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Abstract
Optical bone densitometry (OBD) has been developed for the early detection of osteoporosis. In recent years, machine 
learning (ML) techniques have been actively implemented for the areas of medical diagnosis and screening with the goal 
of improving diagnostic accuracy. The purpose of this study was to verify the feasibility of using the combination of OBD 
and ML techniques as a screening tool for osteoporosis. Dual energy X-ray absorptiometry (DXA) and OBD measurements 
were performed on 203 Thai subjects. From the OBD measurements and readily available demographic data, machine learn-
ing techniques were used to predict the T-score measured by the DXA. The T-score predicted using the Ridge regressor 
had a correlation of r = 0.512 with respect to the reference value. The predicted T-score also showed an AUC of 0.853 for 
discriminating individuals with osteoporosis. The results obtained suggest that the developed model is reliable enough to 
be used for screening for osteoporosis.
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Introduction

One of the priorities for the treatment and prevention of oste-
oporosis is the early identification of individuals with low 
bone mineral density (BMD) [40]. Osteoporosis is a bone 
disease that decreases bone strength and increases the risk 
of fracture [32]. Bone strength is determined by two factors: 
BMD, which is a measure of bone mass, and bone quality, 
which consists of bone structure and microfractures, with 
BMD explaining approximately 70% of bone strength [32]. 
Bone mass increases during growth and reaches peak bone 
mass in the 20 s. Thereafter, it remains relatively stable and 
then declines with age [14]. Women, in particular, are prone 
to bone loss with menopause. Fractures due to osteoporosis 
reduce life function and quality of life [13, 33], and in the 
long term, osteoporosis, with or without fractures, signifi-
cantly increases the risk of mortality [8, 31]. Therefore, its 
countermeasure is an important issue not only in medicine 
but also in society. In many cases, however, bone loss is 
not accompanied by subjective symptoms [12]. In addition, 
osteoporosis is difficult to treat with pharmacotherapy unless 
early intervention is provided [32]. Thus, early detection of 
individuals with low BMD can be an effective tool for early 
intervention of osteoporosis.
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Currently, the gold standard for bone densitometry is 
dual-energy x-ray absorptiometry (DXA), which is used 
to diagnose osteoporosis [19, 7, 32]. However, DXA-based 
osteoporosis screening has not been widely used in many 
countries and situations because of its high cost, lack of 
portability, and potentially harmfulness. For people in devel-
oping countries, including Thailand, especially those living 
in suburban and rural areas, it is inconvenient to access DXA 
in community health service centers [36, 37, 42]. In addi-
tion to DXA, other X-ray-based bone densitometry methods 
exist, such as quantitative computed tomography (QCT), 
radiographic absorptiometry (RA), and digital X-ray radio-
grammetry (DXR), all of which are less convenient for early 
screening for the same reasons as DXA. QUS, on the other 
hand, is the only method to measure bone without ionizing 
radiation and is used as an osteoporosis screening instru-
ments. However, QUS is not sufficiently accurate to identify 
individuals with low BMD [23, 30]. QUS also requires the 
application of gel to match the acoustic impedance, increas-
ing the total time required for measurement. Considering the 
limitations of these methods, there is a need for a compact, 
safe, and reliable pre-screening method to identify individu-
als with low BMD.

To achieve compact, safe, and reliable screening of oste-
oporosis, bone densitometry using near-infrared light has 
been studied as a new noninvasive method of BMD assess-
ment [5, 24, 25]. Near-infrared light has excellent biological 
transparency [1], and there is a strong relationship between 
BMD and light scattering phenomena [43, 45]. Near-infra-
red light is significantly scattered by bone due to variations 
in the refractive index associated with hydroxyapatite and 
morphological changes [43]. In addition, a linear correlation 
exists between light scattering coefficient and BMD [45]. We 
previously developed an optical bone densitometry (OBD) 
method using a simple optical consisting of a laser diode 
module, a photodiode, two plano-convex lenses, and two 
annular slits [24, 25]. The OBD measures the change in light 
scattering caused by differences in BMD as the slope of the 
light intensity distribution formed when a near-infrared laser 
beam is irradiated on the skin surface [24]. Phantom experi-
ments and numerical simulations for OBD showed that the 
slope of the light intensity distribution, which is formed on 
the skin's surface when irradiated with near-infrared light, 
correlated with BMD. The OBD could be developed into 
a portable device that facilitates screening of the general 
population for osteoporosis, and its small size makes it con-
venient when portability is required.

