Skip to main content
Log in

Induced Current Electro-Thermal Imaging for Breast Tumor Detection: A Numerical and Experimental Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study proposes using magnetically induced currents in medical infrared imaging to increase the temperature contrast due to the electrical conductivity differences between tumors and healthy tissues. There are two objectives: (1) to investigate the feasibility of this active method for surface and deep tumors using numerical simulations, and (2) to demonstrate the use of this method through different experiments conducted with phantoms that mimic breast tissues. Tumorous breasts were numerically modeled and simulated in active and passive modes. At 750 kHz, the applied current was limited for breast tissue-tumor conductivities (0.3 S/m and 0.75 S/m) according to the local specific absorption rate limit of 10 W/kg. Gelatin-based and mashed potato phantoms were produced to mimic tumorous breast tissues. In the simulation studies, the induced current changed the temperature contrast on the imaging surface, and the tumor detection sensitivity increased by 4 mm. An 11-turn 70-mm-long solenoid coil was constructed, 20 A current was applied for deep tumors, and a difference of up to 0.4 \(^\circ\)C was observed in the tumor location compared with the temperature in the absence of the tumor. Similarly, a 23-turn multi-layer coil was constructed, and a temperature difference of 0.4 \(^\circ\)C was observed. The temperature contrast on the body surface changed, and the tumor detection depth increased with the induced currents in breast IR imaging. The proposed active thermal imaging method was validated using numerical simulations and in vitro experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuhl, C. K., S. Schrading, C. C. Leutner, N. Morakkabati-Spitz, E. Wardelmann, R. Fimmers, and H. H. Schild. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Onc. 23(33):8469–8476, 2005. https://doi.org/10.1200/JCO.2004.00.4960.

    Article  Google Scholar 

  2. Kolb, T. M., J. Lichy, and J. H. Newhouse. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 225(1):165–175, 2002. https://doi.org/10.1148/radiol.2251011667.

    Article  PubMed  Google Scholar 

  3. Hassan, A. M., and M. El-Shenawee. Review of electromagnetic techniques for breast cancer detection. IEEE Rev. Biomed. Eng. 4:103–118, 2011. https://doi.org/10.1109/RBME.2011.2169780.

    Article  PubMed  Google Scholar 

  4. Ng, E. Y. K. A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Thermal Sci. 48(5):849–859, 2009. https://doi.org/10.1016/j.ijthermalsci.2008.06.015.

    Article  CAS  Google Scholar 

  5. Kennedy, D. A., T. Lee, and D. Seely. A comparative review of thermography as a breast cancer screening technique. Integer. Can. Ther. 8(1):9–16, 2009. https://doi.org/10.1177/1534735408326171.

    Article  Google Scholar 

  6. Wilson, A. N., K. A. Gupta, B. H. Koduru, A. Kumar, A. Jha, and L. R. Cenkeramaddi. Recent advances in thermal imaging and its applications using machine learning: a review. IEEE Sens. J. 23(4):3395–3407, 2023. https://doi.org/10.1109/JSEN.2023.3234335.

    Article  CAS  ADS  Google Scholar 

  7. Qi, H., and N. A. Diakides: Thermal infrared imaging in early breast cancer detection—a survey of recent research, Cancun, Mexico. Paper Presented at the IEEE EMBS 25th Annual International Conference, 2003. https://doi.org/10.1109/IEMBS.2003.1279442

  8. Chanmugam, A., R. Hatwar, and C. Herman: Thermal analysis of cancerous breast model, Houston, USA. Paper Presented at the ASME International Mechanical Engineering Congress & Exposition, 2012. https://doi.org/10.1115/IMECE2012-88244

  9. Mashekova, A., Y. Zhao, E. Y. Ng, V. Zarikas, S. C. Fok, and O. Mukhmetov. Early detection of the breast cancer using infrared technology—a comprehensive review. Ther. Sci. Eng. Prog. 27:1011–1042, 2022. https://doi.org/10.1016/j.tsep.2021.101142.

    Article  Google Scholar 

  10. Jacob, G., I. Jose, and S. Sujatha. Breast cancer detection: a comparative review on passive and active thermography. Infrared Phys. Technol. 2023. https://doi.org/10.1016/j.infrared.2023.104932.

