Skip to main content
Log in

Aqueous Humor Circulation in the Era of Minimally Invasive Surgery for Glaucoma

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Glaucoma surgery with implantation of aqueous humor draining microstents may compromise long-term corneal health by disrupting aqueous humor circulation. The effect of stent numbers on this circulation was interrogated to determine the number of stents associated with minimal circulation disruption. An in vitro anterior eye model perfusion system was constructed with multiple exit ports. A 3-D model of the anterior eye was imported into ABAQUS CFD, analyzes were carried out for unsteady laminar flow and solved using Navier-Stokes equations. DT Vision Foundry was used to analyze velocity contour plot images. The field variable results output for the CFD model were fluid wall shear, fluid pressure and fluid velocity. In vitro, “aqueous” fluid flow is high through a single stent and “aqueous” stagnation is greatest in the quadrants 180° away. Increasing stent port numbers, results in an exponential decrease in the stagnant flow locations. High wall shear stress was seen in the single stent model and is markedly reduced after a second and subsequent stents are introduced. We identify two factors potentially contributing to corneal compromise post glaucoma drainage surgery: aqueous humor stagnation, remote to the stent site and higher exit flows imparting increased stent exit shear stress (particularly with a single stent). With 4 stents, there is minimal disruption of anterior chamber circulation (mimicking physiological conditions). Furthermore we propose that aqueous humor circulation disruption via the usual single-exit port approach disrupts aqueous humor circulation with long-term consequences for corneal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abouali, O., A. Modareszadeh, A. Ghaffarieh, and J. Tu. Investigation of saccadic eye movement effects on the fluid dynamic in the anterior chamber. J Biomech Eng.134:021002, 2012. https://doi.org/10.1115/1.4005762.

    Article  PubMed  Google Scholar 

  2. Acuna, O. M., and K. G. Yen. Outcome and prognosis of pediatric patients with delayed diagnosis of open-globe injuries. J Pediatr Ophthalmol Strabismus. 46:202–207, 2009. https://doi.org/10.3928/01913913-20090706-04. (quiz 208-9)

    Article  PubMed  Google Scholar 

  3. Agar, A., S. Li, N. Agarwal, M. T. Coroneo, and M. A. Hill. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res. 1086:191–200, 2006. https://doi.org/10.1016/j.brainres.2006.02.061.

    Article  CAS  PubMed  Google Scholar 

  4. Agar, A., S. S. Yip, M. A. Hill, and M. T. Coroneo. Pressure related apoptosis in neuronal cell lines. J Neurosci Res. 60:495–503, 2000. https://doi.org/10.1002/(SICI)1097-4547(20000515)60:4%3c495::AID-JNR8%3e3.0.CO;2-S.

    Article  CAS  PubMed  Google Scholar 

  5. Aminlari, A. E., I. U. Scott, and A. A. Aref. Glaucoma drainage implant surgery–an evidence-based update with relevance to sub-Saharan Africa. Middle East Afr J Ophthalmol. 20:126–130, 2013. https://doi.org/10.4103/0974-9233.110607.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beebe, D. C. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol. 19:125–133, 2008. https://doi.org/10.1016/j.semcdb.2007.08.014.

    Article  CAS  PubMed  Google Scholar 

  7. Bojarun, A., Z. Vieversyte, R. Jaruseviciene, S. Galgauskas, R. Asoklis, and R. Zablockis. Effect of obstructive sleep apnea on corneal morphological characteristics. Cornea. 38:1576–1581, 2019. https://doi.org/10.1097/ICO.0000000000002069.

