per centimeter [15]. In practice, 
a series of line pair patterns [13] or a high-contrast edge 
[16, 17] can be used to estimate the MTF. Other CT image 
quality parameters include the accuracy of CT numbers, 
uniformity, noise power spectrum, [15] and low contrast 
detectability [15].

The bone microstructure is conventionally seen only 
with laboratory micro-computed tomography (µCT) 
devices. For measurement in a clinical setting, CBCT is 
the most promising modality [18]. As an example, bone 
microstructural changes are known to be associated with 
osteoarthritis severity [19], and could be useful in the 
assessment of osteoporosis, bone strength and fracture 
risk [20, 21]. Detection of early osteoarthritis could facili-
tate earlier intervention, significantly reducing the socio-
economic impact of the disease [22]. Karhula et al. have 
previously shown that bone subresolution features can be 
estimated with CBCT using texture analysis [23]. Individ-
ual quantitative parameters cannot be directly connected 
to local tissue changes but could be visible from high-
quality images. Finally, dentomaxillofacial CBCT imaging 
requires high-image quality for multiple indications. The 
trabecular bone microstructure is one of the key factors 
for dental implant planning [24]. Dental and periodontal 

diagnostics [12], as well as assessment of ossicular chain 
and inner-ear pathologies [25], are all focused on assessing 
changes in tiny, mineralized structures.

One approach to increase image resolution is to improve 
upon the reconstruction technique. Recent advancements 
include iterative- [26, 27], model-based- [28], and learned 
[29, 30] reconstruction. However, these methods naturally 
require access to the raw CT projection images, access to 
which is typically restricted by the scanner’s manufacturer. 
Another method for upscaling could simply rely on image 
interpolation combined with antialiasing. However, such 
techniques have difficulties in removing artifacts and blur 
from the approximated high-resolution images [31].

Due to recent advancements in deep learning (DL), super-
resolution (SR) methods can be used to predict impressive 
details from low-resolution images [32, 33]. They are based 
on convolutional neural networks (CNN) that either modify 
the original input image or generate entirely new images 
from latent space. High- and low-resolution images are used 
in the training process with different approaches. Unpaired 
training aims to match two datasets with different image 
quality without exact matches for each image [34, 35]. It is 
also possible to obtain only the high-resolution dataset and 
artificially distort the data to create matching low-resolution 
images [32]. Finally, the dataset could be collected using 
both low- and high-resolution imaging modalities and a sub-
sequent co-registration. However, accurate co-registration 
is likely challenging in the case of highly distorted images.

Previously, SR has been used to increase MRI quality for 
the knee by Chaudhari et al. [36, 37]. The authors thoroughly 
evaluate the performance of the SR method for visualizing 
cartilage morphometry and osteophytes. Brain MRI SR has 
also been assessed for clinical image quality [38]. The first 
SR studies for inner-ear CBCT have been introduced using 
generative adversarial networks [39]. Finally, µCT imaging 
and SR have been used to assess bone microstructure in a 
preclinical setting [40]. Although CNN predictions could 
be explained by different interpretability methods [41–43], 
the DL applications are often criticized for their “black-
box” nature. However, some deep learning SR algorithms 
are already on the market for CT [29, 44] and MRI [38]. 
Thus, guidelines and recommendations for thorough clinical 
validation of such algorithms are needed. Before clinical use 
of SR, it would be crucial to ensure that the CNN predic-
tions only increase the image quality and do not add new or 
remove existing pathological features from the images [45].

In this study, we aim to enhance the image quality of clin-
ical CBCT using a limited dataset of high-resolution labora-
tory µCT images. To assess the robustness of the method, the 
same framework is utilized for musculoskeletal and maxil-
lofacial imaging, in areas with highly different tissue types. 
To provide a comprehensive understanding of the effects of 
the SR model, bone microstructure, technical image quality, 
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and clinical image quality are assessed. We hypothesize that 
the SR methods trained with laboratory data can outper-
form conventional image processing for the quantification 
of bone microstructure, as well as technical and clinical 
image quality. Furthermore, while a robust SR algorithm 

might generalize to different musculoskeletal applications, 
we expect that additional dental data would be useful when 
training the SR algorithms in the maxillofacial application.

Materials and Methods

Training Data

The training data consist of twelve knee tissue block sam-
ples extracted from five healthy cadavers and six total knee 
arthroplasty (TKA) patients (Table 1). An overview of the 
image data acquisition is in Fig. 1. The sample harvest-
ing was approved by the Ethical committee of Northern 
Ostrobothnia’s Hospital District (PPSHP 78/2013) and the 
Research Ethics Committee of the Northern Savo Hospital 
District (PSSHP 58/2013 & 134/2015). The tissue blocks 
are stored in phosphate-buffered saline after surgery, and 
subsequently imaged with a preclinical µCT scanner (Bruker 
Skyscan 1176; 80 kV, 125µA, 26.7 µm voxel size, 30–60 min 
scan time). The 1176 scanner has a scan bed with 68 mm 
diameter and 200 mm length, which is optimal for imaging 
the knee tissue blocks. The images were reconstructed using 
the manufacturer’s software (NRecon, beam hardening, and 
ring artifact corrections applied, 45–60 min reconstruction 
time).

