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Abstract
Osteoarthritis degenerates cartilage and impairs joint function. Early intervention opportunities are missed as current diag-
nostic methods are insensitive to early tissue degeneration. We investigated the capability of visible light-near-infrared 
spectroscopy (Vis-NIRS) to differentiate normal human cartilage from early osteoarthritic one. Vis-NIRS spectra, biome-
chanical properties and the state of osteoarthritis (OARSI grade) were quantified from osteochondral samples harvested 
from different anatomical sites of human cadaver knees. Two support vector machines (SVM) classifiers were developed 
based on the Vis-NIRS spectra and OARSI scores. The first classifier was designed to distinguish normal (OARSI: 0–1) from 
general osteoarthritic cartilage (OARSI: 2–5) to check the general suitability of the approach yielding an average accuracy 
of 75% (AUC = 0.77). Then, the second classifier was designed to distinguish normal from early osteoarthritic cartilage 
(OARSI: 2–3) yielding an average accuracy of 71% (AUC = 0.73). Important wavelength regions for differentiating normal 
from early osteoarthritic cartilage were related to collagen organization (wavelength region: 400–600 nm), collagen content 
(1000–1300 nm) and proteoglycan content (1600–1850 nm). The findings suggest that Vis-NIRS allows objective differen-
tiation of normal and early osteoarthritic tissue, e.g., during arthroscopic repair surgeries.

Keywords  Osteoarthritis · Cartilage · Visible light spectroscopy · Near-infrared spectroscopy · Machine learning · 
Biomechanics

Introduction

Articular cartilage is a soft tissue that covers the end of 
bones in the knee joint and enables a near-frictionless joint 
movement [45]. Osteoarthritis (OA) is a degenerative joint 
disease that alters the structure and composition (i.e., col-
lagen and proteoglycan content) of cartilage [9, 27]. Early 
detection of OA is currently not possible, but it would be 
important to facilitate early opportunities for interventions, 
such as weight loss or rehabilitation that may slow down OA 
progression [18, 36]. Yet, early intervention opportunities 
are often missed as there are no diagnostic methods sensitive 
to early OA changes.

In laboratories, histological techniques are used to assess 
osteoarthritic changes in cartilage [33, 49]. However, these 
histological methods are clinically unsuitable as they require 
tissue biopsy that is destructive and time-consuming [7]. 
Also, current OA diagnosis is based on clinical examination, 
MRI, and radiography [10]. Arthroscopy repair surgeries of 
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joint injuries also present an opportunity to evaluate early 
degenerative changes in cartilage matrix [10, 16]. While 
these radiographic techniques and visual arthroscopic 
methods can enable identification of advanced OA tissue, 
they are less effective for identifying early OA tissue [6, 7, 
24]. This prompts the need for novel methods to detect early 
degenerative changes in articular cartilage to facilitate early 
intervention.

Optical spectroscopy, including visible (Vis) light and 
near-infrared spectroscopy (NIRS), is a group of techniques 
based on the ability of a material to absorb or scatter light in 
the electromagnetic spectrum [2, 7]. NIRS combined with 
multivariate modeling has been previously used to estimate 
cartilage thickness and instantaneous modulus [40]. Carti-
lage composition and structure are altered in OA, impacting 
light scattering and absorption in the tissue, leading to subtle 
differences in optical spectral properties [19].

Studies on NIRS of cartilage have focused on animal 
models [3, 29, 38] and on differentiating normal from 
advanced OA [29] tissue where clinical intervention has 
minimal impact. In a clinical setting, identifying normal 
from early OA would be more beneficial, as early diagnosis 
would enable earlier intervention that could substantially 
delay or halt disease progression. Previous studies have also 
not accounted for site-specific properties of cartilage. Site-
specific differences [6, 29, 37] in cartilage structure, compo-
sition, and mechanical properties have been shown to occur 
due to different loading conditions in joint sites [23, 30, 44]. 
This variation might impact the absorption and scattering 
properties of NIR light in each joint site, especially during 
arthroscopic procedures. Hence, a generalized optics-based 
method for differentiating normal from OA tissue may not 
account for the variation between joint locations.

Due to the overlapping nature of NIR spectral features, 
nonlinear algorithms have been shown to outperform the 
more “traditional” principal component analysis (PCA) and 
partial least discriminant analysis (PLS-DA) [29] in predict-
ing tissue integrity [39]. For example, artificial neural net-
works [38], logistic regression and support vector machines 
(SVM)-based nonlinear algorithms have been applied 
to monitor cartilage integrity [3]. In comparison to other 
nonlinear methods, SVM can be used on a small dataset 
[11]. SVM is also more robust and less prone to the curse of 
dimensionality, which is a significant challenge when deal-
ing with spectral data [5].

