Skip to main content
Log in

Functional Assessment of Human Articular Cartilage Using Second Harmonic Generation (SHG) Imaging: A Feasibility Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many arthroscopic tools developed for knee joint assessment are contact-based, which is challenging for in vivo application in narrow joint spaces. Second harmonic generation (SHG) laser imaging is a non-invasive and non-contact method, thus presenting an attractive alternative. However, the association between SHG-based measures and cartilage quality has not been established systematically. Here, we investigated the feasibility of using image-based measures derived from SHG microscopy for objective evaluation of cartilage quality as assessed by mechanical testing. Human tibial plateaus harvested from nine patients were used. Cartilage mechanical properties were determined using indentation stiffness (Einst) and streaming potential-based quantitative parameters (QP). The correspondence of the cartilage electromechanical properties (Einst and QP) and the image-based measures derived from SHG imaging, tissue thickness and cell viability were evaluated using correlation and logistic regression analyses. The SHG-related parameters included the newly developed volumetric fraction of organised collagenous network (Φcol) and the coefficient of variation of the SHG intensity (CVSHG). We found that Φcol correlated strongly with Einst and QP (ρ = 0.97 and − 0.89, respectively). CVSHG also correlated, albeit weakly, with QP and Einst, (|ρ| = 0.52–0.58). Einst and Φcol were the most sensitive predictors of cartilage quality whereas CVSHG only showed moderate sensitivity. Cell viability and tissue thickness, often used as measures of cartilage health, predicted the cartilage quality poorly. We present a simple, objective, yet effective image-based approach for assessment of cartilage quality. Φcol correlated strongly with electromechanical properties of cartilage and could fuel the continuous development of SHG-based arthroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abusara, Z., S. H. J. Andrews, M. V. Kossel, and W. Herzog. Menisci protect chondrocytes from load-induced injury. Sci. Rep. 8:14150, 2018.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Abusara, Z., I. Haider, E. K. Moo, S. Miller, S. Timmermann, and W. Herzog. Chondrocyte morphology as an indicator of collagen network integrity. Connect Tissue Res. 63:319–328, 2022.

    CAS  PubMed  Google Scholar 

  3. Anderson, A. S., and R. F. Loeser. Why is osteoarthritis an age-related disease? Best Pract. Res. Clin. Rheumatol. 24:15, 2010.

    PubMed Central  Google Scholar 

  4. Bae, W. C., M. M. Temple, D. Amiel, R. D. Coutts, G. G. Niederauer, and R. L. Sah. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheumatism. 48:3382–3394, 2003.

    PubMed  Google Scholar 

  5. Baskey, S. J., M. Andreana, E. Lanteigne, A. Ridsdale, A. Stolow, and M. E. Schweitzer. Pre-clinical translation of second harmonic microscopy of meniscal and articular cartilage using a prototype nonlinear microendoscope. IEEE J. Transl. Eng. Health Med. 7:1–11, 2019.

    Google Scholar 

  6. Brama, P. A., A. Barneveld, D. Karssenberg, G. P. Van Kampen, and P. R. Van Weeren. The application of an indenter system to measure structural properties of articular cartilage in the horse. Suitability of the instrument and correlation with biochemical data. J. Vet. Med. Ser. A. 48(4):213–21, 2001.

    CAS  Google Scholar 

  7. Brockbank, K. G. M., W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland. Quantitative second harmonic generation imaging of cartilage damage. Cell Tissue Bank. 9:299–307, 2008.

    CAS  PubMed  Google Scholar 

  8. Bugbee, W. D., A. L. Pallante-Kichura, S. Görtz, D. Amiel, and R. Sah. Osteochondral allograft transplantation in cartilage repair: graft storage paradigm, translational models, and clinical applications. J. Orthop. Res. 34:31–38, 2016.

    PubMed  Google Scholar 

  9. Changoor, A., J. P. Coutu, M. Garon, E. Quenneville, M. B. Hurtig, and M. D. Buschmann. Streaming potential-based arthroscopic device is sensitive to cartilage changes immediately post-impact in an equine cartilage injury model. J. Biomech. Eng. 133(6):061005, 2011.