Table 1  Dataset descriptions

Samples from both total knee arthroplasty patients and asymptomatic 
cadavers were used in the preclinical training and test sets. Different 
patients were included for training and testing. The ex  vivo test set 
was collected with both preclinical and clinical CT devices, and the 
characteristics are described in further detail by Karhula et  al. [23]. 
Clinical studies were used to validate the method on realistic use 
cases

Preclinical datasets # images # samples (n) # patients (N)

Knee tissue blocks 220 544 12 11
Extracted teeth 45 540 14 8
Ex vivo test set 1 700 53 11
Clinical studies
Ex vivo test set 1700 53 11
Wrist CBCT 313 1
Ankle CBCT 219 1
Knee CBCT 471 1
Dental CBCT 3 352 9
CT Quality assurance 

phantom
6 N/A

Fig. 1  Training data (left) and ex vivo test set (right) acquisition. The 
full tissue blocks a were scanned using a preclinical micro-computed 
tomography (µCT) scanner (Skyscan 1176, resolution of 26–35 µm). 
Extracted teeth b were imaged using a desktop µCT (Skyscan 1272, 
resolution 19.8 µm). To obtain the ex vivo test set, small 4 mm osteo-
chondral plugs were extracted (c). The plugs were imaged both with 

the desktop µCT (bottom right, Skyscan 1172, 2.75  µm resolution) 
and a clinical extremity cone-beam CT (CBCT) system (top right, 
Planmed Verity, 200  µm resolution) to provide realistic low- and 
high-resolution references (d). Note that due to the lower image qual-
ity, the cylindrical shape of the sample is distorted on the CBCT scan
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Furthermore, a total of fifteen human teeth were collected 
from nine patients with a tooth removal operation (Table 1, 
PPSHP 123/2021). The teeth were scanned using a high-
resolution laboratory desktop µCT scanner (Skyscan 1272, 
Bruker Inc., Kontich, Belgium; parameters: 100 kV, 100 µA 
19.8 µm voxel size, Cu 0.11 mm filter, 75–150 min scan 
time). The 1172 scanner allows scalable resolution with geo-
metrical magnification, which is beneficial for imaging small 
individual teeth and osteochondral samples. The reconstruc-
tion was conducted using the Nrecon software (beam hard-
ening and ring artifact corrections applied, 5 min reconstruc-
tion time). The reconstructions of fourteen extracted teeth 
from eight patients were used to provide further training data 
for the SR model in the case of dental CBCT. A tooth scan 
of one of the patients was excluded due to corrupted data in 
the µCT scan.

Ex Vivo Test Set

To provide the ground-truth reference for bone microstruc-
ture prediction, we utilized a previously collected dataset 
[23] consisting of 53 osteochondral samples from nine TKA 
patients and two deceased cadavers without an OA diagnosis 
(Table 1; ethical approval PPSHP 78/2013, PSSHP 58/2013 
& 134/2015). The samples were imaged using two devices: 
a clinical extremity CBCT (Planmed Verity, Planmed Inc., 
Helsinki, Finland; parameters: 80 kV, 12 mA, 200 µm voxel 
size, 20 ms exposure time) and a laboratory desktop µCT 
scanner (Skyscan 1272, Bruker Inc., Kontich, Belgium; 
parameters: 50 kV, 200 µA 2.75 µm voxel size, 2200 ms 
exposure time, 0.5 mm Al filter, 135 min scan time). The 
samples were imaged with the µCT one at a time, and with 
the CBCT scanner, a large batch of samples were imaged 
during one scan. The projection images were reconstructed 
with the corresponding manufacturer’s reconstruction soft-
ware with a “standard” reconstruction filter applied for 
CBCT, and beam hardening and ring artifact corrections 
were applied for µCT (Nrecon, v.1.6.10.4, Bruker microCT, 
20-70 min reconstruction time). The reconstructed volumes 
were coregistered to the same coordinate system using rigid 
transformations on the Bruker Dataviewer software (version 
1.5.4, Bruker microCT).

