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Abstract
Joint loading may affect the development of osteoarthritis, but patient-specific load estimation requires cumbersome motion 
laboratory equipment. This reliance could be eliminated using artificial neural networks (ANNs) to predict loading from 
simple input predictors. We used subject-specific musculoskeletal simulations to estimate knee joint contact forces for 290 
subjects during over 5000 stance phases of walking and then extracted compartmental and total joint loading maxima from 
the first and second peaks of the stance phase. We then trained ANN models to predict the loading maxima from predictors 
that can be measured without motion laboratory equipment (subject mass, height, age, gender, knee abduction-adduction 
angle, and walking speed). When compared to the target data, our trained models had NRMSEs (RMSEs normalized to the 
mean of the response variable) between 0.14 and 0.42 and Pearson correlation coefficients between 0.42 and 0.84. The load-
ing maxima were predicted most accurately using the models trained with all predictors. We demonstrated that prediction 
of knee joint loading maxima may be possible without laboratory-measured motion capture data. This is a promising step 
in facilitating knee joint loading predictions in simple environments, such as a physician’s appointment. In future, the rapid 
measurement and analysis setup could be utilized to guide patients in rehabilitation to slow development of joint disorders, 
such as osteoarthritis.

Keywords Knee joint · Contact force · Compartmental loading · Knee osteoarthritis · Gait analysis · Artificial neural 
networks · OpenSim

Introduction

Walking and other forms of human locomotion put joints, 
particularly the knee joint, under stress. Excess loading of 
the knee joint may have adverse effects on the health and 
pathology of the joint [13]. For instance, loading of the 

knee joint may affect the development of knee osteoarthri-
tis (KOA), a disease that affects both the tibiofemoral and 
the patellofemoral knee joints, causes pain and immobiliza-
tion, and has major healthcare costs worldwide [18, 32]. 
Although a causal link between knee joint loading (esti-
mated by knee adduction moments and derived measures 
as well as tibiofemoral compression force) and structural 
disease progression of KOA cannot be plausibly established Associate Editor Thurmon E. Lockhart oversaw the review of 
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[17], knee joint loading is believed to have an important role 
in the development and progression of KOA particularly in 
the context of frontal plane malalignment and excess load-
ing in either compartment of the joint [9, 13]. Personalized 
knee joint loading distributions can be estimated by knee 
joint contact forces, which in turn can be solved with mus-
culoskeletal (MS) modeling utilizing various motion capture 
(MOCAP) setups [10]. Because information about knee joint 
loading can be utilized to instruct better movement strate-
gies, capabilities of providing personalized estimations for 
the joint loading distributions could enable teaching patients 
movements that reduce loading on vulnerable parts of the 
joint. However, the biggest limitation why this is not pos-
sible in clinics is due to availability of MOCAP setups. This 
indicates unmet needs for simpler solutions to be applied in 
the clinics.

MS modeling requires measuring experimental MOCAP 
data and several computational analysis steps to retrieve 
knee joint contact forces (KJCFs). Experimentally measured 
data includes trajectories of markers placed on the subject’s 
skin and ground reaction forces (GRFs) measured with force 
plates; it may also include other data, such as electromyo-
graphic (EMG) signals [2] or data from inertial measure-
ment units [30]. The placing of the markers requires experi-
ence and time. The measurement technologies are generally 
not portable and thus, necessitate measurements in a motion 
laboratory. Additionally, the analysis steps required to cal-
culate KJCFs are time-consuming. This cumbersomeness 
may be acceptable in a research setting but can exclude the 
calculation of KJCFs from clinical use where patient com-
fortability and time are limiting factors. Therefore, less cum-
bersome methods to retrieve KJCFs are required. Machine 
learning methods such as artificial neural networks (ANNs) 
present a potential solution.

Predicting KJCFs with effortlessly measurable input data 
could make the estimation of knee joint loading portable. 
While some previous studies have used raw MOCAP data 
such as marker trajectories and GRF signals as the input to 
predict KJCFs in the medial compartment of the knee joint 
using ANNs [2, 28], the use of predictors with more intui-
tive biomechanical connection to knee joint loading could be 
justified and simplify the experimental measurements. For 
example, the subject’s mass, height, BMI, and walking speed 
have been used as predictors to predict medial KJCF peaks 
using ANNs [4, 20]. However, those studies still included 
joint moments [4] or joint angles [12, 20] among the predic-
tors, meaning that MOCAP data were still required in the 
prediction.

Clearly, the inconvenience of MOCAP data has been 
noticed by biomechanics researchers and existing studies 
show a trend toward dynamics estimation while skipping 
the time-consuming MS analysis steps [2, 12, 20, 28] and 
using light measurement setups (e.g., without full marker 

data) instead of laboratory-grade MOCAP [20, 30]. Elimi-
nating reliance on MOCAP-based input data would be a 
significant step forward in the prediction of the peaks or 
entire time series of compartmental KJCFs. If KJCFs could 
be predicted with sufficient accuracy using demographic 
and anthropometric data, the biomechanical joint loading-
based risk assessment of KOA or similar conditions could be 
done much faster than is possible when MOCAP is required. 
However, it should be noted that this would require very 
large training data sets, which would have to consider all 
possible variations in subject characteristics (such as age, 
height, weight, type of knee injury).

