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Abstract—Inverse bone (re)modeling (IBR) can infer phys-
iological loading conditions from the bone microstructure.
IBR scales unit loads, imposed on finite element (FE) models
of a bone, such that the trabecular microstructure is
homogeneously loaded and the difference to a target stimulus
is minimized. Micro-FE (lFE) analyses are typically used to
model the microstructure, but computationally more effi-
cient, homogenized FE (hFE) models, where the microstruc-
ture is replaced by an equivalent continuum, could be used
instead. However, also the target stimulus has to be
translated from the tissue to the continuum level. In this
study, a new continuum-level target stimulus relating relative
bone density and strain energy density is proposed. It was
applied using different types of hFE models to predict the
physiological loading of 21 distal radii sections, which was
subsequently compared to lFE-based IBR. The hFE models
were able to correctly identify the dominant load direction
and showed a high correlation of the predicted forces, but
mean magnitude errors ranged from 2 14.7 to 26.6% even
for the best models. While lFE-based IBR can still be
regarded as a gold standard, hFE-based IBR enables faster
predictions, the usage of more sophisticated boundary
conditions, and the usage of clinical images.

Keywords—Continuum, Distal radius, Trabecular bone,

Load estimation, Physiological loads, Patient specific, Func-

tional adaptation.

INTRODUCTION

Finite element (FE) models of bone can be used for
many applications, for example, to predict fracture risk
or to optimize operative planning in orthopedic

surgery.39 While it is relatively easy to create such
models using generic geometry and boundary condi-
tions, real bones are diverse in their shape, inner
microstructure, and in vivo loading conditions. Hence,
using patient-specific geometry, material, and bound-
ary conditions is required to enhance the precision of
those models.37 While there was a significant
advancement in capturing patient-specific geometries
and bone material models that account for
microstructure, including physiological in vivo loading
is still challenging. Physiological loading conditions
can be measured in vivo using invasive technologies
such as implanted strain gauges33 or instrumented
endo-prostheses.2,3 While instrumented endo-protheses
can measure the joint loading accurately, they are not
used in healthy patients. Non-invasive options are
musculoskeletal models16 which, however, require ex-
act modeling of the muscles and bones of the patient.

Another approach to estimate physiological loading
is to use the information stored in the microstructure
of the bones. Bone undergoes constant repair and is
also able to adapt to regular external loadings. Two
mechanisms, known as remodeling and modeling, are
responsible for changing the bone.42 While remodeling
is determined by a coupled local bone resorption and
formation, no such coupling can be observed during
modeling. Often both modes cannot be discriminated,
and the phenomenological response is then referred to
as (re)modeling. Among other factors such as meta-
bolism, it is driven by mechanosensitive cells50 inside
the bone. Therefore, mechanical quantities can be
measured inside the bone and used as a proxy for the
(re)modeling response. One method that uses this
relationship is inverse bone (re)modeling (IBR).13,19
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Contrary to forward (re)modeling models, where the
resulting microstructure is of interest when a particular
load is applied, IBR can be used to find the loading
that led to a given microstructure. Briefly, one possi-
bility is to use FE models to impose a set of unit loads
on the bone to measure the response in local
mechanical quantities such as stress or strain energy
density (SED). Then, the magnitude, direction, or
superposition of these unit loads is varied until a nearly
homogeneous loading state is reached, which is
assumed to be close to a physiological loading in terms
of the measured variable.

The first IBR algorithms were developed by Fischer
et al.19 They used 2D FE models to predict joint loads
and muscle forces at the proximal femur,20–22 to dif-
ferentiate between coxa valga and vara,18 to predict
relative bone loads at the distal radius and ulna,17 and
to relate bone density to locomotor mode or activity.6,7

While Fischer et al. used relatively low-resolution
quantitative-CT (~ 0.8 mm resolution) for measuring
bone density, 2D homogenized FE (hFE) models and
stress as the target stimulus, Christen et al.13 used
micro-computed tomography (lCT) images, which
depict the microstructure of bones in more detail, in
3D with SED as the target stimulus. Despite its sim-
plicity, 3D IBR using lFE models was successfully
applied to estimate physiological loading conditions
for mouse vertebrae,13 mouse femora,4 human tibia,10

human vertebrae,1 predicting the reaction forces at the
distal radius,12 and differentiate between species with
different locomotor modes, using the hip11 or finger
bones.45