This study aims to develop site-specific SVM classifiers 
to differentiate normal cartilage from early-stage OA carti-
lage based on their Vis-NIR spectra. We hypothesize that 
SVM can differentiate normal cartilage from early OA car-
tilage as Vis-NIRS is sensitive to changes in the cartilage 
matrix components. Compared to normal cartilage, the bio-
mechanical properties of OA cartilage are reduced signifi-
cantly [12]. Thus, the SVM classifiers were further validated 

by comparing tissue biomechanical properties, first, based 
on OARSI grades assigned by trained researchers before 
SVM classification, and second, based on the predictions of 
the SVM classifiers. The findings of the current study should 
provide support for the incorporation of Vis-NIR spectros-
copy into conventional arthroscopy procedures and ex vivo 
studies for objective and fast assessment of tissue quality.

Materials and Methods

Sample Collection

Human cartilage samples [N = 179; sample diameter 
(d) = 4 and 8 mm] were obtained from the left and right 
knee joints of 8 cadaver donors (3 males, 5 females, and 
age = 64.8 ± 9.12) obtained from a commercial biobank (Sci-
ence Care, USA). Additional samples (N = 161, d = 8 mm) 
were collected from 9 cadaver donors (7 males, 2 females 
and age = 68.4 ± 7.45 years) obtained from Kuopio Uni-
versity Hospital, Kuopio Finland (Table 1). Full-thickness 
osteochondral samples (cartilage and bone) were extracted 
from the lateral and medial tibia (LT and MT), lateral and 
medial femur (LF and MF), trochlear (TR), and patella (PT) 
sites (Figs. 1 and 2a) of the knee joint using a 4 mm and 
8 mm dental drill (NTI-Kahla Rotary Dental Instruments, 
Khala, Germany). The samples were drilled perpendicularly 
to the tissue surface. Then, the samples were immersed in a 
phosphate-buffered saline solution (PBS) and stored in the 
freezer at − 20 °C. Before testing, the samples were removed 
from the freezer and thawed at room temperature. The 
Research Ethics Committee of the Northern Savo Hospital 
District approved the study (Kuopio University Hospital, 
Kuopio, Finland, #134//2015).  

Vis‑NIR Spectra Measurement

Vis-NIR spectral measurements (N = 927) of the cartilage 
samples were carried out using a NIR system (AvaSpec 
Multichannel spectrometer, Avantes BV, Apeldoorn, 
the Netherlands, Fig. 3). The system is composed of two 
detectors (detector for Vis spectra: AvaSpec-ULS2048L, 
λ = 350–1100  nm and spectral resolution = 0.6  nm; 
detector for NIR spectra: AvaSpec-NIR256-2.5-HSC, 
λ = 1000–2500 nm, spectral resolution = 6.5 nm) and a 10 
W halogen lamp light source. This device has a custom-
designed stainless steel arthroscopy probe. The probe 
(d = 3.25 mm) has a 2 mm diameter window at the tip which 
contains 114 small optical fibers (d = 100 µm) and 14 of 
those are used to collect the scattered and reflected Vis-NIR 
light. Every collected spectrum was an average of 10 co-
added scans with an integration time of 30 ms. Three (3) 
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single-point spectra were collected from the middle of each 
osteochondral sample.

Biomechanical Testing and Analysis

First, cartilage thicknesses were measured around the 
circumference of the sample using a stereomicroscope 
(STEMI, SV8, Zeiss, Germany). Three equally spaced 
points were measured and averaged to obtain an average 
thickness for each sample. A biomechanical testing system 

(MACH-1, Biomomentum Inc., Laval, Quebec, Canada) 
was used for indentation testing (flat-ended steel indenter, 
d = 1 mm). During the measurement, the samples were 
immersed in PBS and the measurement chamber was tilted 
until the individual sample surfaces were perpendicular 
to the indenter. An equilibrium pre-stress of 12.5 kPa on 
the cartilage surface was applied to ensure a good con-
tact [12, 27]. Then, a 4-step stress-relaxation protocol was 
applied. Each step was comprised a 5% compression (of 
the remaining thickness of each sample) followed by a 
15 min relaxation (Fig. 4a). The percentage thickness min-
imized this impact of thickness variation on the mechani-
cal properties. Immediately after the last step of the stress-
relaxation protocol, a four-cycle dynamic sinusoidal test 
was initiated with a 2% amplitude (of remaining thickness) 
and frequency of 1 Hz. Equilibrium Young’s modulus was 
calculated from the slope of the linear least-squares fit to 
the equilibrium stress values of each stress-relaxation step 
[8, 12]. Instantaneous modulus was determined at 10% 
strain. Dynamic modulus and phase difference were calcu-
lated as the ratio of the peak stress and strain and the dif-
ference in phase lag between stress and strain, respectively. 
Hayes correction was applied in each moduli calculation 
to account for the effect of the finite sample thickness and 
indenter diameter in indentation geometry [15]. The Pois-
son’s ratio for equilibrium and instantaneous moduli was 
set to 0.3, and for dynamic modulus was set to 0.5 assum-
ing the tissue was incompressible [12].