In this study, we trained feedforward ANNs to predict the 
total and compartmental KJCFs peaks using mostly anthro-
pometric and demographic data as the input. The input data 
comprised subject mass, height, age, gender, knee abduc-
tion-adduction angle during static standing, and walking 
speed. Using the same input data, we also investigated the 
accuracy of predicting medial force ratios (MFRs), which 
describe the compartmental distribution of joint loading. We 
aimed to answer the following research questions:

• How accurately can medial, lateral, and total KJCF load-
ing response, terminal extension, and full-stance peaks 
be predicted using ANNs without motion capture data?

• How accurately can loading response, terminal extension, 
and full-stance MFRs be predicted using ANNs without 
motion capture data?

• What is the inter-trial variability of KJCF peaks, i.e., 
what is the theoretical upper limit of prediction accu-
racy?

Materials and Methods

The study workflow is presented in Fig. 1.

Included Datasets

The combined dataset for the study was constructed from 
five separate original datasets. All original datasets con-
tained information about the height, weight, gender, and age 
of the participants in addition to lower body marker trajecto-
ries and ground reaction forces (GRFs) during level walking.

The first original dataset was the CAROT [1] dataset, 
which contained participants of both genders who had been 
diagnosed with osteoarthritis in at least one knee. The patho-
logical leg was used in the analysis. Most participants in 
the dataset had trials from several measurement sessions, 
in which case we utilized all viable sessions. The CAROT 
study was approved by the Scientific Ethical Committees for 
the Capital Region, Denmark (H-B-2007-088). Additionally, 
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we used data from four open datasets: datasets by Schreiber 
and Moissenet [29]; Fukuchi et al. [11]; Horst et al. [19]; and 
Camargo et al. [5]. They comprised healthy participants of 
both genders and different ages. All open datasets reported 
informed consent from the participants and ethics approval 
from an appropriate body.

The combined dataset consisted of 124, 49, 42, 54, and 
21 subjects from the CAROT, Schreiber, Fukuchi, Horst, 
and Camargo datasets, respectively. The combined data-
set covers most but not all of the subjects in the original 
datasets because some subjects had too little valid data 

(elaborated below in “Estimation Of Joint Loading” sec-
tion) to be included. Table 1 shows demographic informa-
tion about the combined dataset and the individual datasets 
that constitute it. Visual illustrations of the response vari-
ables and their dispersion are presented in the Supplemen-
tary material.

Estimation of Joint Loading

We used the open-source musculoskeletal (MS) simu-
lation and analysis software, OpenSim [7], to estimate 
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Fig. 1  The workflow consists of extracting data from existing data-
sets, conducting musculoskeletal simulation and analysis, and con-
structing artificial neural networks. The data from existing datasets 
include demographic data and motion capture data. Demographic 
data are used to formulate most of the predictor variables, while 
motion capture data are analyzed to retrieve the remaining predictor 

variables and all response variables. Finally, artificial neural networks 
are trained for each combination of predictor sets and response vari-
ables to predict the value of the response variable from the predictor 
variables in the predictor set. Detailed information about training the 
artificial neural network can be found in the Supplementary material
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knee joint contact forces (KJCF) using the experimental 
marker trajectories and ground reaction forces (GRF) of 
the datasets (Fig. 1). The analysis pipeline included the 
following steps: experimental data extraction, creation 
of subject-specific musculoskeletal model by scaling the 
generic model, calculation of inverse kinematics (IK) and 
inverse dynamics (ID), static optimization (SO) to solve 
individual muscle forces, and finally the calculation of 
joint reaction forces. We implemented this pipeline as 
MATLAB scripts that invoked the OpenSim 4.1 applica-
tion programming interface. Details of musculoskeletal 
modeling and simulation, including validation of the 
selected analysis pipeline, can be found in the Supple-
mentary material.

Before constructing the combined dataset, the esti-
mated KJCF curves were visually checked to exclude 
trials with potential measurement, modeling, and simu-
lation-related error to ensure validity of the data enter-
ing further analyses. Trials were excluded based on non-
physiological reasons, such as simulation-related artifacts 
or technical issues. Exclusion was done on a per-trial 
basis rather than on a per-subject basis, i.e., presence of 
excluded trials did not prevent the inclusion of valid trials 
under the same subject in the combined dataset. Common 
criteria for exclusion were the presence of only half of the 
stance phase and sharp distortions that would have been 
detected as peak values in the following analysis step. 
Reasons for them included the stance phase-detecting 
algorithm mistaking the mid-stance local minimum as 
the end-of-stance minimum in force plate data, jump-
ing marker labels that caused sudden changes in IK, and 
distortions in force plate data. Overall, 19% of analyzed 
trials were excluded based on visual inspection of KJCF 
curves. Although some of these errors could have been 
corrected by trial-specific manual changes in the data and 
analysis pipeline, those trials were excluded instead of 
corrected because fixing them would have taken a lot of 

time and because of the large amount of valid data we 
received with the automatic analysis pipeline. Therefore, 
only trials with visually validated KJCF curves consti-
tuted the combined dataset. Extraction of KJCF peak 
values, calculation of medial force ratios, and dataset-
specific MS modeling notes are presented in the Sup-
plementary material.