Even if sufficient measurement accuracy is confirmed in 
the laboratory, noninvasive medical measurement devices 
may not have sufficient screening performance when meas-
uring humans, due to complex structure of tissues and 
systematic bias. For example, in the case of QUS, Evans 
and Tavakoli demonstrated a highly significant correlation 

(r = 0.85) between bovine femur velocity and physical 
density [9]. However, many in vivo validations show only 
moderate correlations between sound velocity and BMD 
[30, 38]. Such inconsistency of results between in vivo and 
in vivo results could also occur with OBD.

In recent years, machine learning (ML) techniques have 
been actively implemented to improve accuracy in the areas 
of medical diagnosis and screening. ML is a method of ana-
lyzing data in which a computer automatically discovers 
rules and patterns behind the data. And in the field of medi-
cal diagnosis, it is often used to detect diseases with high 
accuracy. In many applications in the field of radiological 
imaging, the performance of ML-based diagnostic systems 
has been shown to be comparable to the performance of a 
well-trained and experienced radiologist [47]. In addition, 
ML can easily merge various data as features at the same 
time, regardless of whether they are directly related to the 
disease or not, and is expected to increase the reliability 
of diagnosis. For example, Monte-Moreno used ML in the 
noninvasive estimation of blood glucose and pressure using 
photoplethysmograph and showed that variables that alone 
do not contribute to prediction, such as age and weight, can 
be merged with photoplethysmograph data to improve pre-
diction accuracy [27].

The combination of OBD and ML techniques to predict 
osteoporosis may be sufficiently reliable for use in screen-
ing. The purpose of this study was to verify the feasibility 
of using the combination of OBD and ML techniques as a 
screening tool for osteoporosis.

Materials and Methods

Participants

The protocol for this study was approved by the Human 
research ethics committee of the Chulabhorn research 
institute. There were 203 participants (171 women and 32 
men). Of the participants, 182 were patients who visited 
Chulabhorn Hospital to have DXA scans, and the remaining 
21 were hospital staff. Age, sex, weight, height, and body 
mass index (BMI; kg/m2) were obtained from these partici-
pants, in addition to DXA and optical device measurements. 
Eleven healthy volunteers (10 males and 1 female, age range 
22–30 years) were measured for 20 days to derive the coef-
ficient of variation (CV) of the optical system. Informed 
consent was obtained from all participants who participated 
in the study.

Measurement

203 participants underwent BMD measurements of the 
lumbar spine, femur, and forearm using DXA (iDXA, GE 
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Healthcare, the USA). Results were expressed in terms of 
bone mineral content per square centimeter (g/cm2) and 
T-Score. According to the World Health Organization 
(WHO) definition of osteoporosis, participants were clas-
sified into osteoporosis (T-score ≤  − 2.5) and others based 
on the T-score of the lumbar spine and femur [6, 20]. All 
T-scores were automatically generated by iDXA. If the 
T-score values for the lumbar spine, femoral neck, and total 
hip of a single participant resulted in different classifica-
tions, the lowest classification was always applied.

Optical measurements were carried out by trained staff 
immediately after the DXA. The ultra-distal (UD) radius of 
the non-dominant arm (10 mm proximal to the ulnar head) 
was measured in cross-sectional orientation with the palm 
side up, as shown in Fig. 1.