Table 1   Sample demographic (age, sex, OARSI grade, and the number of samples), for cadavers obtained from the commercial biobank and the 
Kuopio University Hospital

Serial 
number

Age Sex OARSI 0 
samples

OARSI 1 
samples

OARSI 2 
samples

OARSI 3 
samples

OARSI 4 
samples

OARSI 5 
samples

Total

Biobank cadavers (n = 8) 1 70 F 4 3 7 6 3 0 23
2 62 F 1 4 3 4 6 3 21
3 64 M 2 3 5 4 8 2 24
4 47 F 5 6 9 4 1 0 25
5 71 M 0 3 3 4 8 4 22
6 68 M 4 4 4 4 8 4 23
7 74 F 2 3 5 4 4 1 19
8 63 F 3 1 2 4 12 0 22

Hospital cadavers (n = 9) 1 68 M 3 7 6 5 n/a n/a 21
2 68 M 0 5 9 3 n/a n/a 17
3 79 F 0 1 4 4 n/a n/a 9
4 79 M 1 3 4 4 n/a n/a 12
5 68 M 1 6 8 2 n/a n/a 17
6 69 M 0 7 18 4 n/a n/a 29
7 69 F 0 5 3 1 n/a n/a 9
8 59 M 3 3 11 2 n/a n/a 19
9 74 M 2 9 11 6 n/a n/a 28

Fig. 1   Schematic of the knee map. Cartilage samples were extracted 
from the patella, trochlea, femur, and tibia regions. Modified from 
[32]
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Histopathological Scoring

The samples were first fixed and decalcified in a mixture of 
formalin and 0.5% EDTA solution and then paraffin embed-
ded. Adjacent 5 µm thick histological sections were cut 
with a microtome. Subsequently, the sections were stained 
with Safranin-O and transferred to a microscopy slide. 

Osteoarthritis Research Society International (OARSI) grad-
ing system (Supplementary Table S1) was used to grade 
the disease severity of the samples [33]. OARSI scores 
were assigned to each histological section by three trained 
researchers. The scores from each grader were then aver-
aged and rounded to the nearest integer for the final score of 
the sample (Fig. 4b). The samples were pooled into normal 
(OARSI 0–1), early OA (OARSI 2–3), and advanced OA 
(OARSI 4–5) groups. These groups were adopted to main-
tain a relatively similar proportion of samples in the normal 
and OA groups.

Spectral Data Preprocessing

A custom python-based software, Nippy (available at: 
https://​github.​com/​uef-​bbc/​nippy), was used to preproc-
ess the spectra [47]. For preprocessing, Savitzky–Golay 
filter was used for data smoothing and spectral normaliza-
tion was performed using localized standard normal vari-
ate (LSNV). Due to spectral saturation (noise) around the 

Fig. 2   a Cartilage samples were extracted from six (6) sites of the 
human knee joint. b The samples were characterized using Vis-NIR 
spectroscopy followed by biomechanical testing of the samples. Sub-
sequently, histological sections of the samples were prepared and 
graded according to OARSI grading. c The acquired spectra were 
trimmed (400–1400 nm, 1520–1850 nm) and the 30 most important 
wavelengths were selected using a sequential feature selection algo-

rithm. d This was followed by model training based on SVM. e A 
T-distributed Stochastic Neighboring Entity (t-SNE) plot is used to 
illustrate SVM classification. The blue concentric diamond-shaped 
rings show the probability of classification as normal tissue. The pur-
ple dots indicate normal tissue, and the yellow dots indicate OA tis-
sue. f Permutation feature importance was used to rank wavelength 
contribution to classifier accuracy

Fig. 3   Schematic of the spectral data collection setup

https://github.com/uef-bbc/nippy
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OH peak (1400–1520 nm), which is indicative of cartilage 
water content [21], each spectrum was trimmed to the spec-
tral regions of 400–1400 nm and 1520–1850 nm. While the 
region (1000–1399 nm) has been linked to cartilage collagen 
content [1, 31], the region (1600–1800 nm) is associated 
with the matrix proteoglycan content [1, 31]. Wavelength 
selection was then performed using a forward sequential fea-
ture selection (SFS) algorithm (description in supplementary 
material) to select the optimal wavelengths for classification.