    Article  PubMed  Google Scholar 

  8. Brubaker, R. F. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 32:3145–3166, 1991.

    CAS  PubMed  Google Scholar 

  9. Cha, E. D. K., J. Xu, L. Gong, and H. Gong. Variations in active outflow along the trabecular outflow pathway. Exp Eye Res. 146:354–360, 2016. https://doi.org/10.1016/j.exer.2016.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chodzyński, K. J., K. Z. Boudjeltia, J. Lalmand, A. Aminian, L. Vanhamme, D. R. de Sousa, S. Gremmo, L. Bricteux, C. Renotte, G. Courbebaisse, and G. Coussement. An in vitro test bench reproducing coronary blood flow signals. Biomed Eng Online. 14:77, 2015. https://doi.org/10.1186/s12938-015-0065-x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coroneo, M. T. Pterygium as an early indicator of ultraviolet insolation: a hypothesis. Br J Ophthalmol. 77(11):734–739, 1993. https://doi.org/10.1136/bjo.77.11.734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coroneo, M. T. Suprachoroidal drainage – centenarian progress: an inventor’s perspective. In: Minimally Invasive Glaucoma Surgery: the Science and the Practice, edited by B. A. Francis, S. Sarkisian, and J. Tan. New York: Thieme, 2016.

    Google Scholar 

  13. Coroneo MT, inventor. Ocular pressure regulation. US patent 7,291,125. November 6, 2007.

  14. Coroneo MT. Inventor. Ophthalmic compositions, and ocular uses of indigo carmine. US 2022/0151827 Al. May 19, 2022.

  15. Damsgaard, C., and M. W. Country. The opto-respiratory compromise: balancing oxygen supply and light transmittance in the retina. Physiology (Bethesda). 37:101–113, 2022. https://doi.org/10.1152/physiol.00027.2021.

    Article  CAS  PubMed  Google Scholar 

  16. Dvoriashyna, M., O. Pralits, et al. Mathematical Models of Aqueous Production, Flow and Drainage. In: Ocular Fluid dynamics: Anatomy, edited by G. Guidoboni, A. Harris, R. Sacco, et al., . Physiology, Imaging Techniques, and Mathematical. Berlin: Springer, 2019, pp. 227–263.

    Chapter  Google Scholar 

  17. Foster, A., and S. Resnikoff. The impact of Vision 2020 on global blindness. Eye (Lond). 19:1133–1135, 2005. https://doi.org/10.1038/sj.eye.6701973.

    Article  CAS  PubMed  Google Scholar 

  18. Gelir, E., M. T. Budak, and S. Ardıc. The relationship between CPAP usage and corneal thickness. PLoS One.9(1):e87274, 2014. https://doi.org/10.1371/journal.pone.0087274.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goel, M., R. G. Picciani, R. K. Lee, and S. K. Bhattacharya. Aqueous humor dynamics: a review. Open Ophthalmol J. 4:52–59, 2010. https://doi.org/10.2174/1874364101004010052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldmann, H. Klinische Studien zum Glaukomproblem I Schicksal des Schlemmschen Abflußsystems nach Schaffung neuer Abflußwege. Ophthalmologica. 125:16–21, 1953.

    Article  CAS  PubMed  Google Scholar 

  21. Heys, J. J., and V. H. Barocas. A boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle. Ann Biomed Eng. 30:392–401, 2002. https://doi.org/10.1114/1.1477447.

    Article  PubMed  Google Scholar 

  22. Kalapesi, F. B., J. C. Tan, and M. T. Coroneo. Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer? Clin Exp Ophthalmol. 33:210–217, 2005.

    Article  PubMed  Google Scholar 

  23. Kass, M. A., D. K. Heuer, E. J. Higginbotham, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 120:701–830, 2002. https://doi.org/10.1001/archopht.120.6.701.

    Article  PubMed  Google Scholar 

  24. Killer, H. E., and A. Pircher. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 3:924–930, 2018. https://doi.org/10.1038/s41433-018-0042-2.

    Article  Google Scholar 

  25. Koseoglu, H. I., A. Kanbay, H. Ortak, R. Karadağ, O. Demir, S. Demir, A. Gunes, and S. Doruk. Effect of obstructive sleep apnea syndrome on corneal thickness. Int Ophthalmol. 36:327–333, 2016. https://doi.org/10.1007/s10792-015-0122-2.

    Article  PubMed  Google Scholar 

  26. Laughlin, R. C. Glaucoma: a historical essay. Bull Inst Hist Med. 2:141–163, 1934.

    Google Scholar 

  27. Lee, J. Y., G. Akiyama, S. Saraswathy, X. Xie, X. Pan, Y. K. Hong, and A. S. Huang. Aqueous humour outflow imaging: seeing is believing. Eye (Lond). 35:202–215, 2021. https://doi.org/10.1038/s41433-020-01215-0.