Predictor Selection

Predictors (i.e., input variables for the prediction model) 
in the combined dataset were the mass, height, BMI, age, 
gender, knee angle, walking speed, and heel strike velocity 
of the subject (Fig. 1). They were selected due to avail-
ability and the possibility of simple acquisition, e.g., in 
a clinical setting. Knee angle was defined as the abduc-
tion-adduction angle of the knee during static standing 
where positive values indicated adduction and negative 
values indicated abduction. It was determined for each 
subject during the scaling of the musculoskeletal model. 
The walking speed was calculated as the mean velocity of 
MOCAP markers on the pelvis along the walking direction 
during the stance phase. Similarly, heel strike velocity was 
the momentary velocity of the pelvis in three-dimensional 
space between the frame in the marker data where heel 
strike was detected and the immediately following frame.

To assess predictor collinearity, we calculated vari-
ance inflation factors (VIFs) [14] for the predictors. VIF 
describes the multicollinearity of predictors in a multiple 
regression model and is a measure of how much explained 
variance a predictor shares with other predictors. Mass, 
height, and BMI had VIFs above 20, with walking speed 
and heel strike velocity both having VIFs above 3. When 
BMI and heel strike velocity were omitted from the pre-
dictor set, the remaining variables had VIFs below 3. This 
observation confirmed that having BMI, mass, and height 
or walking speed and heel strike velocity in the predictor 

Table 1  Demographic information about the subjects in the combined dataset, presented per original dataset and in the combined dataset as a 
whole

The presented mass and BMI values for CAROT dataset, where there were several measurement sessions and intra-subject mass and BMI 
changed between them, represent the values from the first measurement session

Dataset Age (years) Mass (kg) Height (m) BMI (kg/m2) Gender

Min Median Max Min Median Max Min Median Max Min Median Max m f

Camargo 19 21 33 52.2 68.0 96.2 1.52 1.73 1.80 18.6 23.6 30.3 13 8
CAROT 50 62 78 74.0 99.3 145 1.49 1.65 1.91 28.2 35.9 51.0 25 99
Fukuchi 21 33 84 44.9 68.5 95.4 1.47 1.68 1.92 18.0 24.0 33.1 24 18
Horst 19 22 30 47.3 69.0 94.2 1.55 1.77 1.99 18.5 22.2 26.7 28 26
Schreiber 19 38 67 50.0 68.0 98.0 1.55 1.73 1.92 17.2 23.5 29.6 26 23
Combined 19 53 84 44.9 80.8 145 1.47 1.69 1.99 17.2 26.7 51.0 116 174
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set resulted in high collinearity. Therefore, we removed 
BMI and heel strike velocity from the predictor set; we 
chose the removal of heel strike velocity over walking 
speed because walking speed is easier to measure. Based 
on the simplicity of measuring the predictors, we formed 
four predictor sets PA, PB, PC, and PD with varying number 
of predictors (Table 2).

Artificial Neural Network Analysis

MATLAB R2020b (MathWorks, Natick, MA) with deep 
learning toolbox for the ANN analysis was utilized (Fig. 1). 
For the architecture of the neural network, we chose a fully 
connected feedforward network. The ANNs consisted of an 
input layer, a single hidden layer, and an output layer. In the 
hidden layer, the activation function, the number of nodes, 
and the training algorithm were chosen with a hyperparam-
eter optimization algorithm that is described in Supplemen-
tary materials. The activation function in the output layer 
was a linear function.

We used backpropagation training to train ANNs to pre-
dict loading response, terminal extension, and full-stance 
peak on the medial and lateral compartments and the afore-
mentioned peaks identified from the total sum of the time 
series of both compartments with different predictor sets. 
Additionally, we trained ANNs to predict MFRs during load-
ing response, terminal extension, and the entire stance phase. 
Individual trials, and not their ensemble averages, were used 
in training the ANNs; information about weighting the trials 
can be found in the Supplementary material. In summary, 
an ANN was trained for each predictor-output combination, 
totaling 48 ANNs (four predictor sets times twelve response 
variables).

During training, all data points in the combined dataset 
were distributed into three subsets: a training set, a valida-
tion set, and a test set. Recommended distributions of data 
in the sets vary per source but at least half of the whole data-
set is usually allocated to the training set [15, 22]; we used 
fivefold cross-validation to allocate the subsets, explained in 
detail in the Supplementary material. The data in the train-
ing set were used to iteratively modify the weights between 

the input layer and the hidden layer and the hidden layer and 
the output layer. MATLAB’s predefined training algorithm 
was used to update the weights iteratively. Formulation of 
the weights of the training samples is explained in the Sup-
plementary material.

Finally, according to the cross-validation scheme 
described in the Supplementary material, we determined 
test error by evaluating the independent test set in the ANN 
and calculating the RMSE by comparing the predicted out-
put to the true (i.e., MS model estimated) output. To ensure 
comparability of ANN prediction accuracy between differ-
ent predictor sets, we used the same random seed of one to 
initialize the Mersenne Twister pseudorandom number gen-
erator of MATLAB for subset division and initial network 
weight generation for each predictor set.

