Skip to main content
Log in

UBC Neck C4–C5: An Anatomically and Biomechanically Accurate Surrogate C4–C5 Functional Spinal Unit

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Millions of people worldwide suffer from spinal cord injuries (SCIs) and traumatic brain injuries (TBIs) annually. Safety devices meant to protect against SCIs and TBIs, such as helmets, airbags, seat belts, and compliant floors are often evaluated with the use of anthropometric test devices (ATD s); however, there are currently no neck surrogates appropriate for the multiplane loading that often occurs in real-world scenarios leading to injury. As such, our objective in this study was to design and create an anatomically correct functional spinal unit (FSU) that produces a repeatable and biofidelic response to lateral bending, axial rotation, and quasistatic flexion–extension motion. This is a critical step in developing a biofidelic omnidirectional surrogate that can be used in future evaluations of safety devices in transportation, occupational, and sports settings. To create a biofidelic C4–C5 FSU, anatomically accurate C4 and C5 vertebrae were designed and manufactured using a 3D printer using geometry derived from the CT scans of a healthy 31-year-old male. Potential intervertebral disc and ligament surrogate materials were tested in compression and tension, respectively, to select representative materials for the surrogate intervertebral disc and cervical ligaments. The C4–C5 FSU was assembled and tested repeatedly in quasistatic flexion–extension, axial rotation, and lateral bending. Kinematic results were captured and compared to previously published cadaver data. The surrogate disc showed excellent Biofidelity (ISO/TR 9790) in compression, and the surrogate ligaments were within 25 N/mm of linear cadaveric stiffness ranges. The assembled FSU named UBC Neck C4–C5 showed good biofidelity under quasistatic axial rotation, lateral bending, flexion–extension, and coupled motion (ISO/TR 9790). However, the instantaneous centre of rotation was not similar to ex vivo or in vivo published studies. The UBC Neck C4–C5 FSU resulted in good biofidelity ratings and will inform future construction of a full surrogate neck to be used in the testing of head and neck safety equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amevo, B., D. Worth, and N. Bogduk. Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin. Biomech. 6:111–117, 1991.

    Article  CAS  Google Scholar 

  2. Camacho, D. L. A., R. W. Nightingale, J. J. Robinette, S. J. Vanguri, D. J. Coates, and B. S. Myers. Experimental flexibility measurements for the developement of a computational head-neck model validated for near-vertex head impact. Proceeding 41st STAPP Car Crash Conference 1997.

  3. Crandall, J. R., D. Bose, J. Forman, C. D. Untaroiu, C. Arregui-Dalmases, C. G. Shaw, and J. R. Kerrigan. Human surrogates for injury biomechanics research. Clin. Anat. 24:362–371, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Crawford, N. R., S. Baek, A. G. U. Sawa, S. Safavi-Abbasi, V. K. H. Sonntag, and N. Duggal. Biomechanics of a fixed-center of rotation cervical intervertebral disc prosthesis. Int. J. Spine Surg. 6(34–42):2012, 2012.

    Google Scholar 

  5. Cripton, P. A. Load Sharing in the Human Cervical Spine (Thesis). Queen’s University, Kingston, 1999

  6. Dewan, M. C., A. Rattani, S. Gupta, R. E. Baticulon, Y. C. Hung, M. Punchak, A. Agrawal, A. O. Adeleye, M. G. Shrime, A. M. Rubiano, J. V. Rosenfeld, and K. B. Park. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 130:1080–1097, 2019.

    Article  Google Scholar 

  7. Feng, H., X. Y. Fang, D. G. Huang, C. C. Yu, H. K. Li, S. C. Zhao, C. Y. Ge, R. H. Bai, and D. J. Hao. A morphometric study of the middle and lower cervical vertebral endplates and their components. Medicine.96:e6296, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frechede, B., A. McIntosh, R. Grzebieta, and M. Bambach. Hybrid III ATD in inverted impacts: influence of impact angle on neck injury risk assessment. Ann. Biomed. Eng. 37(1403–1414):2009, 2009.