The optical system consists of two convex lenses, two 
annular slits, a photodetector, and a laser diode, as shown 
in Fig. 2 [24, 25]. An avalanche photodiode (APD) module 
(C12703-01, Hamamatsu Photonics K.K., Japan) was used 
as the photodetector, and the analog light intensity data was 
converted to 10-bit digital data. The laser diode module 
used was 850 nm wavelength, 1 mW (H838501D, Egismos 
Technology Corporation, Canada). In this optical system, 
by moving the system in the direction of the measurement 
target, the light intensity distribution, spatially resolved in 
the radial direction from the light irradiation position, is 
acquired. The light intensity distribution was expressed in 
terms of the light intensity normalized by  log10(I/I0) and the 
distance Z that the optical system traveled in the target direc-
tion from the lens focal length. Here, I is the detected light 
intensity and I0 is the incident light intensity. In this study, 
the slope of the light intensity distribution (SLID) was meas-
ured in the Z range of 35–42 mm. This range of SLID has 
been shown in previous research to be correlated with BMD 
[24, 25]. To detect unintended excessive target movement 

during measurements and eliminate improper measurement 
results, the light intensity distribution was measured twice 
in one measurement. The squared error ΔSLID of the slope 
of the light intensity distribution due to the motion of the 
measurement target is as follows:

where SLIDa and SLIDb are the SLIDs measured in the 
forward and backward optical system, respectively. Outliers 
were obtained using Tukey's boxplots for the distribution of 
all ΔSLIDs [41]. That is, the outliers and their thresholds 
are as follows:

where SLIDth is a threshold value of outliers, and IQR is 
interquartile range of boxplots.

Machine Learning

The ML was used to predict an individual's minimum 
T-score as determined by DXA. The features for predict-
ing T-score were selected from six variables: SLID, height, 
weight, BMI, age, and sex. For six variables, T-scores were 
predicted for two or more combinations (57 combinations) 
using each ML algorithm to derive the combination of fea-
tures that yielded the highest area under the curve (AUC) of 
the receiver operating characteristic (ROC) for osteoporosis 
discrimination. The AUC takes values from 0.5 to 1, and 
an AUC of 1 indicates that the test is completely accurate 
for distinguishing between individuals with and without the 
condition of interest, while an AUC of 0.5 indicates that the 
test is useless.

Four different ML techniques were tested: Ridge Regres-
sion (RR) [15, 16], Support Vector Machines (SVM) [46], 

(1)ΔSLID =
(

SLIDa − SLIDb

)2

(2)ΔSLID > SLIDth

(3)SLIDth = 75th percentile + 3 IQR

Fig. 1  Measurement site of forearm. On the top in the photo is the 
optical bone densitometry device, measuring the ultra-distal radius

Fig. 2  An optical bone densitometry system. APD: avalanche photo-
diode, LD: 850 nm wavelength 1mW laser diode [24]
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Random Forest (RF) [4], and Gradient Tree Boosting (GTB) 
[39]. RR solves a regression model where the loss function 
is a linear least squares function, and the regularization is 
given by the l2-norm [15, 16]. The RR was tested by varying 
the coefficients of the regularization term, which is included 
in scikit-learn 0.24.2 in python. SVM is insensitive to noise 
by using an ε-insensitive loss function, and nonlinear func-
tions can be constructed by using kernel tricks [46]. The ker-
nel chosen was a Gaussian kernel, and the kernel coefficients 
γ, soft margin C, and tube ε were varied for the tests. RF 
is one of the decision tree-based ensemble methods, where 
the output is the aggregated output of a set of classifica-
tion or regression trees [4]. For RF, three parameters were 
varied and adjusted [34]; the number of decision trees in 
the ensemble, the minimum number of samples for a node 
to be considered a leaf, and the number of features to con-
sider when computing the optimal node split. The RF used 
the one included in scikit-learn 0.24.2 in python. GTB is 
one of the ensemble learnings with decision trees and is a 

generalization of Boosting for arbitrary differentiable loss 
functions [10, 11]. Three parameters were varied in GTB; 
regularization factor, maximum depth of the tree, and the 
step size reduction used during the update to prevent overfit-
ting. GTB used CatBoost 0.24.3.