While lFE-based IBR can be used to predict
physiological loads on smaller bones (e.g., of mice or
segments of bones), application to large bones (e.g.,
entire femur) is not a viable option due to high com-
putational demands and resulting runtimes. Further,
realistic boundary conditions, e.g., including articular
contact, can only be modeled with high effort in lFE
models5 but contact boundary conditions are readily
available in most FE solvers when smooth meshes are
used. Thus, only simplified boundary conditions are
typically used in lFE, for example by using embedding
materials12 or fully bonded articulated bones.38 Fur-
thermore, due to the higher runtimes on large bones,
also the number of load cases is limited in lFE-based
IBR.46 Replacing the lFE models with hFE models
would allow efficient IBR with realistic boundary
conditions. However, so far, hFE-based IBR was
limited to 2D models.6,7,17–22 In addition, no compar-
ison between lFE- and hFE-based IBR has been per-
formed so far.

The goal of this study was to translate the estab-
lished IBR method for lFE by Christen et al.13 to hFE
so that in the future physiological loading can also be

estimated for larger bones with more realistic bound-
ary conditions and lower computational demands.
This study had two main objectives. First, to translate
the tissue-level SED optimization to the continuum-
level using a large set of trabecular bone cubes. Second,
to test the new hFE-based IBR method on a set of
distal radii sections and compare the hFE-based pre-
dictions of physiological loading to the gold standard,
i.e., lFE-based predictions.

MATERIALS AND METHODS

Outline

The study is separated into two major parts
(Fig. 1). (1) A continuum target stimulus was identi-
fied on trabecular bone cubes (n ¼ 701) from various
anatomical sites using kinematic uniform boundary
conditions (KUBC) with six canonical load cases.
These boundary conditions were also used in a previ-
ous study28 to identify homogenized elastic material
properties. (2) 21 distal radius sections were modeled
using four different types of finite element (FE) mod-
els: lFE models, smooth FE models with density and
fabric dependent material mapping (sf-hFE), smooth
FE models with only density-dependent material
mapping (s-hFE), and voxel-based hFE (v-hFE) using
density-dependent material mapping. For each of the
four model types, versions with and without the cortex
of the radius were created. Three canonical load cases
using displacement boundary conditions were applied
to each model, and inverse bone (re)modeling (IBR)
was performed to predict physiological loading in
terms of optimally scaled reaction forces. hFE models
used the continuum target stimulus during the opti-
mization.

Theoretical Background

The original formulation of the lFE-based IBR by
Christen et al.13 shall be repeated here briefly. A set of
n unit loads is applied to the bone. Then, unit load
scaling factors ai are found, such that the squared
difference of local SED U xð Þ and a tissue level target

stimulus ~U is minimized. These scaling factors are
identified in an optimization procedure, using a resid-

ual function r sið Þ of SED scaling factors si ¼ a2i =n. As

SED is used, which cannot be negative, the optimiza-
tion is subjected to only positive real numbers for si
and can be written as:

min
si2Rþ

0

r sið Þ ¼
Z Xn

i¼1

siUi xð Þ � ~U

 !2

dV ð1Þ
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However, the tissue level target stimulus cannot be
used for homogenized FE analysis, as elements are at the
continuum level.Elastic constantsofporousmedia canbe
related to the density using a power-law9 to form a rela-
tionship between tissue and continuum level. Therefore,

the tissue level stimulus ~U canbe replacedby a continuum

level stimulus ~Uhom, which is a function of local relative

density q: ~Uhom ¼ ~U0q xð Þd. To ensure compatibility at

q ¼ 1, ~U0 is set to ~U. Inserting the power-law into Eq. (1)
gives:

min
si2Rþ

0

r sið Þ ¼
Z Xn

i¼1

siUi xð Þ � ~U0q xð Þd
 !2

dV ð2Þ

Note that the proposed continuum stimulus is
therefore isotropic, although trabecular bone elasticity

is orthotropic at the continuum level.41 Contrary to
lFE, where all elements have the same volume, hFE
meshes usually contain differently sized elements, and
thus, the volume cannot be neglected in the equation.
Equation (2) has to be rewritten in a discrete form to
be used for FE and can further be transformed into a
matrix equation to be directly solved by using a non-
negative least squares solver.30 A detailed derivation is
given in the Appendix.