Support Vector Machine (SVM) Classification

The wavelengths selected via SFS algorithm were applied 
to the SVMs. SVM takes in a matrix of predictors (e.g., 
multidimensional spectral data) and targets (e.g., cartilage 
integrity classes), and attempts to transform the data using 
algorithms called kernels (e.g., radial, linear, polynomial, 
and sigmoid) such that the classes are linearly separable. The 
choice of kernel function is optimized using the “gridsearch” 
approach whereby each combination of hyperparameters 
within the kernel functions is evaluated to find the optimal 
set of parameters that maximizes class separability.

Two different SVM classifiers were trained and tested for 
the identification of normal and OA tissue. Classifier 1 was 
trained to differentiate normal tissue (OARSI 0–1) from OA 
tissue (OARSI 2–5) and consisted of 256 and 425 spectra, 
respectively. To minimize bias towards the majority class, a 
class weight inversely proportional to the number of spectra 
in each group was used to account for class imbalance. Clas-
sifier 2 was trained to differentiate normal tissue (OARSI 

0–1) from early OA tissue (OARSI 2–3) with 256 spectra in 
each group. Classifier 1 has limited clinical relevance as it 
considers a wide range of OA (OARSI 2–5), including sam-
ples from macroscopically visible OA damage, rather it was 
designed as a baseline classifier to compare the performance 
of Classifier 2. The input for SVM was the NIR spectra, and 
the output was the SVM predictions (normal vs OA in Clas-
sifier 1 and normal vs early OA in Classifier 2). To evaluate 
the effect of wavelength selection, in each joint site, Classi-
fier 1 was also applied to the full wavelength range and the 
test-set accuracy over the full wavelength range was com-
pared to the accuracy of Classifier 1 when 30 wavelengths 
were selected.

To train the classifiers the samples were split according 
to cadavers into a training set (70% of the dataset per site) 
and a test-set (30% of the dataset per site). Each classifier 
was trained using a 5-fold cross-validation approach and 
the model with the highest cross-validation accuracy was 
then selected and applied to the test-set. This process was 
repeated three times for each site. To ensure robust train-
ing, the data splitting was done so that the training and the 
test-set included samples and spectra from different cadav-
ers. Permutation feature importance was applied to identify 
important wavelengths based on the percentage reduction 
in classifier accuracy when a wavelength is eliminated. 
SVM classification and wavelength importance analysis 
was performed in the Scikit-learn package (version 3.8.3) 
in Python (version 3.8.5). After the classification, the sam-
ples were regrouped based on the classifier predictions (i.e., 
samples classified as normal vs samples classified as OA 

Fig. 4   a Biomechanical stress-relaxation and dynamic testing were performed. Instantaneous, equilibrium, dynamic moduli and phase angles 
were determined for each sample. b Representative histological images of cartilage samples with varying histological grades.
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in Classifier 1 or samples classified as normal vs samples 
classified as early OA in Classifier 2) also referred to as 
prediction groups.

Classifier Evaluation

The elements of a confusion matrix were used to evaluate the 
classification performances [41]. True positive (TP) refers to 
OA tissue spectra (early OA or OA) that are correctly classi-
fied as OA and False Positive (FP) shows the normal tissue 
spectra that are falsely classified as OA (early OA or OA). 
Whereas the False Negative (FN) indicates the OA tissue 
spectra (early OA or OA) spectra falsely classified as normal 
tissue and the True Negative (TN) is the spectra of normal 
tissue classified as normal. The classification performances 
including sensitivity, specificity, and accuracy are defined 
based on the TP, FP, FN, and TN of a confusion matrix.

Sensitivity was defined as the ratio of spectra accurately 
classified as OA (early OA or OA) out of all the OA (early 
OA or OA) tissue spectra classified:

Specificity was defined as the ratio of spectra accu-
rately classified as normal out of all normal tissue spectra 
classified:

Accuracy was defined as the proportion of correctly clas-
sified spectra out of the total number of spectra classified:

Furthermore, the classifiers were assessed based on the 
Area Under the Receiver Operating Characteristic (ROC) 
Curves (AUC). AUC-ROC measures the ability of the clas-
sifiers to avoid false classification.

Statistical Analysis

Statistical groups: Three sets of statistical comparisons 
were made. The first comparison was based on the blindly 
assigned OARSI groups before SVM classification and 
compares the biomechanical properties of normal (OARSI 
0–1) vs OA (OARSI 2–5) tissue used in Classifier 1 and 
normal (OARSI 0–1) vs early OA (OARSI 2–3) tissue used 
in Classifier 2. The second comparison was based on the 
SVM prediction groups and aimed to validate the classifiers. 
The comparison was between samples classified as normal 
vs OA (OARSI 2–5) in Classifier 1 and samples classified 
as normal vs early OA (OARSI 2–3) in Classifier 2. Lastly, 

(1)Sensitivity =
TP

TP + FN
.

(2)Specificity =
TN

TN + FP
.