A flowchart of machine learning model generation is 
shown in Fig. 3. For each feature combination, the per-
formance of the T-score predicted by each ML module to 
discriminate osteoporosis was validated by fivefold cross-
validation. In the fivefold cross-validation, all data were 
first randomly divided into 5 equal-sized subsets, with one 
subsample as test dataset and the remaining 4 subsample 
as training dataset. To reduce selection bias in random 
sampling, fivefold cross-validation was repeated 10 times 
and the results were derived as an average. Each of the 50 
training datasets in the 10 iterations of the fivefold cross-
validation was trained with the following four steps. First, 
the outlier threshold  SLIDth was determined using Equa-
tions 1–3 to detect and eliminate unintended excessive target 

Fig. 3  A Flowchart of the ML model determination procedure. B Flowchart of a ML model generation and validation
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movement during the measurement. Second, the best com-
bination of parameters for a ML module were selected by a 
grid-search with fivefold cross-validations. Grid-search is a 
method that comprehensively searches for specified param-
eter candidates and selects the optimal parameter set. The 
optimal combination of parameters was assumed to yield 
the minimum value of the root mean squared error (RSME). 
Third, from the predictions obtained by grid search with 
fivefold cross-validation, an ROC curve was derived and 
a cutoff value for the T-score to classify osteoporosis was 
determined using Youden's index. Youden's index selects 
the cutoff value that maximizes the sensitivity + specificity 
− 1 [49]. Finally, once the best set of parameters was found, 
the ML module was retrained with all the data in the fold. 
This method of adjusting the model using cross-validation 
within each fold of cross-validation is commonly referred to 
as nested cross-validation [21], and allows for the verifica-
tion of model performance, including the derivation process.

Statistical Analysis

Student's t-test and Pearson's chi-square test were used to 
compare the characteristics of the osteoporosis and non-
osteoporosis groups. Pearson's correlation coefficient was 
used to investigate the association between SLID and age, 
BMD, and T-score. To evaluate the osteoporosis discrimi-
nation performance of the ML model, ROC analysis was 
performed, and AUC was calculated. The mean, standard 
deviation, median, first and third quartiles of cutoff value, 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) for classifying 
osteoporosis were also determined. Wilcoxon signed-rank 
test was performed to compare the performance differ-
ences of the proposed ML model with and without SLID. 

All statistical analyses were performed with SciPy 1.8.0 in 
Python 3.8.

Results

A total of 203 Thai people aged between 22 and 96 years 
(mean age: 64.7 years) were included, and 84.2% were 
woman in this study. The prevalence of osteoporosis 
(T-score ≤ − 2.5) was 18.2%. As expected, the participants 
with osteoporosis had a higher average age, shorter height, 
and lower weight than the non-osteoporotic participants. 
SLID before outlier removal did not differ between the 
groups, but as shown in Table 1, SLID after outlier removal 
was significantly lower in the osteoporosis group than in the 
non-osteoporosis group; the CV of SLID was 3.77 ± 1.91 
%, and the measurements were stable. SLID and T-score 
determined by DXA showed a weak correlation of r = 0.182 
(Fig. 4). Here, T-score is the minimum value obtained for 
the lumbar spine, femoral neck, and total hip. 