Analysis of Response Variability

Because of inherent variability in repeated movements, 
knee loading profiles always differ between trials within a 
single subject. Therefore, no matter how well-trained and 
well-structured ANNs are used, response variables in an 
independent dataset are impossible to predict with perfect 
accuracy. To determine what the highest attainable accuracy 
is, within each subject and trial configuration, the inter-trial 
variability of the response variables was evaluated. For each 
response variable, we grouped the response values under 
their respective subjects and, if applicable, further under dif-
ferent trial configurations. The trial configurations included 
instructed walking speed, measurement session, and other 
parameters so that each group would ideally result in the 
same knee loading if there was no measurement noise and 
the subject could replicate their movement exactly. For each 
set of responses in a group excluding groups with less than 
four trials, we calculated the standard deviation. We then 
calculated the mean and standard deviation of the intra-
group standard deviations for each original dataset.

We chose standard deviation as the measure of dispersion 
(i.e., variability) over other options such as range, interquar-
tile range, and mean absolute deviation because standard 
deviation is more intuitive to compare against RMSE due 
to the similarities in their equations. RMSE is calculated as

where yi is the i-th predicted response, ti is the i-th target 
value of the response, and N is the number of data points. 
Standard deviation is calculated as

RMSE =

�

∑N

i=1

�

yi−ti
�2

N
,

Table 2  Chosen predictor sets and the variables they included

Measurement simplicity decreases gradually from PA to PD; PA com-
prises only demographic and anthropometric parameters, while PD 
contains predictors that are possible to measure outside the motion 
laboratory with a goniometer, measuring tape, and a stopwatch

Predictor set Included predictors

PA Mass, height, age, gender
PB Mass, height, age, gender, walking speed
PC Mass, height, age, gender, knee angle
PD Mass, height, age, gender, walking speed, knee angle
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where ti is the i-th true value (i.e., target value) of the 
response, μ is the sample mean of all ti, and M is the number 
of tis. If we assume that yi equals μ for all i and the number 
of data points N in the test subset that is used to calculate 
RMSE equals M − 1, RMSE and standard deviation are 
equal. This assumption fails to hold, but we acknowledged 
this connection between these two measures and treated 
standard deviation as an approximation of the minimum 
attainable RMSE for the ANN.

With standard deviation, we had approximate information 
of how much the response values vary when measurement 
conditions remain unchanged. This information provided the 
context necessary for interpreting the prediction accuracy 
of the ANNs.

Results

The KJCF peaks resulting from the musculoskeletal (MS) 
analysis pipeline are available online on Zenodo (https:// 
zenodo. org/ record/ 72534 58) [23]. The online dataset also 
contains the predictors corresponding to the KJCF peaks so 
that others may use the data in their prediction algorithms. 
The dataset contains data only from the four open datasets.

Analysis of Response Variability

In Table 3, for all 12 response variables, we present the 
means and standard deviations of the standard deviations 
of KJCF peaks over similar trial conditions with four or 
more trials a group (i.e., measures that describe how much 
MS modeling estimated loading peaks vary between tri-
als that are identical in terms of subject characteristics and 

STD =

�

∑M

i=1

�

ti − �

�2

M − 1
,

instructed walking speed). The results vary per original data-
set and response variable, but overall the standard deviations 
of the measures are in the same order of magnitude as the 
measures themselves.

Prediction Accuracy of the Artificial Neural 
Networks

The best Pearson correlation coefficient (R = 0.84) and root 
mean square error normalized to the mean of the response 
variable (NRMSE = 0.14) were reached for the summed 
peak of both compartments over the full-stance phase with 
predictor set PD (Table 4). With predictor sets PB and PD, 
the most accurately predicted response variable was the 
summed peak of both compartments over the full-stance 
phase (R = 0.82 for PB and R = 0.84 for PD), whereas with 
predictors sets PA and PC, the summed terminal extension 
peak was predicted the most accurately (R = 0.74 for  PA 
and R = 0.74 for PC).

The worst attained correlation between predicted and 
MS model estimated responses was for the medial loading 
response peak with predictor set PC (R = 0.42), and the worst 
NRMSE was for the lateral loading response peak with pre-
dictor set  PA (NRMSE = 0.42). In both predictor sets, the 
loading response peaks always performed worse than ter-
minal extension peaks or full-stance peaks.

When walking speed was included in the predictor set, 
prediction accuracy improved without exception compared 
with a similar predictor set without walking speed. While 
compartmental KJCF peaks can be predicted with R > 0.4 
with just the mass, height, age, and gender of the subject, 
including the walking speed in the predictors is required for 
R > 0.7.