    Google Scholar 

  9. Gilad, I., and M. Nissan. A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine. 11:154–157, 1986.

    Article  CAS  PubMed  Google Scholar 

  10. Goertzen, D. J., C. Lane, and T. R. Oxland. Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. An in vitro porcine investigation. J. Biomech. 37(257–261):2004, 2004.

    Google Scholar 

  11. Gwin, J. T., J. J. Chu, S. G. Diamond, P. D. Halstead, J. J. Crisco, and R. M. Greenwald. An investigation of the NOCSAE linear impactor test method based on in vivo measures of head impact acceleration in American football. J. Biomech. Eng. 132:011006–011009, 2010.

    Article  PubMed  Google Scholar 

  12. Kaiser, J. T., V. Reddy, and J. G. Lugo-Pico. Anatomy, Head and Neck, Cervical Vertebrae. Treasure Island (FL): StatPearls Publishing, 2021.

    Google Scholar 

  13. Kapandji, I. A. The Physiology of the Joints: Volume Three: The Trunk and the Vertebral Column. London: Churchill Livingstone, 1974.

    Google Scholar 

  14. Kifune, M., M. M. Panjabi, M. Arand, and W. Liu. Fracture pattern and instability of thoracolumbar injuries. Eur. Spine J. 4:98–103, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, B., Z. Liu, T. VanHoof, J. Kalala, Z. Zeng, and X. Lin. Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc. Eur. Spine J. 23:2307–2313, 2014.

    Article  PubMed  Google Scholar 

  16. Mattucci, S. F., J. A. Moulton, N. Chandrashekar, and D. S. Cronin. Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10:216–226, 2012.

    Article  PubMed  Google Scholar 

  17. Nelson, T. S., and P. A. Cripton. A new biofidelic sagittal plane surrogate neck for head-first impacts. Traffic Inj. Prev. 11:309–319, 2010.

    Article  PubMed  Google Scholar 

  18. Nightingale, R. W., V. Carol-Chancey, D. Ottaviano, J. F. Luck, L. Tran, M. Prange, and B. S. Myers. Flexion and extension structural properties and strengths for male cervical spine segments. J. Biomech. 40:535–542, 2007.

    Article  PubMed  Google Scholar 

  19. Nightingale, R. W., B. A. Winkelstein, K. E. Knaub, W. J. Richardson, J. F. Luck, and B. S. Myers. Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. J. Biomech. 35:725–732, 2002.

    Article  PubMed  Google Scholar 

  20. Pang, T. Y., K. T. Thai, A. S. McIntosh, R. Grzebieta, E. Schilter, R. Dal Nevo, and G. Rechnitzer. Head and neck responses in oblique motorcycle helmet impacts: a novel laboratory test method. Int. J. Crashworthiness. 16:297–307, 2011.

    Article  Google Scholar 

  21. Panjabi, M. M., J. Duranceau, V. Goel, T. Oxland, and K. Takata. Cervical human vertebrae: quantitative three-dimensional anatomy of the middle and lower regions. Spine Phila Pa. 16:861–869, 1991.

    Article  CAS  Google Scholar 

  22. Panjabi, M. M., J. J. Crisco, A. Vasavada, T. Oda, J. Cholewicki, K. Nibu, and E. Shin. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine. 26:2692–2700, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Panjabi, M. M., T. Miura, P. A. Cripton, J. L. Wang, A. S. Nain, and C. DuBois. Development of a system for in vitro neck muscle force replication in whole cervical spine experiments. Spine. 26:2214–2219, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Panjabi, M. M. Centers and angles of rotation of body joints: a study of errors and optimization. J. Biomech. 12:911–920, 1979.

    Article  CAS  PubMed  Google Scholar 

  25. Panjabi, M. M. Biomechanical evaluation of spinal fixation devices: I A conceptual framework. Spine. 13:1129–1134, 1988.