    Article  Google Scholar 

  11. Nowakowski, A., and M. Kaczmarek: Analysis of transient thermal processes for improved visualization of breast cancer using IR imaging, Cancun, Mexico. Paper Presented at the 25th Annual International Conference of IEEE EMBS (2003). https://doi.org/10.1109/IEMBS.2003.1279443

  12. Kaczmarek, M., and A. Nowakowski. Active IR-thermal imaging in medicine. J. Nondest. Eval. 35(1):1–16, 2016. https://doi.org/10.1007/s10921-016-0335-y.

    Article  Google Scholar 

  13. Ng, E. Y. K., and M. Etehadtavakol. Application of Infrared to Biomedical Sciences. Gateway East: Springer, 2017.

    Book  Google Scholar 

  14. Tipa, R., and O. Baltag. Microwave thermography for cancer detection. Roman. J. Phys. 51(3–4):371, 2006.

    CAS  Google Scholar 

  15. Gencer, N.G., Carlak, H.F., Besikci, C.: Method and system for dual-band active thermal imaging using multi-frequency currents. Patent WO2015002618A1. Jan.08, 2015. https://patents.google.com/patent/US10123704B2/en

  16. Rahmatinia, S., and B. Fahimi. Magneto-thermal modeling of biological tissues: a step toward breast cancer detection. IEEE Trans. Magn. 53(6):1–4, 2017. https://doi.org/10.1109/TMAG.2017.2671780.

    Article  Google Scholar 

  17. Li, Y., and B. Fahimi: Thermal analysis of multiple-antenna-excited breast model for breast cancer detection. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1058–1061, 2016. https://doi.org/10.1109/EMBC.2016.7590885

  18. Ozdemir, G.: Investigating the multi-frequency performance of electro-thermal imaging: an experimental study. Master’s thesis, Dept. Elec. Eng., Middle East Technical Univ., Ankara, Türkiye, 2013

  19. Tanrıverdi, V., and N. G. Gençer: Induced current thermal imaging in breast cancer detection, Istanbul, Turkey. Paper Presented at the IEEE SIU 29th Sig. Process. and Com. App. Conf., 2021. https://doi.org/10.1109/SIU53274.2021.9477789

  20. Tanrıverdi, V., and N. G. Gençer: Phantom and solenoid coil development for induced current electro-thermal imaging. Paper Presented at the IEEE Tıptekno Med. Tech. Cong., 2021. https://doi.org/10.1109/TIPTEKNO53239.2021.9632891

  21. Maldague, X. Theory and Practice of Infrared Technology for Nondestructive Testing. New York: Wiley, 2001.

    Google Scholar 

  22. Usamentiaga, R., P. Venegas, J. Guerediaga, L. Vega, and F. G. Bulnes. Infrared thermography for temperature measurement and non-destructive testing. Sensors. 14(7):12305–12348, 2014. https://doi.org/10.3390/s140712305.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. A. S. A. Swarup. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans. Biomed. Eng. 35(4):257–263, 1988. https://doi.org/10.1109/10.1374.

    Article  CAS  PubMed  Google Scholar 

  24. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251–2269 (1996). https://doi.org/10.1088/0031-9155/41/11/002

  25. Faes, T. J. C., H. A. V. D. Meij, J. C. Munck, and R. M. Heethaar. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20(4):1–10, 1999. https://doi.org/10.1088/0967-3334/20/4/201.

    Article  Google Scholar 

  26. Comsol multiphysics reference manual v5.3. COMSOL Inc., Burlington (2017)

  27. Carlak, H.F.: Medical electro-thermal imaging. PhD thesis, Dept. Elec. Eng., Middle East Technical Univ., Ankara, Türkiye (2012)

  28. Gulrajani, R. M. Bioelectricity and Biomagnetism. New York: Wiley, pp. 189–193, 1998.

    Google Scholar 

  29. Demarest, K. R. Engineering Electromagnetics. New Jersey: Prentice Hall, 1998.

    Google Scholar 

  30. Xu, Z., Q. Li, and W. He: Analytical solution for the forward problem of magnetic induction tomography with multi-layer sphere model. Paper presented at the ICSEE 2010, LSMS 2010 Life Sys. Mod. and Intel. Comput., 2010

  31. Chew, W. C. Vector potential electromagnetics with generalized gauge for inhomogeneous media: formulation. Prog. Electromag. Res. 149:69–84, 2014. https://doi.org/10.2528/PIER14060904.