Although the inclusion of knee abduction-adduction 
angle in the predictors generally improved the prediction 
of KJCF peaks in the lateral compartment, its effects on 
the prediction of medial and summed (non-compartmental) 

Table 3  Mean and standard 
deviation (STD) of the STDs 
of musculoskeletal model 
estimated KJCF peaks of all 
similar trial conditions with 
at least four trials, presented 
for each response variable and 
original dataset

“Full” refers to the peaks from the full stance, while LR and TE refer to the loading response (first peak) 
and terminal extension (second peak) phases of stance, respectively. “Summed” refers to the sum of medial 
and lateral compartment loading. All values are in newtons

Mean ± STD Camargo CAROT Fukuchi Horst Schreiber

Full (summed) 378.5 ± 296.0 216.0 ± 149.6 256.4 ± 153.6 270.1 ± 111.4 171.8 ± 147.6
Full (medial) 271.1 ± 192.3 163.5 ± 94.61 208.5 ± 133.4 213.6 ± 82.5 126.4 ± 95.06
Full (lateral) 272.9 ± 185.7 120.7 ± 91.77 130.6 ± 87.61 90.47 ± 55.66 92.65 ± 65.14
LR (summed) 420.2 ± 272.0 299.1 ± 213.9 317.0 ± 193.7 199.6 ± 112.6 213.2 ± 203.3
LR (medial) 307.2 ± 176.5 200.5 ± 139.4 217.4 ± 139.9 118.2 ± 75.63 144.6 ± 125.7
LR (lateral) 282.4 ± 187.3 131.5 ± 92.55 170.4 ± 88.40 105.3 ± 57.79 131.9 ± 65.85
TE (summed) 340.1 ± 273.5 195.2 ± 124.3 238.9 ± 149.5 280.5 ± 84.39 139.4 ± 90.16
TE (medial) 260.2 ± 205.6 162.3 ± 93.24 212.2 ± 133.5 225.5 ± 69.11 120.1 ± 68.0
TE (lateral) 204.5 ± 120.2 93.48 ± 62.21 100.0 ± 71.2 76.73 ± 25.20 81.27 ± 58.07

https://zenodo.org/record/7253458)
https://zenodo.org/record/7253458)
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KJCF peaks were inconclusive, sometimes increasing pre-
diction accuracy and sometimes reducing it. When compar-
ing predictor sets PB and PD, the summed loading response 
peak was the only response variable that failed to improve 
by the inclusion of knee abduction-adduction angle.

In summary, Table 4 shows that summed (non-compart-
mental) KJCF peaks were predicted with better accuracy 
than compartmental peaks. Full-stance peaks and terminal 
extension peaks were predicted with R > 0.5 to R > 0.7 and 
more accurately than loading response peaks. Walking speed 
was an important predictor of all KJCF peaks, while knee 

Table 4  Pearson correlation coefficients (R), root mean square errors 
(RMSE) between the MS model estimated “ground truth” and artifi-
cial neural network-predicted response values, and RMSE normalized 

to the mean of the response variable (NRMSE) ± the standard devia-
tions of R, RMSE, and NRMSE