The coefficient of variation (CV) is typically calcu-
lated before and after the optimization for the scaled

SED Uscaled xð Þ ¼
Pn

i¼1siUi xð Þ to evaluate the effect of

the optimization. Before the optimization, all scales
were set to one, which gives the SED for unit scaled
loads. The lower the CV, the higher the homogeneity
of the load distribution.

FIGURE 1. Graphical abstract of the study, which is split into two parts. In the first part, the continuum target stimulus is
identified on trabecular bone cubes. This stimulus is required for the homogenized inverse bone remodeling (IBR) and applied in
the second part, where lFE and hFE models are compared to each other in their ability to predict optimized reaction forces.
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Bone Cubes: Parameter Identification
for the Continuum Target Stimulus

The power-law relationship of density and contin-
uum level target stimulus was identified on 701 lCT-
images of bone cubes from a previous study.28 No new
scans or experiments were conducted on the specimens
for this study. The cubes were taken from various
anatomical sites, had an edge length of 5.3 mm, and
were scanned in a lCT with a resolution of 18 lm. The
images were already segmented into bone and air
voxels and directly converted to linear hexahedral
elements. A linear elastic, isotropic bone material with
E ¼ 12GPa and m ¼ 0:3 was used. Kinematic uniform
boundary conditions (KUBC)34 were used with six
canonical load cases (three in uniaxial compression
and three in pure shear) with a normal and shear dis-
placement of �0:001mm.

The six canonical load cases were optimally scaled
using the IBR (Eq. 1) with a tissue target stimulus of
~U ¼ 0:02MPa, taken from literature.13 A non-nega-
tive least squares solver implemented in scipy48

(scipy.optimize.nnls) was used for the optimization.
The optimized continuum stimulus hUopti for each

cube was calculated as hUopti ¼ 0:5
P6

i¼1 sihrii : heii
using the volume averaged microscopic stress hrii and
a-priori strain heii. Finally, the optimized continuum
stimulus of each bone cube was plotted over the
density q, and least-squares curve fitting was used to
identify the exponent d of the power-law relationship
(see Eq. (2)).

Distal Radius: Comparison of lFE and hFE-Based IBR

A lCT-image set of 21 distal radius sections from a
previous study29,44 were used to test the new contin-
uum level target stimulus. No new scans or experi-
ments were conducted on the specimens for this study.
The image resolution was 32.8 lm, with an average
section height of 19.22 mm. The anatomical axes of the
bones were aligned to the image coordinate system to
retrieve comparable results (Fig. 2). The axial direc-
tion was already aligned during scanning to the 3-axis.
The volar surface was manually aligned along the 2-
axis.

Two sets of models were created to investigate if the
cortex added any bias in the IBR. The first set con-
tained only the trabecular bone without the cortex,
while the second set included both trabecular bone as
well as the cortex. As homogenized material properties
were only identified on trabecular bone samples, the
goal of this reduced model was to find out if the
homogenization of trabecular bone yielded the same
results as lFE, without the influence of the dense
cortex.

The lFE models were created similar to the bone
cubes, using a direct voxel to linear hexahedral element
conversion and a linear, isotropic material with E ¼
12GPa and m ¼ 0:3. Two model types were created: one
including the cortex (full model) and one without the
cortex (trabecular-only). Three load cases (compres-
sion in 3-direction, shear in 23 and 13 plane) were
applied by imposing a displacement of 0.01 mm mag-
nitude on the nodes of the distal plane in the respective
direction. All nodes at the proximal plane were fixed in
all three directions. The reaction force Fi at the distal
plane was calculated for each load case.