Clinical Images

The proposed method was further tested on clinical data 
acquired using the same Planmed Verity CBCT device 
(Table 1). The clinical dataset consists of one knee scan 
(50-year-old female; 96 kV, 8 mA, 200 µm voxel size, 10 s 
exposure time, “flat” reconstruction filter), one wrist scan 
(56-year-old female; 90 kV, 6 mA, 200 µm voxel size, 6 s 
exposure time, flat filter), and one ankle scan (34-year-old 
male; 96 kV, 8 mA, 400 µm voxel size, 6 s exposure time, 

flat filter). In the case of the knee and ankle, the imaging 
was done in the weight-bearing position. The participants 
are healthy volunteers, and the CBCT scans were acquired 
from the Oulu University Hospital digital research data-
base. Finally, preoperative CBCT scans (Planmeca Promax; 
parameters: 120 kV, 5–6 mA, 200 µm voxel size, 8 s expo-
sure time) were collected from the nine patients with tooth 
removal (ethical permission PPSHP 123/2021).

To validate the technical image quality, a commercially 
available CT quality assurance phantom (GE Healthcare, 
Model No. 5128754) was imaged using a diagnostic CT 
device (GE Revolution Frontier; parameters: 120  kV, 
335 mA, 730 ms exposure time, 625 µm pixel size, 5 mm 
slice thickness, head filter).

Super‑Resolution Model

The training data were created from the preclinical tissue 
blocks by downscaling the µCT images. Three datasets 
with specific imaging resolutions used in the test images 
and the corresponding 4x magnifications were created, and 
a separate set of SR models were trained for each dataset 
(200 µm → 50 µm, 400 µm → 100 µm, 488 µm → 122 µm). 
First, µCT images were downscaled to the target resolu-
tion, and a Gaussian filter (kernel size = 7, σ = 0.5) was 
applied to mitigate aliasing artifacts. The input images 
were obtained by further downscaling the target images by 
a factor of four. To account for aliasing artifacts and simu-
late the lower imaging quality, this time Gaussian blurring 
(kernel size = 4, σ = 1) and median filtering (kernel size = 3) 
were applied after downscaling. The reconstructed image 
stacks were automatically divided into smaller 32 × 32 × 32 
(input resolution) and 128 × 128 × 128 (target resolution) 
voxel patches suitable for training the SR models, result-
ing in thousands of training images (Table 1). The train-
ing data were augmented spatially using random rotations, 
translations, and flips. Furthermore, brightness and contrast 
were randomly adjusted, and random blurring was added to 
augment the grayscale values. Finally, the input and target 
volumes were randomly cropped and padded to match the 
network input and output size (16 × 16 → 64 × 64 for 2D, 
16 × 16 × 16 → 64 × 64 × 64 for 3D models). The aug-
mentations were based on our previously published SOLT 
library (https:// github. com/ Oulu- IMEDS/ solt) and modified 
to account for the varying input and target image size.

The model architecture was inspired by Johnson et al. 
[46], including four residual blocks (Fig. 2, top). The 
transposed convolution layer was replaced by resize con-
volution [47]. The model was designed to yield a magni-
fication factor of four. To conduct the training process, we 
used an in-house developed Collagen framework, a toolkit 
for reproducible machine-learning experiments (https:// 
github. com/ MIPT- Oulu/ Colla gen). We used three models, 

https://github.com/Oulu-IMEDS/solt
https://github.com/MIPT-Oulu/Collagen
https://github.com/MIPT-Oulu/Collagen
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with a variety of five different loss functions in the exper-
iments: (1) The baseline model utilized mean-squared 
error (MSE) and total variation (TV) as traditional pixel-
wise losses, with respective weights of 0.8 and 0.2. (2) 
The structure model optimized the complement of the 
structure similarity index (SSIM), aiming to capture the 
bone microstructure. (3) The visual model combined 
mean absolute error (MAE), TV, and perceptual loss 
(PL), aiming to provide the best perceptual quality, using 
weights of 0.1, 1.0, and 1.0, respectively. Features from 
a pretrained VGG16 model were used as the PL (Fig. 2, 
bottom). The weights of the loss functions were chosen 
manually during the initial experiments of the study.

The models were trained using the Adam optimizer 
(parameters: α = 0.0001, β = 0.0001) for 50 epochs. The 
training was conducted under fourfold cross-validation, 
ensuring that the samples with the same patient ID 
were not mixed between the splits. During inference, 
the predictions were combined using a sliding window 
(16 × 16-pixel window with 8 × 8-pixel steps). A Gauss-
ian kernel was applied to only focus the model predic-
tions on the center of the tile, reducing the edge artifacts. 
To assess the performance of training, pixel-wise metrics 
(MSE, PSNR, SSIM) were calculated for the validation 
folds.