(3)Accuracy =
TP

TP + FP
.

comparison was made between the biomechanical properties 
of normal, early OA and advanced OA groups based on the 
blindly assigned OARSI groups.

A linear mixed model was used for statistical analysis 
since multiple samples were collected per cadaver. The lin-
ear mixed effect model was chosen because it can account 
for interdependencies between the samples from the same 
cadaver [26]. In the models, cadavers (subjects) were set as 
the random effect variables while the OARSI groups were 
set as fixed effect variables [26]. Statistical significance was 
set at p < 0.05. Fisher's least significant difference (LSD) 
posthoc analysis was used to obtain estimates. All statistical 
analyses were performed with IBM SPSS Statistics (Version 
25, IBM Corporation, Armonk, NY, USA).

Results

Mean Vis‑NIRS Spectrum and Effect of Wavelength 
Selection

The mean spectra showed slight differences between nor-
mal, early OA, and advanced OA tissue (Fig. 5a). Differ-
ences were observed in the first overtone CH vibrations 
estimated region 1130–1333 nm [33, 34] and 1156 nm 
peak [13], the CHn and SH vibrations estimated region 
(1600–1800 nm) [33]. Differences in baseline offset at the 
Vis region (400–700 nm) [17] were also observed between 
the groups. The effect of wavelength selection on the clas-
sification accuracy is presented in Fig. 5b. In all sites, the 
classification accuracies increased when using the selected 
30 wavelengths compared to the full spectrum. The highest 
improvement in accuracy was in the patellar (PT) and lateral 
femur (LT) sites with 28% and 26% increases, respectively. 
The least accuracy increase was in the trochlear site with a 
4% accuracy increase.

Classifier Performances

Classifier 1 (classification of normal versus OA cartilage): 
The patellar site had the highest classification accuracy of 
87.0% with an AUC of 0.88 (Fig. 6a), while the trochlear 
region had the lowest accuracy of 69.0% with an AUC of 
0.69 (Fig. 6a), The average accuracy across all sites was 
75% with an average AUC = 0.77. The average sensitivity 
and specificity were 0.74 and 0.75 (Table 2).

Classifier 2 (classification of normal versus early OA carti-
lage): the patellar site had the highest accuracy of 87.0% with 
an AUC of 0.95 (Fig. 6b), while the trochlear site had the 
lowest accuracy of 64% with an AUC of 0.69 (Fig. 6b). The 
average accuracy across all regions was 71% which was only 4 
percentage points smaller compared to Classifier 1. The aver-
age specificity and sensitivity were 0.67 and 0.72 (Table 2). 
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Wavelength Importance Analysis

In Classifier 1, the wavelength regions (400–600  nm), 
(1000–1400 nm), and (900–1300 nm) contributed most to the 
model accuracy (Supplementary material Fig S3). In Classi-
fier 2, the wavelength regions (400–700 nm), (900–1200 nm), 
and (1600–1800 nm) contributed most to the model accuracy 
(Supplementary material Fig S4).

Biomechanical Properties of the OARSI Groups 
and the SVM Prediction Groups

Classifier 1: when comparing biomechanical properties 
based on the OARSI groups (normal = OARSI 0–1 and 
OA = OARSI 2–5) the dynamic and instantaneous modulus 
were significantly higher in normal tissue compared to OA 
tissue across the joint sites (p < 0.01 and p < 0.05 depending 
on the site) except for the patellar cartilage (p > 0.05). The 
equilibrium modulus was significantly higher in normal tis-
sue compared to OA tissue (p < 0.01 and p < 0.05 depending 
on the site), except for the medial tibial and patellar cartilage 

Fig. 5   a The mean spectra comparison of normal, early OA, and 
advanced OA tissue. Spectral regions associated with collagen struc-
ture (400–700 nm) [17] based on scattering, collagen content (1000–
1400 nm) [1, 31], and proteoglycan content (1600–1800 nm) [1, 31] 

are indicated. Due to noise, the spectral region 1400–1520  nm and 
1850–2400 nm were truncated, b Site-specific comparison of model 
accuracy when full spectral wavelengths are included and when 30 
wavelengths are selected using sequential feature selection.