The RR model with SLID, age, and weight as features 
was selected as the osteoporosis prediction model. The crite-
ria for selecting the machine learning algorithm and features 
were the AUC value of the predicted T-score for osteoporo-
sis discrimination. The performance of the model was tested 
by repeating the nested fivefold cross-test 10 times against a 
database of 203 individuals, excluding SLID outliers. That 
is, 80% (162) of the randomly selected databases were used 
to train the model, leaving 20% (41) as the test database, 
which was rotated 5 times for 10 iterations. In 80% of the 
databases used for training, thresholds were set to define 
SLID outliers, and the best structure, parameters, and cut-
off values were determined using five-part cross-validation. 
These nested cross-tests, including the derivation process, 
estimate the generalization performance of the predictive 

Table 1  Demographic

The values are given as the mean and standard deviation. SLID was removed outlier by Eq. 1, and the original SLID shows the data before the 
outliers were removed. The number of participants was listed at the top of the table unless otherwise indicated. p values were derived from the 
unpaired t test or χ2 test for the difference between osteoporosis and non-osteoporosis group
SD standard deviation

Total (n = 203) Non-osteoporosis (n = 166) Osteoporosis (n = 37) p value

Mean SD Mean SD Mean SD

Age [years] 62.8 14.8 62.1 14.0 73.3 10.5  < 0.001
Weight [kg] 60.6 10.0 64.1 9.6 49.9 9.1  < 0.001
Height [cm] 158.0 7.3 160.1 7.6 153.6 7.7 0.001
BMI [kg/cm2] 24.3 3.8 25.0 3.5 21.2 3.6  < 0.001
Number of woman (n [%]) 171 (84.2 %) 137 (82.5 %) 34 (91.9 %) 0.158
UD radius BMD [g/cm2] 0.358 0.088 0.417 0.075 0.285 0.052  < 0.001
T-score − 1.43 1.16 − 0.21 0.75 − 3.04 0.63  < 0.001
SLID (n) 0.0375 (180) 0.0053 0.0386 (61) 0.0055 0.0354 (30) 0.0042  < 0.05
Original SLID 0.0373 0.0057 0.0382 0.0065 0.0358 0.0042 0.086
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model, and their repetition reduces the selection bias of ran-
dom sampling. For all algorithms, SLID, age, and weight 
were selected as the features with the highest AUC. RR 
showed the highest AUC for osteoporosis discrimination.

A comparison of the T-score predicted using the RR mod-
ule and SLID, age, and weight with its reference value is 
shown in Fig. 5. The predicted T-score had a correlation 
of r = 0.512 with respect to the reference value, showing a 
higher correlation coefficient compared to the correlation 
between SLID and T-score (r = 0.182). Figure 6 shows the 
ROC curves for osteoporosis discrimination obtained from 
the T-score predicted by RR (Fig. 5) and the SLID value 
(Fig. 4). On the other hand, the AUC of T-score predicted 
by RR was 0.853. The performance of osteoporosis discrimi-
nation was greatly improved by using the machine learning 
technique. Generally, an AUC of 0.80 to 0.90 is considered 
to have high discrimination performance, 0.70 to 0.80 is 

considered moderate, and 0.60 to 0.70 is considered low 
[29]. Table 2 shows comparison of the classification per-
formance by RR with and without SLID. The cutoff values 
determined from the Youden index in the internal cross-val-
idation did not differ significantly between the two models. 
The accuracy, sensitivity, specificity, PPV, and NPV deter-
mined from the cutoff values were significantly higher in 
the model with SLID compared to the model without SLID: 
4.9% for accuracy, 9.0% for sensitivity, 4.4% for specificity, 
13.4% for PPV, and 13.4% for NPV for the model with SLID 
compared to the model without SLID. PPV 13.4 %, and NPV 
1.3 % higher. These results indicate that SLID contributes 
to the improved osteoporosis discrimination performance of 
machine learning models.

Discussion

The purpose of this study was to verify the feasibility of 
using the combination of OBD and ML techniques as 
a screening tool for osteoporosis. To predict T-score, 
an RR model was generated using SLID which is meas-
ured by OBD, age, and weight as features. The predicted 
T-score showed an AUC of 0.853 against identification of 
osteoporosis.