Bone Microstructure Analysis

Morphological 3D parameters were quantified from the 
CBCT-imaged ex vivo test set, using conventional image 
processing, and SR. The true microstructure was analyzed 
using high-resolution µCT imaging. The volumes were 
binarized using the Otsu threshold [48]. An ad-hoc Python 
script was used to calculate the recommended morphologi-
cal parameters: bone volume fraction (BV/TV), trabecular 
thickness (Tb.Th), trabecular separation (Tb.Sp), and tra-
becular number (Tb.N) [49]. In the case of the 2D mod-
els, the parameters were assessed for the axial 2D predic-
tions as well as an average of the predictions of the three 
orthogonal planes. To provide benchmark comparisons, 
tricubic interpolation and an image processing-based pipe-
line were used. The image processing pipeline included 
multiple subsequent filters prior to the binary thresholding 
(anisotropic diffusion, contrast stretching, median filter). 
The results were compared using Pearson correlation. The 
95% confidence intervals were estimated for the models 
that are trained on multiple random seeds. Finally, Bland-
Altman analysis was conducted for the prediction of BV/
TV using the reference methods and the best-performing 
super-resolution model.

Fig. 2  Top: The SR architecture 
used in the study. The archi-
tecture of Johnson et al. was 
modified by including resize-
convolution layers instead 
of transposed convolutions. 
Bottom: The perceptual loss 
network was used in the visual 
model. Examples of perceptual 
loss network activations are 
shown for a trabecular bone 
reconstruction
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Clinical Validation Images

To assess the technical image quality, the spatial resolution 
was quantified from the reconstructed phantom images and 
SR predictions. This was achieved by estimating the MTF 
using the six-line pair patterns. The standard deviation was 
determined from a rectangular region of interest including 
each of the line pairs to provide a practical assessment of 
the function [13]. The frequency of 0.5 MTF  (MTF50%) 
and 0.1 MTF  (MTF10%), corresponding to a half-value 
and the limit of spatial resolution, are estimated from the 
graph.

To demonstrate the validity of the method in the clinical 
domain, we tested the models on multiple clinical imaging 
targets: ankle, knee, wrist, and dental CBCT. The predic-
tions and interpolated CBCT images were compared visu-
ally. The reconstructions were normalized and converted 
from 16-bit to 8-bit images. To save memory and com-
putational time, small volumes of interest were selected 
from the wrist and the ankle (wrist = 6.3 × 6 × 3.7 cm, 
ankle = 6.6  ×  6.3  ×  4.8  cm). For the knee scan, the 
full joint was processed (10  ×  10  ×  10  cm, output 
size = 1884 × 1932 × 1988 voxels) on the Puhti super-
computer (https:// resea rch. csc. fi/ csc-s- serve rs). For the 
ankle, a lower resolution is used, and another set of mod-
els is trained (400 µm → 100 µm). In the case of knee, 
wrist and dental imaging, high-resolution models are used 
(200 µm → 50 µm).

The predictions and interpolations from the preopera-
tive dental CBCT scans were assessed in a blinded reader 
study by an experienced dental radiologist (Reader 1) and 
dental surgeon (Reader 2) to grade the level of diagnostic 
quality. The Likert scale was used to score the signal-to-
noise ratio, anatomical conspicuity (periodontal ligament 
space), image quality, artifacts, and diagnostic confi-
dence of the images. The mean and standard deviation 
for the grades are reported and the inter-rater agreement 
is assessed using linearly weighed Cohen’s Kappa (κ). 
Finally, two µCT scans of the extracted teeth are coreg-
istered with the clinical scans to allow a further visual 
comparison (Dataviewer, v. 1.5.6.2).

Results

The conventional pixel-based performance metrics of train-
ing the 2D and 3D SR models on a 200 µm → 50 µm reso-
lution scale are summarized in Table 2. The 2D baseline 
model (trained with MSE + TV loss) yields the highest per-
formance (MSE = 0.0072 ± 0.0002, PSNR = 26.64 ± 0.07, 
SSIM = 0.812 ± 0.003). The 2D structure and visual models 
as well as the 3D baseline model yield slightly higher errors.

Ex Vivo Test Set: Prediction of Bone Microstructure

The trained models were applied to the ex vivo test set 
to assess the performance of predicting the bone micro-
structure on unseen data (Table 3; Fig. 3; Figure, Online 
Resource 1 and 2). The 2D structure model yields the 
highest results (rBVTV = 0.817 ± 0.005) and outperforms 
the interpolation (rBVTV = 0.64) and conventional seg-
mentation pipeline (rBVTV = 0.67). A strong correlation 
is also observed with the 2D structure model for Tb.Sp 
(r = 0.756 ± 0.009). Bland-Altman analysis of BV/TV pre-
dictions resulted in a bias of 39.5% and 39.1% as well as 
standard deviation of 23.7% and 14.3% for conventional 
segmentation pipeline and structure model, respectively.