Table 2   Test-set accuracies, 
sensitivity, and specificity of 
Classifier 1 and Classifier 2. 
Classifier 1 compares normal 
(OARSI: 0–1) and OA (OARSI: 
2–5) cartilage and Classifier 2 
compares normal (OARSI: 0–1) 
and early OA (OARSI: 2–3). LF 
lateral femur, MF medial femur, 
LT lateral tibia, MT medial 
tibial, TR trochlear, PT patellar

Classifier 1 Classifier 2

Location Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

LF 0.72 0.57 0.81 0.66 0.80 0.52
MF 0.70 0.88 0.57 0.68 0.64 0.56
MT 0.77 0.64 0.88 0.70 0.69 0.77
LT 0.71 0.89 0.54 0.73 0.56 0.85
TR 0.69 0.70 0.70 0.64 0.45 0.83
PT 0.88 0.77 1.00 0.87 0.92 0.83
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(p > 0.05) (Fig. 7). Table 3 shows the mean biomechanical 
properties of the groups. When the samples were grouped 
based on the SVM classification of Classifier 1 (normal 
and OA), similar differences in biomechanical properties 
between tissue classified as normal and tissue classified as 
OA tissue were observed; although, the difference was not 
always statistically significant. 

Classifier 2: when comparing the biomechanical proper-
ties of the OARSI groups assigned by trained individuals 
the equilibrium modulus of normal cartilage was signifi-
cantly higher than early OA cartilage in all sites (p < 0.001 
and p < 0.05 depending on the site), except in patella and 
medial tibia (p > 0.05) (Fig. 8). The instantaneous modulus 
of the normal cartilage was significantly higher compared to 
early OA cartilage in the trochlear (p < 0.001) and the lateral 
tibia (p < 0.05) sites. The dynamic modulus was significantly 
higher for normal cartilage compared early OA cartilage 
in all sites (p < 0.001 and p < 0.05 depending on the site), 
except in the patella and the medial femur (p > 0.05). When 
the samples were grouped based on the classifications of 
the classifier, equilibrium, instantaneous and dynamic modu-
lus of cartilage classified as normal were higher compared to 
cartilage classified as early OA (though, the difference was 
not always statistically significant).

Discussion

In this work, Vis-NIRS combined with SVM algorithm was 
used to detect normal cartilage from osteoarthritic human 
knee cartilage in a site-specific manner. SVM classifiers 
trained on the Vis-NIRS spectral data were able to distin-
guish normal from OA tissue (Classifier 1) and normal tissue 
from early OA tissue (Classifier 2). The classes (normal, 

early OA, and “general” OA tissue) were established based 
on histopathological OARSI grading blindly assigned by 
trained researchers. The classifiers were further validated by 
evaluating the tissue biomechanical properties based on the 
assigned OARSI groups and by evaluating the biomechani-
cal properties based on the predictions of the classifiers. As 
we hypothesized, Vis-NIRS combined with SVM was able 
to distinguish normal from early OA tissue.

Vis‑NIR Classification of Normal Versus OA (Classifier 
1) and Normal Versus Early OA Cartilage (Classifier 
2)

In the study, the average accuracy of Classifier 1 was 75% 
(AUC = 0.77) and decreased to 71% (AUC = 0.73) in Clas-
sifier 2. The decrease in classification accuracy is likely due 
to a much larger variation in tissue structure and compo-
sition between the normal (OARSI 0-1) and OA (OARSI 
2–5) groups (Classifier 1) compared to the normal (OARSI 
0−1) and early OA (OARSI 2−3) group (Classifier 2) where 
the variation is smaller. This was verified via a feature 
importance analysis that showed similar spectral regions 
that contributed the most to the classification accuracy in 
both classifiers. During cartilage degeneration, water con-
tent increases, PG decreases, and collagen loses orientation 
[28]. While the increased water content and reduced PG alter 
tissue light absorption, collagen disorientation affects the 
light scattering and absorption profiles [19]. The variation 
in light absorption due to the spectrum of these properties 
from normal to early OA and advanced OA might have influ-
enced the classifier performances. The highest classifica-
tion accuracy was observed in the patellar location. This 
might be attributed to material density and stiffness, since 
the spectral baseline in NIR diffuse reflectance spectroscopy 

Fig. 6   ROC curves and corresponding areas under the curve (AUC) 
for evaluating the ability of Vis-NIR to detect normal from OA or 
early OA tissue based on OARSI groups in each joint site, a AUC for 

Classifier 1 and, b AUC for Classifier 2. AUC measures the ability of 
the classifiers to avoid erroneous classification.
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has been demonstrated to increase with material density as 
denser materials allow less light to reach the detector [35]. 
Because the patellar cartilage was softer than the other sites, 
more photons may reach the detector, improving classifica-
tion accuracy.

To validate the classifiers, the tissue mechanical proper-
ties were compared based on the OARSI groups [normal 
(OARSI 0–1), early OA (OARSI 2–3), OARSI (4–5)] and 
based on the predictions of the classifiers (classified nor-
mal or classified early OA or OA). In both grouping sys-
tems, Classifier 1 showed better separation of normal from 
OA cartilage compared to Classifier 2. This could also be 
because absorption and scattering of VIS-NIR light may 
be less impacted in the early OA tissue compared to the 
advanced OA tissue, which is associated with significant 
changes in tissue mechanical properties [33]. However, 
when making direct conclusions related to model perfor-
mances (Classifier 2) in assessing early changes in tissue 
mechanical properties, it should be considered that OARSI 
grading was used to group samples into normal versus OA 
groups. This may slightly distort the conclusions, since it 
is known that material properties in normal tissues may be 
highly dependent on tissue adaptation, i.e., lifestyle (physi-
cal activity level, age, weight) that may influence the tissue 
biomechanical properties [13, 48].