    Article  Google Scholar 

  32. Gabriel, C., S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11):2231–2249, 1996. https://doi.org/10.1088/0031-9155/41/11/001.

    Article  CAS  PubMed  Google Scholar 

  33. Ma, G., and M. Soleimani: Spectral capacitively coupled electrical resistivity tomography for breast cancer detection. IEEE Access 8, 50900–50910 (2020) https://doi.org/10.1109/ACCESS.2020.2980112

  34. Hasgall, P.A., F.D. Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, A. Klingenböck, N. Kuster: IT’IS database for thermal and electromagnetic parameters of biological tissues. http://itis.swiss/database

  35. Paruch, M. Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials. 13(1):136, 2019. https://doi.org/10.3390/ma13010136.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Nagao, Y., Y. Kawaguchi, Y. Sugiyama, S. Saji, and Y. Kashiki. Relationship between mammographic density and the risk of breast cancer in japanese women: a case-control study. Breast Cancer. 10(3):228–233, 2003.

    Article  PubMed  Google Scholar 

  37. Griffiths, H., W. R. Stewart, and W. Gough. Magnetic induction tomography. A measuring system for biological tissues. Ann. NY Acad. Sci. 873(1):335–345, 1999. https://doi.org/10.1111/j.1749-6632.1999.tb09481.x.

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Ma, L., and M. Soleimani. Magnetic induction tomography methods and applications: a review. Meas. Sci. Technol.28(7):072001, 2017. https://doi.org/10.1088/1361-6501/aa7107.

    Article  CAS  ADS  Google Scholar 

  39. ICNIRP: international commission on non-ionizing radiation protection guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 Ghz). Health Phys. 74(4):494–522, 1998

  40. Wissler, E. H. Pennes’ 1948 paper revisited. J. Appl. Physiol. 85(1):35–41, 1998. https://doi.org/10.1152/jappl.1998.85.1.35.

    Article  CAS  PubMed  Google Scholar 

  41. Pozar, D. M. Microwave Engineering. New York: Wiley, 2011.

    Google Scholar 

  42. Singhvi, A., K. C. Boyle, M. Fallahpour, B. T. Khuri-Yakub, and A. Arbabian. A microwave-induced thermoacoustic imaging system with non-contact ultrasound detection. IEEE Trans. Ultrasound Ferroelect. Freq. Cont. 66(10):1587–1599, 2019. https://doi.org/10.1109/TUFFC.2019.2925592.

    Article  Google Scholar 

  43. Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. Fundamentals of Heat and Mass Transfer. New York: Wiley, 2007.

    Google Scholar 

  44. Amri, A., S. H. Pulko, and A. J. Wilkinson. Potentialities of steady-state and transient thermography in breast tumour depth detection: a numerical study. Comput. Met. Prog. Biomed. 123:68–80, 2016. https://doi.org/10.1016/j.cmpb.2015.09.014.

    Article  Google Scholar 

  45. Fiedler, T. M., M. E. Ladd, and A. K. Bitz. SAR simulations and safety. Neuroimage. 168:33–58, 2018. https://doi.org/10.1016/j.neuroimage.2017.03.035.

    Article  PubMed  Google Scholar 

  46. González, F. J. Thermal simulation of breast tumors. Revista Mexic. de Física. 53(4):323–326, 2007.

    ADS  Google Scholar 

  47. Camilleri, J. S., L. Farrugia, S. Curto, D. B. Rodrigues, L. Farina, G. C. Dingli, J. Bonello, I. Ferhat, and C. V. Sammut. Review of thermal and physiological properties of human breast tissue. Sensors. 22(10):3894, 2022. https://doi.org/10.3390/s22103894.

    Article  CAS  ADS  Google Scholar 

  48. IEC medical electrical equipment part: particular requirements for the basic safety and essential performance. IEC:60601-2-33 (2015)

  49. FLIR T420 user manuel. FLIR Sys. Inc., Wilsonville, 2014

  50. ALC AL-1400-HF-A High frequency power amplifier user manuel. Amp-Line Corp., New York, 2022

  51. Murakami, E. G. The thermal properties of potatoes and carrots as affected by thermal processing 1. J. Food Process Eng. 20(5):415–432, 1997. https://doi.org/10.1111/j.1745-4530.1997.tb00431.x.