The ML model generated in this study has the potential to 
work in terms of operational and reliability of osteoporosis 
screening. OBD was developed as a simple method of meas-
uring BMD, and age and weight demographic data are read-
ily available. The OBD can take measurements in seconds by 
simply holding up an arm, and age and weight demographic 
data are readily available. If it can maintain good perfor-
mance after being validated in a larger population, the ML 
model proposed in this study may be used as one of the pre-
screening methods for osteoporosis. According to a meta-
analysis by Nayak et al, the AUC of QUS for osteoporosis 
discrimination is approximately 0.74 for speed of sound and 
0.77 for broadband ultrasound attenuation [30]. In a study 

Fig. 4  Relationship between SLID and T-score determined by DXA

Table 2  Comparison of prediction performance by RR with and without SLID

Q1 and Q3 are the first and third quartiles in the quartile range
SD standard deviation

RR (SLID, age, weight) RR (age, weight) p value

Mean SD Median Q1 Q3 Mean SD Median Q1 Q3

AUC 0.853 0.099 0.875 0.790 0.930 0.843 0.100 0.864 0.776 0.926  < 0.01
Cutoff − 1.886 0.056 − 1.876 − 1.857 − 1.925 − 1.848 0.104 − 1.866 − 1.761 − 1.925 0.08
Accuracy 0.875 0.056 0.867 0.842 0.918 0.834 0.104 0.836 0.796 0.889  < 0.001
Sensitivity 0.703 0.205 0.714 0.579 0.857 0.645 0.200 0.667 0.500 0.800  < 0.01
Specificity 0.909 0.058 0.927 0.867 0.965 0.871 0.097 0.895 0.802 0.937  < 0.001
PPV 0.628 0.187 0.625 0.500 0.750 0.554 0.218 0.500 0.400 0.714  < 0.001
NPV 0.940 0.038 0.936 0.918 0.964 0.928 0.035 0.930 0.897 0.958  < 0.001
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by Boonen et al. the AUCs discriminating osteoporosis in 
DXR and RA were 0.84 and 0.80, respectively [3]. Consid-
ering that these methods are commonly used for screening 
purposes, it is suggested that our model (AUC = 0.853) may 
have adequate performance.

Linear regression models such as OST was developed to 
screen for osteoporosis in a simplified manner based on age 
and weight. The RR algorithm generates a linear regression 
model. In this study, the AUC to discriminate osteoporosis 
from T-score predicted from age and weight only using the 

RR algorithm was 0.843. These results are within the range 
of 95% confidence intervals for AUC in OST [17, 48] which 
support the results obtained in this study.

The criteria for feature and algorithm selection were the 
AUC score of the predicted T-score for osteoporosis dis-
crimination. Age and weight, as used in OST, are known 
to be useful in predicting osteoporosis, and these indicators 
were also important in this study. Sex is one of the well-
known risk factors for osteoporosis, but it was not selected 
in our model. This result is consistent with previous reports, 
as most of the dataset is likely to be female [18]. Although 
RR, a linear regression model, performed better than SVM, 
RF, and GTB, which can also be used for nonlinear prob-
lems, linear predictors were not chosen as the final model in 
several previous studies [34, 48]. For example, in the study 
by Yoo et al. SVM was selected as the final model instead 
of logistic regression, a linear classifier, to predict osteo-
porosis [48]. The reason why RR showed the best perfor-
mance in this study could be due to the selection of features 
from a small number of variables. In this model, features 
were selected from a limited set of six variables, whereas in 
the Yoo’s model, features were selected from 15 variables. 
While more sophisticated algorithms may be selected in the 
future as more functionalities becomes available and the 
nonlinearity between dependent and independent variables 
increases, fewer variables have the advantage of simplifying 
the model and requiring less input effort.