Technical Image Quality

The technical image quality was determined by compar-
ing interpolated and predicted clinical CT images from a 
quality assurance phantom. The fifth line pair pattern at 
8.3 line pair per cm frequency can be visually resolved 
from the SR predictions but not from the interpolated 
image (Fig. 4a). Furthermore, the MTFs suggest a higher 
image quality in the predictions at the 4–8 line pairs per 
cm frequency range. An increase of 0.2 is seen between 
5–6 line pairs per cm (Fig. 4b). Based on the estimated 
MTF curves, the interpolated CT images reach  MTF50% 
and  MTF10% at roughly 3.5 and 7.0 line pairs per cm, 
respectively. The MTF curves from the SR models reach 
the  MTF50% and  MTF10% values later, at 5.0 and 8.0 line 
pairs per cm. Standardization based on plexiglass and 
water grayscale values was not feasible for the SR models 
(Figure, Online Resource 3).

Table 2  Results on the out-of-fold validation for the 200 µm → 50 µm 
resolution models

The best performance on each metric is bolded
Experiments with different combinations of loss functions are listed 
with a two-dimensional (2D) or volumetric (3D) model. The value for 
the standard error of mean is reported after the mean value
MSE mean-squared error, PSNR peak signal-to-noise ratio, SSIM 
structure similarity index

Models Out-of-fold evaluation

MSE PSNR SSIM

Baseline 2D 0.0072 ± 0.00003 26.64 ± 0.014 0.812 ± 0.0005
Baseline 3D 0.0068 ± 0.0001 24.8 ± 0.05 0.691 ± 0.002
Structure 2D 0.0084 ± 0.0001 25.5 ± 0.05 0.776 ± 0.006
Visual 2D 0.015 ± 0.007  25 ± 1.3 0.7 ± 0.06

https://research.csc.fi/csc-s-servers
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Clinical Image Quality on Musculoskeletal 
Application

An overview of the proposed SR method and an example 
of wrist SR are presented in Fig. 5. A volume of interest 
in the wrist joint was passed through the model to reduce 

the computational time. The inference computation on all 
three planes took roughly one hour on two graphical pro-
cessing units (Nvidia GeForce GTX 1080 Ti). More struc-
tural details are visible in the prediction, but the cortical 
bone is visually too porous when compared to the original 
CBCT image. We also tested whether the inclusion of teeth 

Table 3  Quantification of the 
bone parameters

 The highest correlation on each parameter is bolded
Predictions from each model were binarized and the bone parameters were compared to the micro-com-
puted tomography (µCT) ground truth. The values indicate Pearson correlations and the respective 95% 
confidence intervals
BV/TV = bone volume fraction, Tb.Th = trabecular thickness, Tb.Sp = trabecular separation, Tb.N = trabec-
ular number

Models Averaging Bone parameters

BV/TV Tb.Th Tb.Sp Tb.N

Interpolation 0.64 0.34 0.59 − 0.4
Conventional 

segmentation
0.67 0.42 0.50 − 0.63

Baseline 2D No 0.736 ± 0.006 0.404 ± 0.008 0.694 ± 0.004 − 0.514 ± 0.007
Yes 0.665 ± 0.003 0.336 ± 0.003 0.608 ± 0.006 − 0.458 ± 0.0001

Structure 2D No 0.817 ± 0.005 0.53 ± 0.02 0.756 ± 0.009 − 0.489 ± 0.007
Yes 0.731 ± 0.007 0.436 ± 0.006 0.613 ± 0.010 − 0.41 ± 0.02

Visual 2D No 0.758 ± 0.012 0.453 ± 0.011 0.70 ± 0.02 − 0.57 ± 0.02
Yes 0.674 ± 0.004 0.340 ± 0.009 0.609 ± 0.011 − 0.5 ± 0.02

Baseline 3D 0.654 ± 0.010 0.33 ± 0.03 0.63 ± 0.011 − 0.34 ± 0.03

Fig. 3  Comparison of conven-
tional image quality improve-
ment and super-resolution (SR) 
predictions on the osteochondral 
samples. The clearest structural 
definition is seen on the 2D 
models without averaging the 
three orthogonal planes.
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images in training data changed the appearance, but only 
small differences were observed (Figure, Online Resource 4) 
compared to the original training setup. In the case of knee 
CBCT, a large volume was processed on the Puhti super-
computer. The 2D models were compared to the interpola-
tion and conventional image processing pipeline (Fig. 6). 
The structural details were visually highlighted the best 
in the results from the baseline and structure models. The 

visual model created a flickering artifact in noisy and unclear 
regions of the tissue (Video, Online Resource 5).

