Skip to main content
Log in

PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications

  • S.I. : Bioengineering and Enabling Technologies II
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices—enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors. Herein, we report a systematic investigation of two coating methods: (1) traditional photoinitiated hydrogel coatings; (2) diffusion-mediated, redox-initiated hydrogel coatings. The effects of method, substrate, and compositional variables on the resulting hydrogel coating thickness are presented. To expand the redox-based method to include high molecular weight macromers, a mechanistic investigation of the role of cure rate and macromer viscosity was necessary to balance solution infiltration and gelation. Overall, these structure–property relationships provide users with a toolbox for hydrogel coating design for a broad range of medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anseth, K. S., K. J. Anderson, and C. N. Bowman. Radical concentrations, environments, and reactivities during crosslinking polymerizations. Macromol. Chem. Phys. 197:833–848, 1996.

    Article  CAS  Google Scholar 

  2. Anseth, K. S., and C. N. Bowman. Kinetic gelation model predictions of crosslinked polymer network microstructure. Chem. Eng. Sci. 49:2207–2217, 1994.

    Article  CAS  Google Scholar 

  3. Anseth, K. S., L. M. Kline, T. A. Walker, K. J. Anderson, and C. N. Bowman. Reaction kinetics and volume relaxation during polymerizations of multiethylene glycol dimethacrylates. Macromolecules. 28:2491–2499, 1995.

    Article  CAS  Google Scholar 

  4. Ariff, M., M. Jainuddin, V. Gopalan, and K. V. Rao. Aqueous polymerization of acrylonitrile by ascorbic acid–peroxodisulfate redox system. J. Polym. Sci. Polym. Chem. Ed. 23:2063–2071, 1985.

    Article  CAS  Google Scholar 

  5. Berry, K. L., and J. H. Peterson. Tracer studies of oxidation—Reduction polymerization and molecular weight of “Teflon” tetrafluoroethylene resin. J. Am. Chem. Soc. 73:5195–5197, 1951.

    Article  CAS  Google Scholar 

  6. Bowman, C. N., and N. A. Peppas. Coupling of kinetics and volume relaxation during polymerizations of multiacrylates and multimethacrylates. Macromolecules. 24:1914–1920, 1991.

    Article  CAS  Google Scholar 

  7. Bowman, C. N., and N. A. Peppas. A kinetic gelation method for the simulation of free-radical polymerizations. Chem. Eng. Sci. 47:1411–1419, 1992.

    Article  CAS  Google Scholar 

  8. Browning, M. B., D. Dempsey, V. Guiza, S. Becerra, J. Rivera, et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8:1010–1021, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Browning, M. B., V. Guiza, B. Russell, J. Rivera, S. Cereceres, et al. Endothelial cell response to chemical, biological, and physical cues in bioactive hydrogels. Tissue Eng. Part A. 20:3130–3141, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Browning, M. B., B. Russell, J. Rivera, M. Höök, and E. M. Cosgriff-Hernandez. Bioactive Hydrogels with enhanced initial and sustained cell interactions. Biomacromolecules. 14:2225–2233, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Browning, M., T. Wilems, M. Hahn, and E. Cosgriff-Hernandez. Compositional control of poly (ethylene glycol) hydrogel modulus independent of mesh size. J. Biomed. Mater. Res. Part A. 98:268–273, 2011.

    Article  CAS  Google Scholar 

  12. Chang, J., Y. Tao, B. Wang, X. T. Yang, H. Xu, et al. Evaluation of a redox-initiated in situ hydrogel as vitreous substitute. Polymer. 55:4627–4633, 2014.

    Article  CAS  Google Scholar 

  13. Chapla, R., M. Alhaj Abed, and J. West. Modulating functionalized poly(ethylene glycol) diacrylate hydrogel mechanical properties through competitive crosslinking mechanics for soft tissue applications. Polymers. 12:3000, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, K., Y. Feng, Y. Zhang, L. Yu, X. Hao, et al. Entanglement-driven adhesion, self-healing, and high stretchability of double-network PEG-based hydrogels. ACS Appl. Mater. Interfaces. 11:36458–36468, 2019.

    Article  CAS  PubMed  Google Scholar 

  15. Cosgriff-Hernandez, E., M. S. Hahn, B. Russell, T. Wilems, D. Munoz-Pinto, et al. Bioactive hydrogels based on designer collagens. Acta Biomater. 6:3969–3977, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Cosgriff-Hernandez, E., A. Post, P. Dhavalikar, T. Wilems, and Z. Lan, Integrin-targeting materials in regenerative medicine, in Proceedings of Abstracts of Papers of the American Chemical Society, vol. 256. Washington, DC: American Chemical Society, 2018.

  17. Dortdivanlioglu, B., N. E. D. Yilmaz, K. B. Goh, X. Zheng, and C. Linder. Swelling-induced interface crease instabilities at hydrogel bilayers. J. Elasticity. 145:31–47, 2021.

    Article  Google Scholar 

  18. Fordham, J. W. L., and H. L. Williams. The persulfate-iron (II) initiator system for free radical polymerizations1. J. Am. Chem. Soc. 73:4855–4859, 1951.