Three different homogenized FE models were cre-
ated from the radii sections using two different mesh-
ing methods and two different material mappings (see
Fig. 1). Likewise, as in lFE, each model was created
with and without the cortex. Smooth FE models35 (s-
hFE and sf-hFE) were created similar to a previous
study47 using quadratic tetrahedral elements for the
trabecular bone and quadratic wedge elements for the
cortical bone. Both had an element edge length of
around 1 mm. Homogenized voxel FE models (v-hFE)
were created similar to a previous study,29 using a
regular grid of quadratic hexahedral elements with an
element edge length of around 1 mm. The same
boundary conditions as for the lFE models were
applied.

An hFE material mapping algorithm36 (Sampling
sphere diameter 5 mm, background grid distance
2.5 mm) was used to map either a power-law-based
density-dependent material or a Zysset-Curnier type51

material, which is dependent on local fabric and den-
sity. Details of these models are presented in the Ap-
pendix. Elastic material constants for trabecular bone
were already identified in a previous study28 using the
same bone cubes as for the identification of the con-
tinuum target stimulus. The used base material con-

FIGURE 2. Alignment of the distal radii segments in the
image frame. The average height h of the radii was 19.22 mm.
The bones are aligned such that the volar surface is parallel to
the 2-axis of the image, and the axial direction is parallel to the
3-axis. Volar, radial, and proximal corresponds to the positive
1, 2, and 3-direction, respectively. The boundary conditions of
the FE model are applied to the nodes of the proximal and
distal faces of the bone, which are coplanar with the shown
planes.
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stants are given in Table 1. Trabecular bone material
properties of the smooth hFE models were mapped
using local density only (s-hFE) or using density and
fabric (sf-hFE). Cortical bone in both smooth models
was modeled using a power-law-based density-depen-
dent material. In the voxel hFE models (v-hFE),
material properties were mapped using only density for
both trabecular and cortical bone.

Inverse bone (re)modeling, including the previously
identified exponent d (Eq. (2)) for the continuum tar-
get stimulus, was applied to all radius sections and all
four model types with and without cortex. Again a
non-negative least squares solver (scipy.optimize.nnls)
was used for the optimization. The resulting optimal
scaling factors ai were used to scale the three reaction

forces Fi. First, unit scaled force Funit ¼
P3

i¼1 Fi were

calculated and, second, the optimized reaction forces

were calculated as Fopt ¼
P3

i¼1 aiFi to allow for a

comparison of reaction forces before and after opti-
mization.

The hFE models were then compared to the lFE
models by linear regression of Funit and Fopt respec-

tively. The coefficient of determination and Lin’s
concordance correlation coefficient (CCC)31 were cal-
culated for each regression. Further, the magnitude of
the optimized force was evaluated as well as the off-
axis angle h from the 3-axis, calculated as:

h ¼ cos�1 0; 0; 1ð ÞT � bFopt

� �
ð3Þ

This angle gives a measure of the ratio between the
magnitude of axial loading and shear loading, irre-
spective of the components. Two scores were defined to
compare the similarity between lFE and hFE in terms
of predicted force angle and magnitude. An angle score
for the two vectors a and b is defined as:

Sa a; bð Þ ¼ 1�
cos�1 ba � bb� �

p
ð4Þ

Here, ba ¼ a=kak denotes the unit vector of a. A
magnitude score is defined as:

Sm a; bð Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kak � kbkð Þ2

kak2 þ kbk2

s
ð5Þ

Both scores are one if the two vectors are equal and
zero if the two vectors are dissimilar.

Soft- and Hardware

All statistical analyses were performed using scipy48

1.7.2 and Python 3.7.4 (Python Software Foundation,
https://www.python.org). The hFE meshing and the
material mapping were performed using medtool 4.5
(Dr. Pahr Ingenieurs e.U., Pfaffstätten, Austria, http://
www.medtool.at). The lFE models were solved in
ParOSol,23 and all hFE models were solved in Abaqus
2022 (Dassault Systèmes, Vélizy-Villacoublay,
France). All analyses were performed on a dual AMD
EPYC 7452 system.

RESULTS

Bone Cubes

The lFE-based IBR on the bone cubes could sig-
nificantly reduce the coefficient of variation (CV) of the
tissue level SED on average from 78.8 to 74.2%
(p<0:001; Cohen’s d 0.263; Fig. 3b). The optimized
continuum stimulus followed a power-law with an
exponent of 1.19 and a high coefficient of determina-
tion (99.7%; Fig. 3a).