The ankle CBCT images were visually compared to inter-
polation, conventional image processing pipeline, as well 
as 2D and 3D predictions (Fig. 7). The 2D models show 
reduced noise and slightly more detail compared to the 
conventional methods. The most clearly visible structures 
were yielded by the structure model. The 3D baseline model 

Fig. 4  A clinical CT scan of a commercially available quality assur-
ance phantom, with the corresponding interpolations and super-res-
olution (SR) predictions (top). Using the SR models, another set of 
line pairs can be distinguished from the CT slices. However, the per-
pendicular plane resolution is less improved. This can be seen as the 
number of diagonal lines on the edge of the phantom (that are aver-

aged from multiple different depths) is not decreasing. The modula-
tion-transfer functions (MTF) show that all the SR models provide an 
increase in spatial resolution (bottom). The 95% confidence intervals 
are shown for each MTF measurement. Rough trendlines of the MTFs 
are shown with a third-order polynomial fit
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Fig. 5  Overview of the proposed super-resolution (SR) method. Tis-
sue blocks are scanned with micro-computed tomography (µCT) and 
used to train the model (left). The trained model can be utilized for 

clinical cone-beam CT (CBCT) images using a patch-by-patch sliding 
window, the size of one patch is depicted with a green rectangle. In 
this case, predictions from all orthogonal planes were averaged

Fig. 6  Comparison of conventional image quality improvement and super-resolution (SR) predictions on clinical scans of the knee joint. Predic-
tions were conducted for the full joint; magnifications are shown to allow for a better visual comparison
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converged to a solution with a slightly lower image quality. 
This led to more noisy prediction images, highlighting only 
the large-scale details.

Clinical Image Quality on Dental Application

An example of SR prediction on maxillofacial CBCT is 
shown in Fig. 8. In this case, the teeth of the patient were not 

used in training the SR model. A comparison of CBCT, SR, 
and µCT of extracted teeth from two other patients is illus-
trated in a Video, Online Resource 6. Small structures are 
better highlighted on the SR images compared to the origi-
nal CBCT, and a previously unseen gap can be seen in the 
lamina dura next to the tooth that was removed from patient 
one (indicated with a red arrow). We noted artifacts from the 
SR algorithms especially within the enamel. The results of 

Fig. 7  Comparison of conventional image quality improvement and super-resolution (SR) predictions on clinical scans of the ankle joint. The 
baseline 3D model provided the noisiest results

Fig. 8  Examples of maxillofacial cone-beam CT images (left) and corresponding super-resolution predictions (right). Predictions are shown 
from the structure model, without averaging the orthogonal planes



1265Clinical Super‑Resolution Computed Tomography of Bone Microstructure: Application in…

the reader study are described in Table 4. When accounting 
for Bonferroni correction, no significant differences were 
observed for scores of Reader 1, although a slight trend of 
higher scores towards the interpolated images was observed. 
Reader 2 scored higher signal-to-noise ratio, anatomical 
conspicuity, image quality, and diagnostic confidence for 
the baseline model compared to interpolation. The inter-
rater agreement was slight (0.0–0.2) or fair (0.2–0.4), yet 
a substantial agreement was found for signal-to-noise ratio 
(0.64, visual model) and artifacts (0.80, baseline model).

Discussion

In this study, we presented a deep learning-based super-
resolution method to increase medical CBCT image quality 
in musculoskeletal and dental imaging domains and dem-
onstrated how to validate the methods in several clinical 
domains. This study has several important contributions. 
First, the SR predictions were assessed for conventional 
image metrics on cross-validation, 3D bone microstruc-
ture quantification on the ex vivo test set, and the techni-
cal increase in spatial resolution using a quality assurance 

phantom. Second, the versatility of the SR algorithm was 
tested on clinical CBCT images of the wrist, knee, ankle, 
and maxillofacial region, and the dental image quality is 
quantified in a reader study, completely independent of the 
training process. This simulates deploying a method devel-
oped solely on limited laboratory data in the highly vari-
able clinical environment, which we consider one of the key 
strengths of this study. Third, to facilitate further develop-
ment of the musculoskeletal and dental imaging field, the 
source code of the project is published on GitHub (https:// 
doi. org/ 10. 5281/ zenodo. 80419 43) and the pretrained models 
used for dental SR predictions are available on Mendeley 
Data (https:// doi. org/ 10. 17632/ 4xvx4 p9tzv.1).

The out-of-fold validation results (Table 2) suggest that 
the 2D baseline model performs best and that the 3D base-
line model yields the lowest performance. The analysis 
is based on traditional pixel-wise comparisons to high-
resolution images. However, the analysis of osteochon-
dral ex vivo samples shows that the 2D structure model 
is the best for predicting microstructural bone details 
(rBVTV = 0.817 ± 0.005). Furthermore, averaging the pre-
diction on three orthogonal planes did not improve the 
result. Likely, averaging the 2D predictions that do not 

Table 4  Blinded reader qualitative assessments

The mean and standard deviation of the scores are given for each category. The inter-reader agreement was assessed using Cohen’s Kappa (κ) 
with 95% confidence intervals. Statistical significance for differences between interpolation and super-resolution (SR) was assessed using the 
Wilcoxon Signed Rank test (Bonferroni corrected for three comparisons) and is indicated with an asterisk (*)
CI confidence interval, *p < 0.05