Osteoporosis discrimination performance of SLID alone 
was not sufficient. This could have several causes. The first 
is because the measurement target of OBD is the distal 
radius. The distal radius does not show a strong correlation 
to BMD of the femur and lumbar spine [22, 28], although 
it is one of the most frequent fracture sites in osteoporosis 
[26]. The WHO definition of osteoporosis we used is based 
on BMD of the femur and lumbar spine. The second is the 
effect of the soft tissue layer. Most bone matrix in body is 
at least covered by soft tissues such as epidermis, dermis, 
and subcutaneous tissue. However, our previous phantom 
experiments assumed a monochromatic, homogeneous light 
scatterer composed of one layer as soft tissue, although 
SLIDs showed a strong correlation to BMD [24, 25]. There 
is concern that the measurements may also be affected by 
the complexity of the morphology of the soft tissue layer. 
Pifferi et al. measured human calcaneus using time-resolved 
transmission spectroscopy, suggesting that the complexity 
of the soft tissue covering the bone and differences between 
subjects can lead to large measurement bias [35]. However, 
in this study, SLID combined with ML techniques signifi-
cantly improved osteoporosis discrimination performance. 
This result was attributed to the addition of weight and age, 
information not available in the SLID measurement, which 
contributed to reducing the SLID measurement error. The 
results suggest that using ML techniques and adding some 

Fig. 5  Relationship between reference and predicted T-score by RR 
model

Fig. 6  ROC curves comparison between RR model and SLID
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features can reduce the performance limitations of OBD for 
osteoporosis discrimination.

SLID was one of the important indicators in the ML 
model, although it is not accurate enough on its own to dis-
criminate osteoporosis. The highest performing models in 
all ML algorithms tested included the SLID in their features. 
The RR model using SLID, age, and weight showed a sig-
nificant improvement of 1.2% in AUC and 4.9% in accuracy 
compared to the model using only age and weight. Although 
the 4.9% improvement in accuracy may be numerically 
slight, if Thai women over the age of 50 are considered a 
population at risk for rapid bone loss, there are approxi-
mately 8.97 million women in the population that fall into 
this category, and 4.9% equates to approximately 440,000 
women. In addition, all measures of sensitivity, specificity, 
PPV, and NPV improved by 1.3–13.4% with and without 
SLID.

We recognize several limitations regarding this study. 
First, the applicability of the model developed in this study 
is limited by the subject population. All participants in this 
study are Thai, and their physical characteristics, lifestyles, 
cultural backgrounds, and environmental living conditions 
differ from those of other populations. In addition, most 
participants were patients who came to the hospital for a 
DXA, so it is likely that many participants at potential risk 
for osteoporosis were included in the analysis. Although the 
derivation method of this model is promising, its implemen-
tation in clinical practice requires validation in an independ-
ent population and the setting of appropriate cutoff values 
for the intended purpose. Second, in this study, SLID was 
used for the actual measurements of the ML model, but 
screening instruments such as QUS could be used as well. 
However, OBD does not require the application of gel and 
allows for quick and simple measurements. ML models 
using OBD may offer a new option as a screening method 
for osteoporosis. Third, the distal radius is not a priority in 
the current diagnosis [6]. However, the forearm is one of the 
ideal sites for simple light-based measurements because it 
is easily exposed and has little soft tissue, especially in the 
UD area. In addition, a history of wrist fracture is associated 
with the risk of future fractures [2], and it has been noted 
that BMD measurement in the forearm may facilitate early 
detection of patients in need of intervention for osteoporosis 
[26]. Therefore, it may be a promising measurement location 
for early detection of osteoporosis.

The purpose of this study was to verify the feasibility 
of using the combination of OBD and ML techniques as a 
screening tool for osteoporosis. A RR model was developed 
to predict T-score using OBD measurements as well as age 
and weight. The results obtained suggest that the devel-
oped model is reliable enough to be used for screening for 
osteoporosis.
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