    Article  Google Scholar 

  52. American Society of Heating, & Air-Conditioning Engineers: ASHRAE Handbook-Refrigeration: Thermal Properties of Foods, 2006

  53. Lamberg, I., and B. Hallström. Thermal properties of potatoes and a computer simulation model of a blanching process. Int. J. Food Sci. Technol. 21(5):577–585, 1986. https://doi.org/10.1111/j.1365-2621.1986.tb00396.x.

    Article  CAS  Google Scholar 

  54. Gabriel, C., A. Peyman, and E. H. Grant. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54(16):4863, 2009. https://doi.org/10.1088/0031-9155/54/16/002.

    Article  CAS  PubMed  Google Scholar 

  55. Bennett, D. NaCl doping and the conductivity of agar phantoms. Mater. Sci. Eng. C. 31(2):494–498, 2011. https://doi.org/10.1016/j.msec.2010.08.018.

    Article  CAS  Google Scholar 

  56. Haemmerich, D., S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster. In vivo electrical conductivity of hepatic tumours. Physiol. Meas. 24(2):251, 2003. https://doi.org/10.1088/0967-3334/24/2/302.

    Article  PubMed  Google Scholar 

  57. Steendijk, P., G. Mur, E. T. V. D. Velde, and J. Baan. The four-electrode resistivity technique in anisotropic media: theoretical analysis and application on myocardial tissue in vivo. IEEE Trans. Biomed. Eng. 40(11):1138–1148, 1993. https://doi.org/10.1109/10.245632.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai, J. Z., H. Cao, S. Tungjitkusolmun, E. J. Woo, V. R. Vorperian, and J. G. Webster. Dependence of apparent resistance of four-electrode probes on insertion depth. IEEE Trans. Biomed. Eng. 47(1):41–48, 2000. https://doi.org/10.1109/10.817618.

    Article  CAS  PubMed  Google Scholar 

  59. Ng, E., and N. Sudharsan. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour. Proc. Inst. Mech. Eng. 215(1):25–37, 2001. https://doi.org/10.1243/0954411011533508.

    Article  CAS  Google Scholar 

  60. Mercer, J.B., Weerd, L.D.: Thermography and thermal symmetry, Lisboa, Portugal. Paper Presented at the IEEE International Symposium on Medical Measurements and Applications, 2014. https://doi.org/10.1109/MeMeA.2014.6860148

  61. FLIR Thermal Studio Manuel. FLIR Sys. Inc., Wilsonville, 2021

  62. Carlak, H. F., N. G. Gencer, and C. Besikci. Theoretical assessment of electro-thermal imaging: a new technique for medical diagnosis. Inf. Phys. Technol. 76:227–234, 2016. https://doi.org/10.1016/j.infrared.2016.03.001.

    Article  CAS  ADS  Google Scholar 

  63. Mukhmetov, O., Y. Zhao, A. Mashekova, V. Zarikas, E. Y. K. Ng, and N. Aidossov. Physics-informed neural network for fast prediction of temperature distributions in cancerous breasts as a potential efficient portable AI-based diagnostic tool. Comput. Methods Programs Biomed.242:107834, 2023. https://doi.org/10.1016/j.cmpb.2023.107834.

    Article  PubMed  Google Scholar 

  64. Li, Y., E. Cosoroaba, L. Maharjan, and B. Fahimi. Comparative study of a new coil design with traditional shielded figure-of-eight coil for transcranial magnetic stimulation. IEEE Trans. Magn. 54(3):1–4, 2017. https://doi.org/10.1109/TMAG.2017.2751260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Tanrıverdi.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Additional information

Associate Editor Rafael Vidal Davalos oversaw review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanrıverdi, V., Gençer, N.G. Induced Current Electro-Thermal Imaging for Breast Tumor Detection: A Numerical and Experimental Study. Ann Biomed Eng 52, 1078–1090 (2024). https://doi.org/10.1007/s10439-024-03445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03445-9

Keywords

Navigation