    CAS  PubMed  Google Scholar 

  10. Chen, X., O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protocols. 7:654–669, 2012.

    CAS  PubMed  Google Scholar 

  11. Cicchi, R., D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J. Biophoton. 3:34–43, 2010.

    CAS  Google Scholar 

  12. Dacre, J. E., D. L. Scott, J. A. Da Silva, G. Welsh, and E. C. Huskisson. Joint space in radiologically normal knees. Br. J. Rheumatol. 30:426–428, 1991.

    CAS  PubMed  Google Scholar 

  13. Ebrahimi, M., S. Ojanen, A. Mohammadi, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann. Biomed. Eng. 47:953–966, 2019.

    PubMed  PubMed Central  Google Scholar 

  14. Ebrahimi, M., M. J. Turunen, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Structure-function relationships of healthy and osteoarthritic human tibial cartilage: experimental and numerical investigation. Ann. Biomed. Eng. 48:2887–2900, 2020.

    PubMed  PubMed Central  Google Scholar 

  15. Favre, J., J. C. Erhart-Hledik, K. Blazek, B. Fasel, G. E. Gold, and T. P. Andriacchi. Anatomically standardized maps reveal distinct patterns of cartilage thickness with increasing severity of medial compartment knee osteoarthritis. J. Orthop. Res. 35:2442–2451, 2017.

    CAS  PubMed  Google Scholar 

  16. Franz, T., E. M. Hasler, R. Hagg, C. Weiler, R. P. Jakob, and P. Mainil-Varlet. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr. Cartil. 9:582–592, 2001.

    CAS  Google Scholar 

  17. Gelse, K., A. Olk, S. Eichhorn, B. Swoboda, M. Schoene, and K. Raum. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue. Eur. Cell Mater. 19:58–71, 2010.

    CAS  PubMed  Google Scholar 

  18. Hadjab, I., S. Sim, S. S. Karhula, S. Kauppinen, M. Garon, E. Quenneville, P. Lavigne, P. P. Lehenkari, S. Saarakkala, and M. D. Buschmann. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration. Osteoarthr. Cartil. 26:405–413, 2018.

    CAS  Google Scholar 

  19. Hui Mingalone, C. K., Z. Liu, J. M. Hollander, K. D. Garvey, A. L. Gibson, R. E. Banks, M. Zhang, T. E. McAlindon, H. C. Nielsen, I. Georgakoudi, and L. Zeng. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. Lab. Invest. 98:656–669, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huynh, R. N., G. Nehmetallah, and C. B. Raub. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy. J. Biomed. Opt. 22:65001, 2017.

    PubMed  Google Scholar 

  21. Huynh, R. N., G. Nehmetallah, and C. B. Raub. Mueller matrix polarimetry and polar decomposition of articular cartilage imaged in reflectance. Biomed. Opt. Express. 12:5160–5178, 2021.

    PubMed  PubMed Central  Google Scholar 

  22. Huynh, R. N., B. Pesante, G. Nehmetallah, and C. B. Raub. Polarized reflectance from articular cartilage depends upon superficial zone collagen network microstructure. Biomed. Opt. Express. 10:5518–5534, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishihara, M., M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi. Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method. Lasers Surg. Med. 38:249–255, 2006.

    PubMed  Google Scholar 

  24. Johansson, A., T. Sundqvist, J.-H. Kuiper, and P. Å. Öberg. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Phys. Med. Biol. 56:1865, 2011.

    CAS  PubMed  Google Scholar 

  25. Jurvelin, J. S., T. Räsänen, P. Kolmonen, and T. Lyyra. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J. Biomech. 28:231–235, 1995.

    CAS  PubMed  Google Scholar 

  26. Karjalainen, K., P. Tanska, S. C. Sibole, S. Mikkonen, W. Herzog, R. Korhonen, and E. K. Moo. Effect of cells on spatial quantification of proteoglycans in articular cartilage of small animals. Connect Tissue Res. 63:603–614, 2022.

    CAS  PubMed  Google Scholar 

  27. Kashimura, Y., R. Matsuda, N. Yamato, and M. Hashimoto. Second-harmonic generation arthroscope with integrated femtosecond Yb fiber laser. , 2022.at <https://opg.optica.org/abstract.cfm?uri=CLEOPR-2022-P_CM15_07>

  28. Kiyomatsu, H., Y. Oshima, T. Saitou, T. Miyazaki, A. Hikita, H. Miura, T. Iimura, and T. Imamura. Quantitative SHG imaging in osteoarthritis model mice, implying a diagnostic application. Biomed. Opt. Express. 6:405–420, 2015.