    Article  CAS  Google Scholar 

  19. Fu, M., Y. Liang, X. Lv, C. Li, Y. Y. Yang, et al. Recent advances in hydrogel-based anti-infective coatings. J. Mater. Sci. Technol. 85:169–183, 2021.

    Article  CAS  Google Scholar 

  20. Fuchs, S., K. Shariati, and M. L. Ma. Specialty tough hydrogels and their biomedical applications. Adv. Healthc. Mater. 9(2):e1901396, 2020.

    Article  PubMed  Google Scholar 

  21. Gold, G. T., D. M. Varma, P. J. Taub, and S. B. Nicoll. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system. Carbohydr. Polym. 134:497–507, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. House, D. A. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62:185–203, 1962.

    Article  CAS  Google Scholar 

  23. Hume, P. S., C. N. Bowman, and K. S. Anseth. Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers. Biomaterials. 32:6204–6212, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jana, S. Endothelialization of cardiovascular devices. Acta Biomater. 99:53–71, 2019.

    Article  CAS  PubMed  Google Scholar 

  25. Jeitner, T. M. Optimized ferrozine-based assay for dissolved iron. Anal. Biochem. 454:36–37, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Jiao, Y., D. Gyawali, J. M. Stark, P. Akcora, P. Nair, et al. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter. 8:1499–1507, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson, L. M., C. A. DeForest, A. Pendurti, K. S. Anseth, and C. N. Bowman. Formation of three-dimensional hydrogel multilayers using enzyme-mediated redox chain initiation. ACS Appl. Mater. Interfaces. 2:1963–1972, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson, L. M., B. D. Fairbanks, K. S. Anseth, and C. N. Bowman. Enzyme-mediated redox initiation for hydrogel generation and cellular encapsulation. Biomacromolecules. 10:3114–3121, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kishan, A. P., and E. M. Cosgriff-Hernandez. Recent advancements in electrospinning design for tissue engineering applications: a review. J. Biomed. Mater. Res. Part A. 105:2892–2905, 2017.

    Article  CAS  Google Scholar 

  30. Kloosterboer, J. G., Network formation by chain crosslinking photopolymerization and its applications in electronics. In: Electronic Applications. Springer, Berlin, 1988, pp. 1–61.

  31. Krsko, P., and M. Libera. Biointeractive hydrogels. Materials Today. 8:36–44, 2005.

    Article  CAS  Google Scholar 

  32. Lee, S., X. Tong, and F. Yang. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomater. Sci. 4:405–411, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lenka, S., and A. K. Dhal. Polymerization of acrylonitrile initiated by K2S2O8–Fe (II) redox system. J. Polym. Sci. Polym. Chem. Ed. 19:2115–2118, 1981.

    Article  CAS  Google Scholar 

  34. Li, J., A. D. Celiz, J. Yang, Q. Yang, I. Wamala, et al. Tough adhesives for diverse wet surfaces. Science. 357:378–381, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin, C.-C., and K. S. Anseth. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26:631–643, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, K., F. Zhang, Y. Wei, Q. Hu, Q. Luo, et al. Dressing blood-contacting materials by a stable hydrogel coating with embedded antimicrobial peptides for robust antibacterial and antithrombus properties. ACS Appl. Mater. Interfaces. 13:38947–38958, 2021.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Y., W. He, Z. Zhang, and B. P. Lee. Recent developments in tough hydrogels for biomedical applications. Gels. 4:46, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lutz, J.-F. Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci. Part A Polym. Chem. 46:3459–3470, 2008.

    Article  CAS  Google Scholar 

  39. Ma, S., C. Yan, M. Cai, J. Yang, X. Wang, et al. Continuous surface polymerization via Fe (II)-mediated redox reaction for thick hydrogel coatings on versatile substrates. Adv. Mater. 30:1803371, 2018.

    Article  Google Scholar 

  40. Motiwale, S., M. D. Russell, O. Conroy, J. Carruth, M. Wancura, et al. Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: suitability for heart valve leaflets. J. Mech. Behav. Biomed. Mater. 125:104877, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parada, G., Y. Yu, W. Riley, S. Lojovich, D. Tshikudi, et al. Ultrathin and robust hydrogel coatings on cardiovascular medical devices to mitigate thromboembolic and infectious complications. Adv. Healthc. Mater. 9(20):e2001116, 2020.

    Article  PubMed  Google Scholar 

  42. Pashneh-Tala, S., S. MacNeil, and F. Claeyssens. The tissue-engineered vascular graft—past, present, and future. Tissue Eng. Part B Rev. 22:68–100, 2016.

    Article  CAS  PubMed  Google Scholar 

  43. Post, A., A. P. Kishan, P. Diaz-Rodriguez, E. Tuzun, M. Hahn, and E. Cosgriff-Hernandez. Introduction of sacrificial bonds to hydrogels to increase defect tolerance during suturing of multilayer vascular grafts. Acta Biomater. 69:313–322, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Puperi, D. S., A. Kishan, Z. E. Punske, Y. Wu, E. Cosgriff-Hernandez, et al. Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2:1546–1558, 2016.