    Article  PubMed  Google Scholar 

  28. Leske, M. C., A. Heijl, L. Hyman, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 114:1965–1972, 2007. https://doi.org/10.1016/j.ophtha.2007.03.016.

    Article  PubMed  Google Scholar 

  29. Lim, L. S., C. L. Ho, L. P. Ang, T. Aung, and D. T. Tan. Inferior corneal decompensation following laser peripheral iridotomy in the superior iris. Am J Ophthalmol. 142:166–168, 2006. https://doi.org/10.1016/j.ajo.2006.01.070.

    Article  PubMed  Google Scholar 

  30. Lütjen-Drecoll, E., and E. H. Bárány. Functional and electron microscopic changes in the trabecular meshwork remaining after trabeculectomy in cynomolgus monkeys. Invest Ophthalmol. 13:511–524, 1974.

    PubMed  Google Scholar 

  31. Maurice, D. M. The Von Sallmann Lecture 1996: an ophthalmological explanation of REM sleep. Exp Eye Res. 66:139–145, 1998. https://doi.org/10.1006/exer.1997.0444.

    Article  CAS  PubMed  Google Scholar 

  32. McCarthy, A., K. Wafford, E. Shanks, M. Ligocki, D. M. Edgar, and D. J. Dijk. REM sleep homeostasis in the absence of REM sleep: effects of antidepressants. Neuropharmacology. 108:415–425, 2016. https://doi.org/10.1016/j.neuropharm.2016.04.047.

    Article  CAS  PubMed  Google Scholar 

  33. Minuth, W. W., L. Denk, and A. Glashauser. A modular culture system for the generation of multiple specialized tissues. Biomaterials. 31:2945–2954, 2010. https://doi.org/10.1016/j.biomaterials.2009.12.048.

    Article  CAS  PubMed  Google Scholar 

  34. Molteno, A. C., J. L. Straughan, and E. Ancker. Control of bleb fibrosis after glaucoma surgery by anti-inflammatory agents. S Afr Med J. 50:881–885, 1976.

    CAS  PubMed  Google Scholar 

  35. Ni, C. W., H. J. Hsieh, Y. J. Chao, and D. L. Wang. Shear flow attenuates serum-induced STAT3 activation in endothelial cells. J Biol Chem. 278:19702–19708, 2003. https://doi.org/10.1074/jbc.M300893200.

    Article  CAS  PubMed  Google Scholar 

  36. Obuchowska, I., and J. Konopińska. Corneal endothelial cell loss in patients after minimally invasive glaucoma surgery: current perspectives. Clin Ophthalmol. 25(16):1589–1600, 2022. https://doi.org/10.2147/OPTH.S359305.

    Article  Google Scholar 

  37. Okumura, N., D. Matsumoto, Y. Okazaki, N. Koizumi, C. Sotozono, S. Kinoshita, and K. Mori. Wide-field contact specular microscopy analysis of corneal endothelium post trabeculectomy. Graefes Arch Clin Exp Ophthalmol. 256:751–757, 2018. https://doi.org/10.1007/s00417-017-3889-1.

    Article  PubMed  Google Scholar 

  38. Paletta Guedes, R. A., D. M. Gravina, V. M. PalettaGuedes, and A. Chaoubah. Standalone implantation of 2–3 trabecular micro-bypass stents (iStent inject ± iStent) as an alternative to trabeculectomy for moderate-to-severe glaucoma. Ophthalmol Ther. 11:271–292, 2022. https://doi.org/10.1007/s40123-021-00424-4.

    Article  PubMed  Google Scholar 

  39. Pan, L., Z. Hong, L. Yu, Y. Gao, R. Zhang, H. Feng, L. Su, and G. Wang. Shear stress induces human aortic endothelial cell apoptosis via interleukin-1 receptor-associated kinase 2-induced endoplasmic reticulum stress. Mol Med Rep. 16:7205–7212, 2017. https://doi.org/10.3892/mmr.2017.7524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paulsen, M. E., P. H. Kass, M. E. Paulsen, and P. H. Kass. Traumatic corneal laceration with associated lens capsule disruption: a retrospective study of 77 clinical cases from 1999 to 2009. Vet Ophthalmol. 15:355–368, 2012. https://doi.org/10.1111/j.1463-5224.2011.00990.x.