Model Score (Mean + SD)

Signal-to-noise ratio Anatomical conspicuity Image quality Artifacts Diagnostic confidence Overall average

Reader 1
 Interpolation 2.4 ± 0.7 2.9 ± 0.6 2.8 ± 0.4 2.7 ± 0.5 2.8 ± 0.4 2.7 ± 0.5
 Baseline model 2.2 ± 0.4 2.7 ± 0.5 2.6 ± 0.5 2.7 ± 0.5 2.7 ± 0.5 2.6 ± 0.5
 Structure model 1.9 ± 0.8 2.4 ± 0.5 2.4 ± 0.5 2.2 ± 0.4 2.4 ± 0.5 2.3 ± 0.6
 Visual model 2.1 ± 0.3 2.4 ± 0.5 2.3 ± 0.5 2.3 ± 0.5 2.7 ± 0.5 2.4 ± 0.5

Reader 2
 Interpolation 1.4 ± 0.7 2.1 ± 0.8 1.8 ± 0.7 2.2 ± 1.1 1.8 ± 1.0 1.9 ± 0.9
 Baseline model 2.4 ± 0.5* 2.8 ± 0.7* 2.8 ± 0.7* 2.8 ± 0.7 2.9 ± 0.6* 2.7 ± 0.6
 Structure model 1.4 ± 0.5 2.0 ± 0.5 1.8 ± 0.7 2.1 ± 1.1 1.9 ± 0.8 1.8 ± 0.7
 Visual model 2.0 ± 0.5 2.2 ± 0.4 2.0 ± 0.5 2.1 ± 0.6 2.1 ± 0.6 2.1 ± 0.5

Agreement (κ)
 Interpolation 0.147 0.241 0.047 0.077 0.039
 Baseline model 0.526 0.400 0.250 0.800 0.143
 Structure model 0.400 0.217 0.156 0.087 0.031
 Visual model 0.640 0.053 0.308 0.143 0.211

95% CI
 Interpolation (0.108–0.186) (0.224–0.258) (0.018–0.076) (0.048–0.106) (0.006–0.071)
 Baseline model (0.518–0.534) (0.389–0.411) (0.238–0.262) (0.793–0.807) (0.132–0.153)
 Structure model (0.379–0.421) (0.202–0.233) (0.135–0.178) (0.060–0.114) (0.010–0.051)
 Visual model (0.636–0.644) (0.043–0.062) (0.298–0.317) (0.132–0.153) (0.196–0.225)

https://doi.org/10.5281/zenodo.8041943
https://doi.org/10.5281/zenodo.8041943
https://doi.org/10.17632/4xvx4p9tzv.1
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account for adjacent slices causes smearing of the details, 
resulting in a lower correlation at least in the studied small 
four-millimeter samples. Finally, we would like to note 
that we also trained UNet and FPN segmentation models 
to predict the bone microstructure, but the models over-
fit and did not generalize from the training on the tissue 
blocks to the challenging ex vivo test set. Thus, we hypoth-
esize that the SR method is more resistant to domain shift 
compared to DL segmentation. This is further supported 
by the multiple of applications presented using the same 
training data.

The results of the quality assurance phantom analysis 
suggested that the SR models increase CT spatial resolu-
tion, both visually and quantitatively. Importantly, we also 
noticed that the models heavily modified the grayscale dis-
tribution of the scan, and the values on the line pair pattern 
exceeded those in the uniform areas of the phantom. This 
eventually led us to scale the MTF curves, based on the 
maximum intensity of the scan (Figure, Online Resource 3). 
Importantly, the quantitative Hounsfield unit values are lost 
after processing, and the resulting prediction only describes 
the bone structure, not density or material composition. This 
is a potential limitation of patch-based super-resolution but 
could be alleviated in the future by using a wider dynamic 
range of training images or more complex SR models.

The experiments on the wrist, knee, ankle, and maxillofa-
cial region reveal that the models generalize very well on dif-
ferent anatomical regions, although in some regions of corti-
cal bone, there is a sudden increase in porosity, especially 
in the wrist images. This is likely a result of having a high 
amount of trabecular bone in the training data. However, this 
was not confirmed in the Figure, Online Resource 4, as there 
were no major differences in the images. In the maxillofacial 
region, our initial experiments included multiple artifacts 
near teeth, when using only the knee tissue blocks in train-
ing. Averaging the predictions in three orthogonal planes 
preserves the structure better in the perpendicular plane but 
might smear the details in case of morphological analysis. 
This is also supported by the Video, Online Resource 5, 
where a flickering artifact is seen on the sagittal plane.