Response variable R RMSE NRMSE

full (summed) 0.71 ± 0.04 479.4 ± 53.92 0.1874 ± 0.0211

full (medial) 0.62 ± 0.06 389.1 ± 39.84 0.2080 ± 0.0213

full (lateral) 0.58 ± 0.04 252.5 ± 28.89 0.3021 ± 0.0346

LR (summed) 0.54 ± 0.04 602.1 ± 32.25 0.2814 ± 0.0151

LR (medial) 0.55 ± 0.09 379.3 ± 32.91 0.2470 ± 0.0214

LR (lateral) 0.47 ± 0.05 305.7 ± 29.18 0.4233 ± 0.0404

TE (summed) 0.74 ± 0.06 406.7 ± 57.97 0.1664 ± 0.0237

TE (medial) 0.63 ± 0.11 379.0 ± 34.58 0.2109 ± 0.0192

TE (lateral) 0.54 ± 0.11 198.1 ± 37.90 0.2801 ± 0.0536

Response variable R RMSE NRMSE

full (summed) 0.82 ± 0.03 384.2 ± 54.52 0.1502 ± 0.0213

full (medial) 0.75 ± 0.04 319.0 ± 24.18 0.1705 ± 0.0129

full (lateral) 0.67 ± 0.08 238.7 ± 50.25 0.2857 ± 0.0601

LR (summed) 0.75 ± 0.03 481.9 ± 39.37 0.2252 ± 0.0184

LR (medial) 0.70 ± 0.06 320.5 ± 29.71 0.2087 ± 0.0193

LR (lateral) 0.67 ± 0.04 262.8 ± 20.66 0.3639 ± 0.0286

TE (summed) 0.80 ± 0.04 368.4 ± 52.32 0.1507 ± 0.0214

TE (medial) 0.68 ± 0.04 355.1 ± 21.08 0.1976 ± 0.0117

TE (lateral) 0.63 ± 0.07 183.6 ± 25.49 0.2597 ± 0.0361

Response variable R RMSE NRMSE

full (summed) 0.71 ± 0.04 470.2 ± 56.07 0.1838 ± 0.0219

full (medial) 0.60 ± 0.22 381.2 ± 59.06 0.2038 ± 0.0316

full (lateral) 0.59 ± 0.02 251.9 ± 26.74 0.3014 ± 0.0320

LR (summed) 0.54 ± 0.06 600.7 ± 36.71 0.2808 ± 0.0172

LR (medial) 0.42 ± 0.21 403.4 ± 32.18 0.2627 ± 0.0210

LR (lateral) 0.50 ± 0.07 302.2 ± 27.18 0.4184 ± 0.0376

TE (summed) 0.74 ± 0.06 405.9 ± 60.92 0.1661 ± 0.0249

TE (medial) 0.65 ± 0.07 372.7 ± 27.35 0.2074 ± 0.0152

TE (lateral) 0.62 ± 0.11 183.5 ± 26.62 0.2596 ± 0.0376

Response variable R RMSE NRMSE

full (summed) 0.84 ± 0.02 370.3 ± 43.71 0.1447 ± 0.0171

full (medial) 0.76 ± 0.04 316.7 ± 24.63 0.1693 ± 0.0132

full (lateral) 0.71 ± 0.02 220.4 ± 23.77 0.2637 ± 0.0284

LR (summed) 0.74 ± 0.04 485.7 ± 51.97 0.2270 ± 0.0243

LR (medial) 0.70 ± 0.02 324.3 ± 12.99 0.2112 ± 0.0085

LR (lateral) 0.69 ± 0.04 252.3 ± 27.79 0.3493 ± 0.0385

TE (summed) 0.80 ± 0.04 365.5 ± 48.58 0.1496 ± 0.0199

TE (medial) 0.71 ± 0.05 345.4 ± 27.09 0.1922 ± 0.0151

TE (lateral) 0.65 ± 0.07 178.4 ± 20.60 0.2524 ± 0.0291

RMSE is in newtons. The results are calculated with predictor set  PA (mass, height, age, gender),  PB (mass, height, age, gender, walking speed), 
 PC (mass, height, age, gender, knee angle), and  PD (mass, height, age, gender, walking speed, knee angle) in the top left corner (blue), top right 
corner (green), bottom left corner (orange), and bottom right corner (red), respectively
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abduction-adduction angle was beneficial in predicting lateral 
peaks.

No prediction algorithms with meaningful prediction accu-
racy could be trained to predict MFRs using the predictors in 
this study, which is why MFR responses are not included in 
the tables.

Discussion

Using musculoskeletal (MS) modeling, we analyzed 
motion capture data from 290 subjects and over 5000 
walking trials to retrieve the time series of knee joint con-
tact forces (KJCFs) during different parts of the stance 
phase and separately in the medial and the lateral compart-
ment. We then trained feedforward artificial neural net-
works (ANNs) to predict KJCF peaks from input data that 
can be collected without laboratory-grade motion capture 
(MOCAP). Our ANN models, which have only one hidden 
layer with relatively few nodes, do not require MOCAP 
data, and predict only the maxima of joint loading, can 
in best cases reach Pearson correlation coefficients above 
0.8 (Table 4, top left and bottom left). We achieved such 
results when walking speed was included in the predictors 
in addition to demographic and anthropometric predic-
tors. While previous studies have also used ANNs or other 
machine learning algorithms to predict KJCFs [2, 4, 12, 
20, 28] and eliminate the time-consuming MS modeling 
steps, they still utilized varying amounts of MOCAP data. 
Our results are a promising step toward predicting KJCFs 
with simple subject characteristics.

During MS analysis, we observed that the typical tibi-
ofemoral KJCF loading curve over a stance phase had two 
distinct maxima: the loading response peak and the termi-
nal extension peak. The terminal extension peak was often 
higher than the loading response peak. When identifying 
response values in such trials, the terminal extension peak 
was also the full-stance peak, which explains why the full-
stance peaks and the terminal extension peaks resulted in 
similar prediction accuracies (Table 4). When the subject 
walked slowly, the typical loading curve distorted as espe-
cially the loading response peak became flatter, in some 
cases merging into the ascent toward the terminal exten-
sion peak. Consequently, the loading response peaks either 
varied a lot or could not be identified in many low-speed 
trials. Therefore, the data available for predicting load-
ing response peaks were less comprehensive and noisier 
than that for terminal extension and full-stance peaks, and 
the prediction accuracy of loading response peaks was 
smaller. The high prediction accuracy of terminal exten-
sion and full-stance peaks can be at least partially attrib-
uted to this effect, as the terminal extension peaks of the 
loading profile underwent more predictable changes with 

changing walking speed. In the context of KOA studies, 
difficulties in measuring loading response peaks at low 
walking speeds are undesirable because pain may cause 
KOA patients to walk slower than healthy subjects. Alter-
native derived measures of KJCF, such as area under the 
curve or mean loading, could perhaps be predicted more 
accurately than peaks for the loading response phase but 
were outside the scope of our study.

In general, the summed peaks were predicted with better 
accuracy than the compartmental peaks (Table 4) and this 
was expected. Because the summed peaks have a greater 
magnitude than compartmental peaks, absolute prediction 
errors in summed peaks do not affect the Pearson corre-
lation coefficient as strongly as the same errors would for 
compartmental peaks.