    Article  PubMed  Google Scholar 

  41. Sorsby, A. Hardness of the eye: an historical note. Br J Ophthalmol. 16:292–295, 1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strocchi, A., and M. D. Levitt. A reappraisal of the magnitude and implications of the intestinal unstirred layer. Gastroenterology. 101:843–847, 1991. https://doi.org/10.1016/0016-5085(91)90548-y.

    Article  CAS  PubMed  Google Scholar 

  43. Swafford, A. J. M., and T. H. Oakley. Light-induced stress as a primary evolutionary driver of eye origins. Integr Comp Biol. 59:739–750, 2019. https://doi.org/10.1093/icb/icz064.

    Article  CAS  PubMed  Google Scholar 

  44. Tan, J. C., F. B. Kalapesi, and M. T. Coroneo. Mechanosensitivity and the eye: cells coping with the pressure. Br J Ophthalmol. 90:383–388, 2006. https://doi.org/10.1136/bjo.2005.079905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanzeglock, T., M. Soos, G. Stephanopoulos, and M. Morbidelli. Induction of mammalian cell death by simple shear and extensional flows. Biotechnol Bioeng. 104:360–370, 2009. https://doi.org/10.1002/bit.22405.

    Article  CAS  PubMed  Google Scholar 

  46. Turk, S. Untersuchungen über eine Strömungin der vorderen Augekammer. Graefes Arch Ophthalmol. 64:481–501, 1906.

    Article  Google Scholar 

  47. Türk, S. Weitere Untersuchungen über Wärmeströmung in der vorderen Augenkammer und die Ehrlichsche Linie. Klin. Mbl. Augenheilk. 49:300–321, 1911.

    Google Scholar 

  48. Volkmer, E., I. Drosse, S. Otto, A. Stangelmayer, M. Stengele, B. C. Kallukalam, W. Mutschler, and M. Schieker. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A. 14:1331–1340, 2008. https://doi.org/10.1089/ten.tea.2007.0231.

    Article  CAS  PubMed  Google Scholar 

  49. Wamsley, J. W. A preliminary report of the operation for the relief of glaucoma. Med Council Philadelphia. 17:370–372, 1912.

    Google Scholar 

  50. Wang, P. X., V. T. Koh, and S. C. Loon. Laser iridotomy and the corneal endothelium: a systemic review. Acta Ophthalmol. 92:604–616, 2014. https://doi.org/10.1111/aos.12367.

    Article  PubMed  Google Scholar 

  51. Watson, P. Trabeculectomy: a modified ab externo technique. Ann Ophthalmol. 2:199–206, 1970.

    Google Scholar 

  52. Yamamoto, Y., T. Uno, T. Joko, A. Shiraishi, and Y. Ohashi. Effect of anterior chamber depth on shear stress exerted on corneal endothelial cells by altered aqueous flow after laser iridotomy. Invest Ophthalmol Vis Sci. 51:1956–1964, 2010. https://doi.org/10.1167/iovs.09-4280.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding for this project was obtained as an unrestricted grant from the Look For Life Foundation of which MTC is Chairman and a Director.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RMG, GG-N, EM and MTC. The first draft of the manuscript was written by MTC and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Minas T. Coroneo.

Ethics declarations

Competing interests

A company associated with the private clinical practice of MTC but in which he has no financial interest, has filed patent applications on data presented in this manuscript. Over the last 3 years MTC has received royalties for an instrument he designed and which is sold by Katena/Corza Medical. This instrument is unrelated to the material in this manuscript. The other authors have no matters to disclose.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 320450 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coroneo, M.T., Graterol-Nisi, G., Maver, E. et al. Aqueous Humor Circulation in the Era of Minimally Invasive Surgery for Glaucoma. Ann Biomed Eng 52, 898–907 (2024). https://doi.org/10.1007/s10439-023-03427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03427-3

Keywords

Navigation