Distal Radius: Trabecular Bone Only

The predicted reaction forces Funit before opti-
mization (Figs. 4a–4c) differed between hFE and lFE
for models of the radii without cortical shell. While
both v-hFE and s-hFE underestimated the reaction
forces, sf-hFE overestimated them. However, all hFE
models had a good correlation of reaction forces with
lFE, with R2 over 98% and good agreement in CCC
with over 75% for all reaction force components (Ta-
ble 2).

After optimization (Figs. 4d–4f), lFE-based IBR
identified the force component in the 3-direction
(normal force) as the dominant load direction. Forces
in 3-direction were 312 N on average, while shear
components were much smaller with 6.2 N (1-direc-
tion) and 20.7 N (2-direction) on average. As a result,

TABLE 1. Elastic base material constants used for the material mapping.

Type E0 in MPa l0 in MPa m0 k l

Trabecular Bone (Density + Fabric) 10,320.4 3470.7 0.2278 1.62 1.1

Trabecular Bone (Density) 8812.8 3536.0 – 1.63 –

Cortical Bone (Density) 12,000.0 4615.4 – 1.63 –

The constants are used in the respective material model type to determine the local material properties from density and/or fabric as

presented in the appendix.
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the off-axis angle was small, with an average of 7�
(Fig. 5b). hFE-based IBR was able to identify the
dominant load direction, but shear forces did not agree
well with lFE-based IBR. As shear forces could not be
captured by the hFE models, only the correlation of
the force in the 3-direction was high, with R2 over 94%

and CCC over 75% (Table 3). Both smooth hFE
models showed a better similarity in angle, while v-
hFE and s-hFE had a higher similarity in magnitude
than sf-hFE (Fig. 5c).

The lFE models had 104 million degrees of freedom
(DoF) on average and took 63.8 min to solve using 27
CPUs in parallel. The sf-hFE and s-hFE models had
89,800 DoF on average and took on average 46.8 s and
47.5 s to solve, respectively. The v-hFE models had

FIGURE 3. (a) Fitted power-law on the optimized continuum
stimulus for the bone cubes. (b) Coefficient of variation (CV)
for the SED distribution of the bone cubes before (unit) and
after optimization (opt).

FIGURE 4. Trabecular-only model: (a-c) hFE over lFE unit scaled reaction force components. (d-f) Optimized reaction force
components.

TABLE 2. Regression coefficients for trabecular-only model:
Unit reaction forces.

Slope Intercept in N R2 in % CCC in %

sf-hFE Funit ;1 1.37 0.426 99.22 87.61

Funit ;2 1.38 1.53 97.91 82.46

Funit ;3 1.42 12.7 98.61 82.16

s-hFE Funit ;1 0.661 0.154 98.65 87.03

Funit ;2 0.864 0.872 98.45 98.17

Funit ;3 0.574 5.63 99.06 77.72

v-hFE Funit ;1 0.629 0.115 98.40 83.71

Funit ;2 0.837 0.708 98.83 97.96

Funit ;3 0.558 4.54 99.06 75.23
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74,283 DoF and took 19.3 s to solve on average. All
hFE models used 4 CPUs in parallel.

Distal Radius: Full Models

Similar to the models without cortex, reaction forces
before optimization (Funit) correlated well between
hFE and lFE models but showed over or underesti-
mation (Figs. 6a–6c). While sf-hFE had higher unit
reaction forces on average, both s-hFE and v-hFE
underestimated the reaction force. All hFE models
correlated well with lFE, with R2 over 98%. CCC was
over 97% for both smooth hFE models, except for the
3-direction in s-hFE and all components for v-hFE
(Table 4). Contrary to the radius without cortex, v-
hFE and s-hFE showed different reaction forces.

After optimization (Figs. 6d–6f), lFE-based IBR
showed results in agreement with the radius without
cortex, but the overall load magnitudes were higher.