Relation of Vis‑NIR Spectra to Tissue Composition, 
Biomechanical Properties, and Site‑Specificity

The most informative spectral regions for differentiating 
normal from degenerated (OA or early OA) tissue were: 
400–800 nm (indicating light scattering in tissue) [17], 
900–1300 nm (absorption by collagen); 1600–1850 nm 
(absorption by PG content) [1, 31] (Figs. S3 and S4). In both 
classifiers, the accuracies in discriminating between normal 
and degenerated tissue samples were also site-specific. Car-
tilage site-specific variation in structure, composition, and 
mechanical properties may result from the different joint 
mechanical environments [25, 27]. This variation placed 
some difficulties when interpreting the data as one.

Fig. 7   Comparison between normal and OA tissue based on OARSI 
groups assigned by trained individuals (normal = OARSI 0–1 and 
OA = OARSI 2–5) and groups assigned based on Classifier 1 predic-
tions. The plain box and whisker plots show the biomechanical prop-
erties of OARSI groups. The box with oblique lines shows the bio-
mechanical properties of Classifier 1 prediction groups. The dynamic 
modulus and phase angles were analyzed at 1 Hz loading frequency. 
LF lateral femur, MF medial femur, LT lateral tibial, MT medial tib-
ial, TR trochlear, PT patella. *p < 0.05 and **p < 0.001

Table 3   Mean [95% confidence 
intervals] of biomechanical 
properties of normal, early OA 
and advanced OA groups

Eeq: Equilibrium modulus, Einst: instantaneous modulus, Edyn: dynamic modulus
a Significant difference (p < 0.05) to the normal group
b Significant difference (p < 0.05) to the early OA group
c Significant difference (p < 0.05) between the normal and advanced OA groups

Parameter Normal (OARSI 0–1) Early OA (OARSI 2–3) Advanced OA (OARSI 4–5)

Eeq (MPa) 1.29 [1.15, 1.44] 0.74 [0.65, 0.83]a 0.164 [0.12, 0.20]a,b,c

Einst (MPa) 19.12 [17.04, 21.20] 11.57 [10.15, 12.99]a 1.67 [1.19, 2.15]a,b,c

Edyn (Mpa) at 1 Hz 9.42 [8.62, 10.22] 5.46 [4.89, 6.02]a 1.517 [1.13, 1.90]a,b,c

Phase angle (o) at 1 Hz 5.37 [4.72, 6.02] 6.12 [5.54, 6.70] 2.88 [2.13, 3.63]a,b,c

Thickness (mm) 2.37 [2.28, 2.46] 2.57 [2.47, 2.68]a 2.27 [2.08, 2.46]b
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Though equilibrium, instantaneous and dynamic moduli 
were smaller in advanced and early OA compared to normal 
tissue, the tissue thickness increased in early OA possibly 
due to swelling that has been reported to occur in early OA 
cartilage [4]. In advanced OA, the cartilage thickness was 
smaller than in early OA, which may be a sign of cartilage 
erosion [33]. When comparing the biomechanical proper-
ties, in Classifier 1, the dynamic and instantaneous moduli 
of normal cartilage (OARSI 0–1) were significantly different 

from OA cartilage (OARSI 2–5) across most joint sites 
(Fig. 7). When the biomechanical properties were grouped 
based on Classifier 1 predictions (normal or OA), signifi-
cant differences were still observed in the dynamic modulus 
of the lateral femur, tibia, and trochlear sites. In cartilage, 
dynamic and instantaneous stiffness is closely associated 
with the structure and concentration of tissue collagen. Thus, 
wavelength importance analysis for Classifier 1 showed that 
the spectral regions responsible for the classification of nor-
mal and OA tissue are consistent with absorption regions 
related to cartilage collagen content (1200–1400 nm) [1, 31]. 
Kendal et al. [14, 20] have shown that an increasing baseline 
offset of Vis-NIR spectra reflects matrix maturation in engi-
neered tissue construct. Since significant scattering has been 
shown in the visible region [17], the baseline offset in the 
region (400–600 nm) may reflect a difference in collagen 
organization between normal and degenerated tissue. In 
Classifier 2, in the trochlear site, the dynamic and equilib-
rium properties were significantly different in normal and 
early OA tissue for both the OARSI groups and prediction 
groups. Cartilage equilibrium modulus is often linked with 
tissue PG content and we also found that the wavelength 
region associated with PG content (1600–1850 nm) [31] 
was also important for differentiating normal from early 
OA tissue.