Because the inclusion of knee abduction-adduction 
angle had only small impact on prediction accuracy and 
the changes were often within the standard deviation of the 
accuracy measure (Table 4), we cannot draw final conclu-
sions about its effect. The angle was measured during static 
standing, so it seems reasonable to assume it is also present 
during the stance phase and affects the KJCF distribution 
between the medial and lateral compartments. Our choice 
to lock the knee abduction-adduction angle of the subject-
specific model during MS analysis to zero (rather than set-
ting it to whatever was estimated for the subject based on 
static standing trials) reduces the importance of the angle 
as a predictor of mediolateral load distribution. Our choice 
was based on validating the method against in vivo data (Fig. 
S1). However, because the difference between locking the 
angle in the model to zero or to its estimated value is small, 
allowing nonzero abduction-adduction angles during MS 
analysis may be reasonable in future studies.

The inclusion of walking speed in the predictor set 
improves prediction accuracy for all response variables 
(Table 4). Intuitively, walking speed should modulate the 
force impulses the knee joint experiences, so its accuracy-
improving effect was expected. The direct proportionality 
between walking speed and knee joint loading has also been 
documented in literature; in 2020, Giarmatzis et al. showed 
that, with increasing walking speed, the loading response 
and terminal extension peaks increase in both joint compart-
ments [12]. Additionally, Brisson et al. [4] found that walk-
ing speed correlated with medial loading response peaks. 
Furthermore, Bergmann et al. have shown with total knee 
replacement patients that in vivo joint loading is greater dur-
ing jogging than walking [3], although in their study there 
are likely several factors instead of only locomotion speed 
involved.

Because the RMSEs of our ANNs (Table 4) are in the 
same scale as the mean ± standard deviation of the stand-
ard deviations of response variabilities (Table 3), the ANNs 
generalize well and without substantial underfitting or 
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overfitting. Therefore, the ANN architecture we used could 
also be viable in similar prediction studies of biomechanical 
functions. This observation is important because although 
the universal approximation theorem states that an ANN 
can approximate KJCF peaks, there is no guarantee that the 
hyperparameters we selected can facilitate such a network. 
In this study, we showed that they can.

Comparison of accuracy measures with previous studies 
is difficult because of differences in, e.g., predictor variable 
selection and validation schemes. To our knowledge, no 
other study has predicted KJCF peaks or KJCFs using our 
predictors without including GRFs or marker trajectories 
in the predictor variables. In the context of our study, it is 
important to note that we trained and evaluated our ANN 
so that there was no subject overlap between the training, 
validation, and test subsets (however, overlap of original 
datasets was allowed). The ANN prediction accuracies of 
previous studies can reach Pearson correlation coefficients 
above 0.9 when MOCAP data are included in the predictors 
[2, 20]. Our ANN models achieved Pearson correlation coef-
ficients above 0.8 without MOCAP data.

Even though our prediction results were promising 
including time series information of gait in the predictor 
set could enable the prediction of the entire stance phase 
KJCF time series, as has been done with many previous 
studies [2, 20, 28, 30]. Including time series does not neces-
sarily mean returning to a cumbersome motion laboratory 
because with existing solutions, such as OpenPose [6], a 
video camera is sufficient to obtain some gait data [26]. An 
interesting topic of future research is how computer vision 
can be integrated into our method to include time series data 
from, for instance, knee flexion-extension angles to enable 
KJCF time series prediction while retaining the simplicity 
of the method. Information about the geometry of the knee 
joint could also be a valuable addition to the predictor set. 
Although our musculoskeletal analysis pipeline involved 
subject-specific scaling of the intercondylar distance based 
on subject height (see supplementary material), no direct 
information of knee geometry was included in the predictor 
set. Although such information could improve predictions 
of compartmental KJCF maxima and subject specificity of 
the ANNs, collecting the information would require MRI 
or X-ray scans, which require specialized equipment and 
operators to obtain. Such equipment is often found in clini-
cal settings and including knee geometry in the predictors is 
a potential future research direction. We acknowledge that 
our method is highly simplified because it predicts peaks 
of KJCF curves rather than the entire curves and relies on 
predictors that are easily collected rather than being the best 
variables to predict KJCF.

Assessing the validity of OpenSim-derived KJCF peaks 
is difficult because different sources have been shown to 
have greatly varying results with respect to the bodyweight 

(BW) of the subject [8] and because available in vivo data is 
limited. After gathering existing studies, Fregly et al. sum-
marized that maximum KJCF peak ranged from 1.8 to 3.0 
BW for forces measured in vivo and from 1.8 to 8.1 BW for 
MS modeling estimates [10], while D’Lima et al. summa-
rized KJCF peaks from 2 to 3 BW for in vivo forces and 1.7 
to 7 BW for MS modeling estimates [8]. Additionally, even 
though we validated our analysis pipeline against in vivo 
measurements, the in vivo dataset had only six subjects 
[31]. Nonetheless, Figure S8 shows that with a median of 
3.15 BW, 25th percentile of 2.79 BW, and 75th percentile 
of 3.59 BW, our MS modeling estimates of summed full-
stance peaks fit within the range for MS modeling estimates 
presented by Fregly et al. Therefore, our MS analysis outputs 
mostly conform to previous literature.