Forces in 3-direction were dominant with an average
of 1735.8 N, and shear forces were one order of mag-
nitude lower with averages of 268.2 N and 428.5 N for
the 1- and 2-direction, respectively. The average off-
axis angle was 17� (Fig. 7b). hFE-based IBR also
identified the 3-direction as dominant. In contrast to
the radius without cortex, almost all hFE models also
predicted shear forces in agreement with lFE-based
IBR. While the magnitude of the optimized reaction
force showed a similar pattern as for the models
without cortex, the angle of the optimized reaction
force was best predicted by sf-hFE (Fig. 7c). All
models showed a high correlation for the optimized
force (R2 > 81%, CCC > 84%) except for the 1-di-
rection component in sf-hFE and the 1 and 2-direction
for v-hFE (Table 5).

The lFE models had 198 million DoF on average
and took 83 min to solve (on 27 CPUs), while sf-hFE
and s-hFE had 107,624 DoF and took on average
67.8 s and 54.4 s to solve (on 4 CPUs). v-hFE had
88,386 DoF and took 24 s to solve on average.

DISCUSSION

This study presents a new method for homogenized
inverse bone (re)modeling (IBR) on the basis of pre-
viously described lFE-based IBR to predict physio-
logical in vivo loading for bones. The required
relationship between the tissue level stimulus and the
continuum level was found using a large sample of
trabecular bone cubes with a high coefficient of
determination. While all hFE models were able to
predict the magnitude of the optimized reaction force
with a good to high coefficient of determination, the
angular accuracy varied between the different types of
hFE models. Inclusion of the cortex had the highest
influence on the model accuracy, while differences in
material mapping or different meshing methods had
less influence.

Although a good agreement between hFE and lFE-
based load predictions was found for the distal radius,
the used tissue stimulus function is still highly simpli-
fied as it only accounts for an accumulative and time-
averaged stimulus of bone. While it showed the ability
to predict physiological loading conditions using lFE
methods on a variety of bones,1,4,10–13,45,46 other for-
mulations can be used as well. Fischer et al.19,20 used
continuum level effective stress, scaled to the tissue
level, while the here employed method scales the
stimulus to the continuum level and directly uses SED.
Other possibilities to describe the stimulus function
can be obtained by switching from a scalar to a higher-
order quantity. For very small isotropic elements, as
they are used in lFE, a more elaborate optimization

FIGURE 5. Trabecular-only model: (a) Optimized force
magnitude and (b) angular difference towards the 3-axis for
(c) angle (Sa ) and magnitude similarity score (Sm). The marker
gives the mean value, with the standard deviation as error
bars.

TABLE 3. Regression coefficients for trabecular-only model:
Optimized reaction forces.

Slope Intercept in N R2 in % CCC in %

sf-hFE Fopt ;1 2 0.0114 0.614 0.86 2 1.94

Fopt ;2 2 0.0158 1.12 1.48 2 2.04

Fopt ;3 1.37 146 94.02 76.12

s-hFE Fopt ;1 2 0.00862 0.456 0.92 2 1.46

Fopt ;2 2 0.0113 0.799 1.48 2 1.45

Fopt ;3 0.924 92.3 96.87 96.08

v-hFE Fopt ;1 2 0.00842 0.453 0.86 2 1.43

Fopt ;2 2 0.0129 0.853 3.14 2 1.67

Fopt ;3 0.926 84.8 97.26 96.68

BIOMEDICAL
ENGINEERING 
SOCIETY

Homogenized Inverse Bone (Re)modeling 931



criterion might be superfluous, whereas hFE might
benefit from including more information as bone is
known to be orthotropic and loaded in a multiaxial
way at this scale.41 For instance, the optimal loading
stimulus could include the orientation of principal
stresses or the ratio of minimum and maximum prin-
cipal stresses. Thus, future work could also test the
viability of using different vectorial or tensorial
quantities.

The here found exponent for the relation between
tissue and continuum level was 1.19 and lower than

FIGURE 6. Full model: (a-c) Unit scaled reaction force components. (d-f) Optimized reaction force components for the full model.

TABLE 4. Regression coefficients for full model: Unit
reaction forces.