Vis‑NIR as a Tool for OA Assessment

The International Cartilage Repair Society (ICRS) grad-
ing is currently used in staging OA during conventional 
arthroscopy. In conventional arthroscopy, surgeons identify 
cartilage damage based on visual inspection and manual 
palpation of the tissue matrix [42, 43]. However, evalua-
tion of early OA is still a challenging task with the ICRS 
system [30] as early signs of degeneration are not visually 
apparent and ICRS grading is not originally designed for 
the quantification of different OA states. Vis-NIRS could be 
incorporated into an arthroscope to assess cartilage quality 
based on the interaction of light with cartilage during arthro-
scopic repair surgery without the need for biopsy samples. 
While there is currently no comparative study between ICRS 
and OARSI grades of human tissue, Vis-NIRS offers the 
advantage of objective and repeatable assessment of early-
stage cartilage changes during arthroscopic repair surgery. In 
clinical settings, absolute values in the peak-specific analysis 
are likely to yield sub-optimal predictions due to the overlap-
ping and non-specific nature of NIR peaks of cartilage con-
stituents in the Vis-NIR range [21, 34]. Models (e.g., SVM) 
trained on preprocessed (broadband) spectra of healthy and 
deteriorated tissue are more likely to evaluate tissue integrity 
effectively. A potential future direction could be to create a 
model that converts this information from different wave-
lengths into an absolute diagnostic value. Further, Vis-NIRS 

Fig. 8   Comparison between normal and OA tissue based on OARSI 
groups assigned by trained individuals (normal = OARSI 0–1 and 
early OA = OARSI 2−3) and groups assigned based on Classifier 2 
predictions. The plain box and whisker plots show the biomechani-
cal properties of OARSI groups. The box with oblique lines shows 
the biomechanical properties of Classifier 2 prediction groups. The 
dynamic modulus and phase angles were analyzed at 1  Hz loading 
frequency. LF lateral femur, MF medial femur, LT lateral tibial, MT 
medial tibial, TR trochlear, PT patella. *p < 0.05 and **p < 0.001
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can also be applied to evaluate the development of engi-
neered cartilage tissue to assess implantation readiness [20].

Limitations

One limitation of the present study is the use of OARSI 
grading, which assesses tissue pathology based on structural 
features and stain intensity [33], as a reference for tissue 
integrity classification. While OARSI grade reflects tissue 
structural integrity, it is subjective and may poorly repre-
sent the tissue compositional changes (PG loss and collagen 
damage), especially in early OA [18]. Including changes in 
tissue PG and collagen content may better represent tissue 
degenerative state and improve the classifier performance. 
Another limitation is the class imbalance due to difficulty 
obtaining healthy human cartilage. In classifier 1, the pro-
portion of OA spectra was 74%, 62%, 63%, 58%, 65%, and 
74% of the total spectra (normal and OA) in the LF, LT, MT, 
MF, TR, and PT locations, respectively. If not accounted for, 
this imbalance may lead to biased performance compared 
to Classifier 2 with evenly balanced training data. There-
fore, we aimed to minimize the potential bias from class 
imbalance using the class weighting approach, which allows 
the model to penalize classes with more samples [22]. We 
also used balanced accuracy, specificity, and sensitivity to 
evaluate classifier performance. These measures are inde-
pendent of the class proportions [46]. Also, the 1st overtone 
OH absorption peak at 1450 nm (within the spectral region 
1400–1550 nm) associated with tissue water content was 
excluded from the analysis due to spectral saturation from 
the high tissue water content. However, cartilage hydration 
is a consequence of collagen network damage and PG deple-
tion, hence this parameter could have been captured by the 
collagen and PG-associated spectral regions. Water and joint 
fluid have also been shown to be good absorbers of NIR 
light [38, 39] which can result in spectral saturation if not 
controlled. To minimize the impact of water, we placed the 
Vis-NIRS probe in good contact with the cartilage surface. 
For in vivo measurements where maintaining probe contact 
may be difficult, we have also developed a method to detect 
spectra with suboptimal contact [39, 40].

Conclusion

SVM classifiers developed based on NIRS spectra and 
OARSI grades were able to differentiate normal from gen-
eral OA and early OA tissue with reasonable accuracies. 
Based on a wavelength importance analysis, wavelength 
regions relating to cartilage proteoglycan content, collagen 
content, and collagen organization and, consequently, tis-
sue biomechanical properties were important in discriminat-
ing between normal and early OA tissue. Vis-NIRS-SVM 

classification performances show its potential to be incor-
porated into existing arthroscopy routines for assessing early 
OA tissue during surgical intervention.
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