The reader study resulted in quite modest scores for both 
interpolated images and SR predictions. A slight prefer-
ence for interpolated images was observed for the scores of 
Reader 1, and Reader 2 scored the Baseline model slightly 
higher compared to other models or interpolation. The low 
overall scores are likely due to the fact that the high dynamic 
range of the original 12-bit CBCT images is lost. This could 
be potentially alleviated in the future by training the models 
on a higher dynamic range rather than the conventional eight 
bits which would also better allow studying HU values of 
model output. Also, the volume of extracted teeth is very 
small, resulting in a much smaller number of tooth images 
compared to the knee tissue blocks (Table 1), and thus, the 

current dataset is not optimal for training SR models for 
dental images.

While promising, maxillofacial images show that the 
small, mineralized structures are better seen on the SR 
predictions, and even previously unseen pathologies might 
be revealed (Video, Online Resource 6). However, we also 
noted definite artifacts within the enamel which could be 
confused for caries lesions. A more specialized training 
dataset would be crucial to alleviate such issues. Indeed, 
we expect that better results could be obtained in the future 
using a dataset with preclinical scans of entire cadaveric 
jawlines and soft tissues. Even more readily available animal 
models, such as pig maxillofacial tissue, could be consid-
ered to provide the SR model examples closer to the target 
distribution.

In medical diagnostics, it is imperative that the SR mod-
els do not induce biases from the training set and remove or 
add new diagnostic features to the predicted high-resolution 
images [45]. Upscaling the images poses, a serious theo-
retical problem: multiple visually distinct high-resolution 
images can downscale to the same low-resolution image 
[50]. This serious limitation warrants thorough validation 
experiments before SR can be utilized in the clinical envi-
ronment. This would be an excellent area for future stud-
ies, where predictions of healthy tissue and small fractures 
or other pathological conditions could be analyzed in more 
detail. For example, the method could be retrospectively 
compared on datasets with follow-up information on specific 
pathological conditions, such as osteoporosis or osteoarthri-
tis from musculoskeletal images or periodontal disease from 
maxillofacial images.

Despite being not specifically shown in the present study, 
we would hypothesize that models that generate entirely new 
images from a latent space, such as generative adversarial 
networks, could have a higher risk of “hallucinating” non-
existent pathological features, whereas a traditional CNN is 
more limited to modifying the original image, even though 
it is upscaled from low resolution. An interesting future 
improvement could be integrating an uncertainty map into 
the reconstruction, with a possible warning to the end-user, 
or merging the SR prediction with the original reconstruc-
tion in the uncertain areas of the image [51].

This study has several limitations. First, the best-perform-
ing 2D models did not account for changes in the perpen-
dicular plane. An interesting future methodological improve-
ment could include using a three-channel input image, 
including the adjacent slices. Second, most of the clinical 
comparisons presented in this study are restricted to quali-
tative or semiquantitative analysis. There are many stud-
ies where multiple radiologist readers assess the diagnostic 
image quality blindly from the SR and comparison images 
to show the increase in performance [37, 38, 52, 53]. Ideally, 
at least five readers should be included from different levels 
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of education and experience [54, 55]. We would argue that 
the ratings provided by the radiologists are also somewhat 
subjective, and the true ground-truth information cannot 
be obtained in clinical studies without a subsequent tissue 
sample extraction. Third, the weights of the individual loss 
functions were chosen manually during the early experi-
ments of this study. These should be ideally chosen using an 
ablation study or hyperparameter optimization. Finally, the 
SR prediction was conducted as post-processing rather than 
by directly reconstructing the projection images using deep 
learning. Indeed, the first CT vendors have already released 
reconstruction methods based on deep learning [29, 44]. As 
the projection data are often unavailable to the end-user, 
nonlinear CNN-based methods that work in the reconstruc-
tion domain could be more easily added, as an additional 
component to any CT scanner.

The deep-learning-enhanced medical images could have a 
high impact on the medical domain. The implications for the 
technology include higher patient throughput, more precise 
diagnostics, and disease interventions at an earlier state. The 
proposed SR can be directly applied to the existing clinical 
scans in the reconstruction domain and could, thus, have 
quality enhancement potential for routine hospital pipelines. 
Integration of SR methods in the hospital environment could 
facilitate a higher throughput, reducing the time radiologists 
need to reach a diagnosis on difficult cases as well as mitigat-
ing uncertainty in the diagnostic process. Radiologists could 
use the SR as an advanced “zoom” feature, analogous to how 
pathologists change the objective on a microscope. Training 
the models on laboratory data allows for pushing the spatial 
resolution limit further than what the clinical radiation doses 
or even the current CT technology would otherwise allow. 
Alternatively, the current image quality could be maintained 
with a lower dose which could increase the accessibility of 
CBCT and allow earlier diagnostic intervention.
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