    PubMed  PubMed Central  Google Scholar 

  29. Kleemann, R. U., D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthr. Cartil. 13:958–963, 2005.

    CAS  Google Scholar 

  30. Kumar, R., K. M. Grønhaug, C. L. Davies, J. O. Drogset, and M. B. Lilledahl. Nonlinear optical microscopy of early stage (ICRS Grade-I) osteoarthritic human cartilage. Biomed. Opt. Express. 6:1895–1903, 2015.

    PubMed  PubMed Central  Google Scholar 

  31. Laasanen, M. S., J. Töyräs, J. Hirvonen, S. Saarakkala, R. K. Korhonen, M. T. Nieminen, I. Kiviranta, and J. S. Jurvelin. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol. Meas. 23:491–503, 2002.

    CAS  PubMed  Google Scholar 

  32. Lyyra, T., I. Kiviranta, U. Väätäinen, H. J. Helminen, and J. S. Jurvelin. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res. 48:482–487, 1999.

    CAS  PubMed  Google Scholar 

  33. Mäkelä, J. T. A., Z. S. Rezaeian, S. Mikkonen, R. Madden, S.-K. Han, J. S. Jurvelin, W. Herzog, and R. K. Korhonen. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr. Cartil. 22:869–878, 2014.

    Google Scholar 

  34. Mansfield, J. C., V. Mandalia, A. Toms, C. P. Winlove, and S. Brasselet. Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy. J. R. Soc. Interface. 16:20180611, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Moo, E. K., Z. Abusara, N. A. Abu Osman, B. Pingguan-Murphy, and W. Herzog. Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing. J. Biomech. 46:2024–2031, 2013.

    PubMed  Google Scholar 

  36. Moo, E. K., Y. Al-Saffar, T. Le, R. A. Seerattan, B. Pingguan-Murphy, R. K. Korhonen, and W. Herzog. Deformation behaviors and mechanical impairments of tissue cracks in immature and mature cartilages. J. Orthop. Res. 40(9):2103–12, 2021.

    PubMed  Google Scholar 

  37. Moo, E. K., M. Amrein, M. Epstein, M. Duvall, N. A. Abu Osman, B. Pingguan-Murphy, and W. Herzog. The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. Biophys. J. 105:1590–1600, 2013.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Moo, E. K., M. Ebrahimi, S. C. Sibole, P. Tanska, and R. K. Korhonen. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage. Acta Biomater. 153:178–189, 2022.

    CAS  PubMed  Google Scholar 

  39. Moo, E. K., S. K. Han, S. Federico, S. C. Sibole, A. Jinha, N. A. Abu Osman, B. Pingguan-Murphy, and W. Herzog. Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression. J. Biomech. 47:1004–1013, 2014.

  40. Moo, E. K., and W. Herzog. Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. J. Orthop. Res. 35:304–310, 2017.

    CAS  PubMed  Google Scholar 

  41. Moo, E. K., S. C. Sibole, S. Federico, R. K. Korhonen, and W. Herzog. Microscale investigation of the anisotropic swelling of cartilage tissue and cells in response to hypo-osmotic challenges. J. Orthop. Res. 2023. https://doi.org/10.1002/jor.25657.

    Article  PubMed  Google Scholar 

  42. Moo, E. K., S. C. Sibole, S. K. Han, and W. Herzog. Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomater. 70:260–269, 2018.

    PubMed  Google Scholar 

  43. Moo, E. K., P. Tanska, S. Federico, Y. Al-Saffar, W. Herzog, and R. K. Korhonen. Collagen fibres determine the crack morphology in articular cartilage. Acta Biomater. 2021. https://doi.org/10.1016/j.actbio.2021.03.031.

    Article  PubMed  Google Scholar 

  44. Niederauer, G. G., G. M. Niederauer, L. C. Cullen, K. A. Athanasiou, J. B. Thomas, and M. Q. Niederauer. Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann. Biomed. Eng. 32:352–359, 2004.

    PubMed  Google Scholar 

  45. Novakofski, K. D., S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier. High-resolution methods for diagnosing cartilage damage in vivo. Cartilage. 7:39–51, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Novakofski, K. D., R. M. Williams, L. A. Fortier, H. O. Mohammed, W. R. Zipfel, and L. J. Bonassar. Identification of cartilage injury using quantitative multiphoton microscopy. Osteoarthr. Cartil. 22:355–362, 2014.