    Article  CAS  PubMed  Google Scholar 

  26. Prasad, V. S., A. Schwartz, R. Bhutani, P. W. Sharkey, and M. L. Schwartz. Characteristics of injuries to the cervical spine and spinal cord in polytrauma patient population: experience from a regional trauma unit. Spinal Cord. 37:560–568, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Pooni, J. S., D. W. L. Hukins, P. F. Harris, R. C. Hilton, and K. E. Davies. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg. Radiol. Anat. 8:175–182, 1986.

    Article  CAS  PubMed  Google Scholar 

  28. Schenck, R. C. Athletic Training and Sports Medicine, 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1999.

    Google Scholar 

  29. Siegmund, G. P., D. D. Chimich, and B. S. Elkin. Role of muscles in accidental injury. In: Accidental Injury, edited by N. Yoganandan, A. Nahum, and J. Melvin. New York: Springer, 2015, pp. 611–642.

    Chapter  Google Scholar 

  30. Singh, A., L. Tetreault, S. Kalsi-Ryan, A. Nouri, and M. Fehlings. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6:309–331, 2014.

    PubMed  PubMed Central  Google Scholar 

  31. “Spinal cord injury: as many as 500 000 people suffer each year,” World Health Organization, 02-Dec-2013. [Online]. Available: https://www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/en/. [Accessed: 07-Dec-2019]

  32. Thunert, C. CORA Release 3.6 User’s Manual, 2012.

  33. Van Toen, C., J. Street, T. R. Oxland, and P. A. Cripton. Cervical spine injuries and flexibilities following axial impact with lateral eccentricity. Eur. Spine J. 24:136–147, 2015.

    Article  PubMed  Google Scholar 

  34. Wheeldon, J. A., F. A. Pintar, S. Knowles, and N. Yoganandan. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J. Biomech. 39:375–380, 2006.

    Article  PubMed  Google Scholar 

  35. Wu, A.-M., Z. X. Shao, J. S. Wang, X. D. Yang, W. Q. Weng, X. Y. Wang, H. Z. Xu, Y. L. Chi, and Z. K. Lin. The accuracy of a method for printing three-dimensional spinal models. PLoS ONE.10:e0124291, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yaguchi, M., K. Ono, M. Kubota, and F. Matsuoka. 2006. Comparison of Biofidelic Responses to Rear Impact of the Head/Neck/Torso among Human Volunteers, PMHS, and Dummies. Proceeding of IRCOBI. 2006.

  37. Yoganandan, N., F. A. Pintar, B. D. Stemper, C. E. Wolfla, B. S. Shender, and G. Paskoff. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion. J. Bone Joint Surg. Am. 89:1066–1074, 2007.

    Article  PubMed  Google Scholar 

  38. Yoganandan, N., B. D. Stemper, F. A. Pintar, J. L. Baisden, B. S. Shender, and G. Paskoff. Normative segment-specific axial and coronal angulation corridors of subaxial cervical column in axial rotation. Spine. 33:490–496, 2008.

    Article  PubMed  Google Scholar 

  39. Yuan, W., H. Zhang, X. Zhou, W. Wu, and Y. Zhu. the influence of artificial cervical disc prosthesis height on the cervical biomechanics a finite element study. World Neurosurg. 113:e490–e498, 2018.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Brian Kwon, Leilani Reichl, and Allan Aludino for their support in CT scan retrieval. We would also like to thank NSERC for funding this research. Ethics were required as this was a retrospective study (Ethics Certificate Number H18-03174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Cripton.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, G., Vakiel, P. & Cripton, P.A. UBC Neck C4–C5: An Anatomically and Biomechanically Accurate Surrogate C4–C5 Functional Spinal Unit. Ann Biomed Eng 51, 1802–1815 (2023). https://doi.org/10.1007/s10439-023-03197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03197-y

Keywords

Navigation