This study was subjected to limitations that need to be 
addressed. First, the weights for training samples can be for-
mulated in different ways. However, in preliminary training 
runs of the ANNs, compared to using no training weights 
(i.e., equal weights for all data samples), our weights set had 
little effect on the prediction accuracy of the ANNs. We did 
not report the difference in prediction accuracy with and 
without weights, so we cannot quantify the role of weights 
in loading prediction and whether differently formulated 
weights have a significant effect on knee loading maxima 
or MFR prediction should be investigated in later studies.

Second, because subjects with masses above 100 kg 
came only from the CAROT dataset, the prediction results 
for heavy subjects contain bias from just a single dataset 
and, therefore, should be evaluated critically. Additionally, 
it should be noted that subjects in the CAROT dataset were 
diagnosed with KOA and we ignored the severity of the 
KOA, which could be important to consider in formulating 
the training weights.

Third, in addition to mass, limited overlap between 
original datasets exists in other predictors. These predic-
tors include walking speed (where both the lowest and the 
highest values are represented by subjects in the Schreiber 
dataset), knee abduction-adduction angle (CAROT dataset 
has the largest range but proportionally the least number of 
values close to zero), and age (particularly in the 40 to 50 
range, which is represented only by subjects in the Schreiber 
dataset). To improve generalization of the prediction mod-
els and mitigate dataset-specific bias, we require a lot of 
overlap in predictor values between the original datasets. 
In fact, although we had many subjects and samples, due to 
differences in subject preparation and marker placement, a 
greater number of different datasets are required to improve 
generalization.

Fourth, the original datasets analyzed in this study con-
tained barefoot trials, but in daily life much of walking is 
done while wearing shoes or similar footwear. The influ-
ence of footwear on foot biomechanics has been previously 
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studied [33] and GRFs, joint kinematics and joint kinetics 
have been found to vary between barefoot and shod walking. 
Therefore, it would be ideal to have datasets with gait data 
from shod subjects. However, wearing footwear can make 
it difficult to perform biomechanical analyses, and addition-
ally, footwear type has been shown to affect the biomechan-
ics of gait [33], which would make it difficult to standardize 
shod gait trials. Thus, barefoot gait trials provide a standard-
ized way to analyze gait biomechanics and we must assume 
that the same relationships between predictors and knee 
loading exist in both barefoot and shod walking.

Fifth, if predictors include gait speed and knee align-
ment that are calculated from markers, then the models 
using those predictors require motion capture (MOCAP). 
However, while in this study we calculated those parameters 
from MOCAP data, MOCAP is not required to obtain them, 
as gait speed can be approximated with a stopwatch and a 
tape measure and knee alignment can be measured with a 
goniometer, to name simple examples (although, e.g., with 
goniometer accurately locating the hip joint may be diffi-
cult). The predictors obtained that way will slightly differ 
from the predictors that were used to train the models due to 
the different methods to measure the predictors. For exam-
ple, Handa et al. [16] validated stopwatch measurements of 
walking speed to marker-based optical motion capture and 
found high correlation (R > 0.9) between speeds measured 
with stopwatch and motion capture, although they also noted 
that the observed speeds were influenced by the operator 
of the stopwatch. Furthermore, Oh et al. [27] compared 
stopwatch-based walking speed to an automatic ultrasound-
based timing system and found that the stopwatch overesti-
mated walking speed when the subject was already in motion 
in the beginning of the measurement. Quantifying the error 
and the correlation between different measurement methods 
of the same predictor is an interesting topic for future stud-
ies. Therefore, we cannot yet quantify how well knee align-
ment and walking speed measured with simple methods in 
a clinical setting correlate to our predictors. Additionally, 
because including frontal plane knee angle in the predictor 
set had inconclusive effects on prediction accuracy, omitting 
it from the predictors in future studies is a possibility if it 
cannot be effortlessly measured.

Sixth, the ANN prediction accuracy results may be biased 
by the fact that we visually checked MS-estimated KJCF 
curves and excluded some trials before constructing the 
combined dataset and training and validating the ANNs. 
While the trials we excluded did not represent successfully 
captured or natural walking (because of, e.g., the presence 
of only one half of stance phase, marker artifacts resulting 
in unrealistic kinematics), such artifacts sometimes occur 
during motion capture sessions; therefore, the ANNs are 
trained on the features present in successful rather than all 
motion capture trials. Furthermore, the fact that a single 

person did the visual validation may introduce small bias 
into the ANNs. However, the reason we excluded erroneous 
trials in the first place was to avoid bias causing prediction 
of biomechanically invalid peak values.

In conclusion, we took promising steps toward predicting 
knee joint loading peaks during gait without requiring meas-
urements in a motion laboratory. This could enable knee 
joint loading prediction in environments, such as during clin-
ical examination, eliminate time-consuming analysis steps, 
and enable the operator to immediately view the results. In 
future, this method may offer a significant improvement for 
the clinically applicable prediction models of knee osteo-
arthritis as those models currently rely on generic loading 
inputs based on the body weights of the subjects [21, 24, 
25]. However, it should be noted that optimal ANN models 
should be trained on larger training datasets, which would 
consider all possible variations in subject characteristics 
(such as age, height, weight, type of knee injury).
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