    CAS  Google Scholar 

  47. Park, S. H., J. M. Goo, and C.-H. Jo. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J. Radiol. 5:11–18, 2004.

    PubMed  PubMed Central  Google Scholar 

  48. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12:2825–2830, 2011.

    MathSciNet  Google Scholar 

  49. Plotnikov, S. V., A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler. Measurement of muscle disease by quantitative second-harmonic generation imaging. J. Biomed. Opt 13:044018-044018–11, 2008.

  50. Saarakkala, S., P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr. Cartil. 18:73–81, 2010.

    CAS  Google Scholar 

  51. Saarakkala, S., M. S. Laasanen, J. S. Jurvelin, and J. Töyräs. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone. Phys. Med. Biol. 51:5333, 2006.

    PubMed  Google Scholar 

  52. Schenke-Layland, K., N. Madershahian, I. Riemann, B. Starcher, K.-J. Halbhuber, K. König, and U. A. Stock. Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann. Thorac. Surg. 81:918–926, 2006.

    PubMed  Google Scholar 

  53. Sherlock, B. E., J. Chen, J. C. Mansfield, E. Green, and C. P. Winlove. Biophotonic tools for probing extracellular matrix mechanics. Matrix Biol. Plus. 2021. https://doi.org/10.1016/j.mbplus.2021.100093.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sibole, S. C., E. K. Moo, S. Federico, and W. Herzog. The protective function of directed asymmetry in the pericellular matrix enveloping chondrocytes. Ann. Biomed. Eng. 50:39–55, 2022.

    PubMed  Google Scholar 

  55. Sim, S., A. Chevrier, M. Garon, E. Quenneville, P. Lavigne, A. Yaroshinsky, C. D. Hoemann, and M. D. Buschmann. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage. J. Orthopaedic Res. 35:858–867, 2017.

    CAS  Google Scholar 

  56. Sim, S., A. Chevrier, M. Garon, E. Quenneville, A. Yaroshinsky, C. D. Hoemann, and M. D. Buschmann. Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties. Osteoarthr. Cartil. 22:1926–1935, 2014.

    CAS  Google Scholar 

  57. Sim, S., I. Hadjab, M. Garon, E. Quenneville, P. Lavigne, and M. D. Buschmann. Development of an electromechanical grade to assess human knee articular cartilage quality. Ann. Biomed. Eng. 45:2410–2421, 2017.

    PubMed  Google Scholar 

  58. Spahn, G., H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann. Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch. Orthop. Trauma Surg. 131:377–381, 2011.

    PubMed  Google Scholar 

  59. Stoller, P. C., P. M. Celliers, K. M. Reiser, and A. M. Rubenchik. Imaging collagen orientation using polarization-modulated second harmonic generation. , 2002.

  60. Wieland, H. A., M. Michaelis, B. J. Kirschbaum, and K. A. Rudolphi. Osteoarthritis—an untreatable disease? Nat. Rev. Drug Discov. 4:331–344, 2005.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Ms. Christiana Choi who helped in tissue procurement from arthroplasty procedure, the PLC, Surgical Suite, and Mr. Azim Jinha who provided technical support during data analysis.

Funding

This study was supported by the Joint Transplantation Program at the McCaig Institute for Bone and Joint Heath, University of Calgary, the Calgary Health Trust, the Carleton University internal start-up research fund (186725), the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant (funding reference no: DGECR-2023-00346), The Killam Foundation, The Canadian Institutes of Health Research, and the Nigg Chair for Mobility and Longevity.

Author information

Authors and Affiliations

Authors

Contributions

(1) The conception and design of the study, or acquisition of data, or analysis and interpretation of the data: ZA, EKM, IH, CT, SM, ST and WH. (2) Drafting the article or revising it critically for important intellectual content: ZA, EKM, IH, CT, SM, ST and WH. (3) Final approval of the version to be submitted: ZA, EKM, IH, CT, SM, ST and WH.

Corresponding author

Correspondence to Ziad Abusara.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusara, Z., Moo, E.K., Haider, I. et al. Functional Assessment of Human Articular Cartilage Using Second Harmonic Generation (SHG) Imaging: A Feasibility Study. Ann Biomed Eng 52, 1009–1020 (2024). https://doi.org/10.1007/s10439-023-03437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03437-1

Keywords

Navigation