    Article  CAS  PubMed  Google Scholar 

  45. Richbourg, N. R., M. Wancura, A. E. Gilchrist, S. Toubbeh, B. A. C. Harley, et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci. Adv. 7:eabe3245, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roseen, M. A., M. M. Fahrenholtz, J. P. Connell, and K. J. Grande-Allen. Interfacial coating method for amine-rich surfaces using poly (ethylene glycol) diacrylate applied to bioprosthetic valve tissue models. ACS Appl. Bio Mater. 3:1321–1330, 2020.

    Article  CAS  PubMed  Google Scholar 

  47. Roseen, M. A., R. Lee, A. D. Post, M. Wancura, J. P. Connell, et al. Poly(ethylene glycol)-based coatings for bioprosthetic valve tissues: toward restoration of physiological behavior. ACS Appl. Bio Mater. 3:8352–8360, 2020.

    Article  CAS  PubMed  Google Scholar 

  48. Scranton, A. B., C. N. Bowman, J. Klier, and N. A. Peppas. Polymerization reaction dynamics of ethylene glycol methacrylates and dimethacrylates by calorimetry. Polymer. 33:1683–1689, 1992.

    Article  CAS  Google Scholar 

  49. Singh, Y., D. Gao, Z. Gu, S. Li, K. A. Rivera, et al. Influence of molecular size on the retention of polymeric nanocarrier diagnostic agents in breast ducts. Pharm. Res. 29:2377–2388, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spencer, K. C., J. C. Sy, K. B. Ramadi, A. M. Graybiel, R. Langer, and M. J. Cima. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7:1952, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stevens, K. R., J. S. Miller, B. L. Blakely, C. S. Chen, and S. N. Bhatia. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering. J. Biomed. Mater. Res. Part A. 103:3331–3338, 2015.

    Article  CAS  Google Scholar 

  52. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today. 11:18–25, 2008.

    Article  CAS  Google Scholar 

  53. Tatterton, M., S.-P. Wilshaw, E. Ingham, and S. Homer-Vanniasinkam. The use of antithrombotic therapies in reducing synthetic small-diameter vascular graft thrombosis. Vasc. Endovasc. Surg. 46:212–222, 2012.

    Article  Google Scholar 

  54. Temenoff, J. S., H. Shin, D. E. Conway, P. S. Engel, and A. G. Mikos. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo (poly (ethylene glycol) fumarate) macromers. Biomacromolecules. 4:1605–1613, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, et al. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng. Part A. 20:2634–2645, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wancura, M., M. Talanker, S. Toubbeh, A. Bryan, and E. Cosgriff-Hernandez. Bioactive hydrogel coatings of complex substrates using diffusion-mediated redox initiation. J. Mater. Chem. B. 8:4289–4298, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whitely, M., S. Cereceres, P. Dhavalikar, K. Salhadar, T. Wilems, et al. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials. 185:194–204, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilems, T. S., X. Lu, Y. E. Kurosu, Z. Khan, H. J. Lim, and L. A. S. Callahan. Effects of free radical initiators on polyethylene glycol dimethacrylate hydrogel properties and biocompatibility. J. Biomed. Mater. Res. Part A. 105:3059–3068, 2017.

    Article  CAS  Google Scholar 

  59. Yang, J., R. Bai, B. Chen, and Z. Suo. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2):1901693, 2019.

    Article  Google Scholar 

  60. Yong, Y., M. Y. Qiao, A. Chiu, S. Fuchs, Q. S. Liu, et al. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir. 35:1927–1934, 2019.

    Article  CAS  PubMed  Google Scholar 

  61. Yu, Y., H. Yuk, G. A. Parada, Y. Wu, X. Liu, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31(7):e1807101, 2018.

    Article  PubMed  Google Scholar 

  62. Yuk, H., T. Zhang, S. Lin, G. A. Parada, and X. Zhao. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15:190, 2016.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, F., C. Hu, L. Yang, K. Liu, Y. Ge, et al. A conformally adapted all-in-one hydrogel coating: towards robust hemocompatibility and bactericidal activity. J. Mater. Chem. B. 9:2697–2708, 2021.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, X., B. Xu, D. S. Puperi, A. L. Yonezawa, Y. Wu, et al. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater. 14:11–21, 2015.

    Article  PubMed  Google Scholar 

  65. Zhang, Y., D. An, Y. Pardo, A. Chiu, W. Song, et al. High-water-content and resilient PEG-containing hydrogels with low fibrotic response. Acta Biomater. 53:100–108, 2017.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, J., and R. E. Marchant. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices. 8:607–626, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work presented here was supported by the National Institutes of Health R21 EB020978. The Bionate® Thermoplastic Polycarbonate-urethane was provided by DSM Biomedical (Berkeley, CA).

Conflict of interest

There are no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Cosgriff-Hernandez.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2264 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wancura, M., Nkansah, A., Robinson, A. et al. PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications. Ann Biomed Eng (2023). https://doi.org/10.1007/s10439-023-03154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-023-03154-9

Keywords

Navigation