Slope Intercept in N R2 in % CCC in %

sf-hFE Funit ;1 1.12 2 0.047 99.32 97.28

Funit ;2 1.11 2 1.08 99.73 97.93

Funit ;3 1.21 2 36.3 99.43 95.66

s-hFE Funit ;1 0.967 0.641 98.99 99.45

Funit ;2 1.04 2 0.175 99.64 99.46

Funit ;3 0.72 20.3 99.03 81.39

v-hFE Funit ;1 0.786 2 1.86 99.38 83.98

Funit ;2 0.785 25.21 99.52 77.39

Funit ;3 0.588 223.1 99.35 48.34

FIGURE 7. Full model: (a) Optimized reaction force
magnitude and (b) angle towards the z-axis for the full
model. (c) Angle (Sa ) and magnitude score (Sm) for the full
model. sf-hFE shows the smallest deviation and the highest
similarity in angle, while s-hFE and v-hFE show better
similarity in magnitude. The marker gives the mean value,
with the standard deviation as error bars.
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used in the similar model of Fischer et al.,19,20 where an
exponent of 2 was used. This relationship was found in
experiments regarding bone strength9 and analytical
models of porous structures.27 However, no compar-
ison to other methods or validation of this assumption
has been made so far. One explanation for this dif-
ference in value might be, that the exponent was fitted
on a dataset, using the accumulated macroscopic SED
as a target value, instead of resorting to proxy values
such as bone strength. Thus, while bone strength might
scale well with an exponent of 2, the accumulated SED
might not. Further, the way the bone cubes are loaded
also has an influence on the resulting SED distribution
and thus also on the optimized values and finally on
the accumulated SED.

An entirely different 3D hFE IBR approach was
used by Campoli et al.8 and Garijo et al.25 They used
forward remodeling models to train artificial neural
networks (ANN) many different loading patterns that
could then be used to predict the loading pattern in a
given bone. While these models were able to work on
larger bones, such as the proximal femur8,25 or the
proximal tibia,26 they are only phenomenological, re-
quire highly time-consuming re-training for new load
cases, and also individualized training for each bone.
Also, the choice of the forward remodeling algorithm
will influence the result, similar to the choice of the
target stimulus in the here used model.

Using the computationally efficient (70 to 200 times
faster than lFE) hFE-based IBR method presented in
this study allowed the prediction of physiological
loading of 21 distal radius samples with a high corre-
lation to lFE based IBR if fabric and cortex is in-
cluded in the model. While the correlation was high,
the hFE models overestimated (sf-hFE) or underesti-
mated (s-hFE, v-hFE) the unit reaction forces and
subsequently also the optimally scaled reaction forces.
This discrepancy was larger for the models that used
only trabecular bone than it was for the full models,
with the exception of v-hFE, which showed a higher
deviation from lFE in the full model. There might be
several reasons for these differences. First, the

boundary conditions used to find the apparent stiffness
can influence the homogenized elastic material prop-
erties. KUBC is known to overestimate the apparent
stiffness.15 Other boundary condition types, such as
PMUBC,34 could be tested instead. Second, the
material mapping is based on trabecular bone cubes
with a maximum relative density of 60%. Thus, for
models that include elements with a higher density, the
apparent properties might not match. This could be the
case for v-hFE, where the cortex is averaged with the
trabecular volume. Due to the high density-gradient
between trabecular and cortical volume, smooth
models (which model a sharp boundary between the
volumes) work better in this respect. Different material
mappings, which include a tissue function,29 could be
applied in such cases. Last, micro-structural effects of
low-density volumes can lead to a different result at the
continuum level. Several radii had low-density regions
(< 10% relative density) in the proximal region. Such
effects are mitigated when the cortex is included.

The physiological reaction forces of the full distal
radius section predicted by both hFE and lFE -based
IBR were in a plausible region. The predicted off-axis
force angle was similar to the one found by Smith
et al.43 for the pushup load case ex vivo, but the pre-
dicted force magnitude was higher on average (1811 N
for lFE with cortex) than estimated from that exper-
iment (663 N). However, this magnitude is still in a
physiological region estimated with up to 2410 N for
power grip exercise.40 A few other studies also used
IBR to predict distal radius loading. Walle et al.49

predicted physiological section forces using lFE-based
IBR on a clinical lFE model of distal radius sections
and found a similar pattern of optimized reaction force
components, with smaller shear components (140 N
and 280 N) than normal force (420 N). Conversely,
Christen et al.,12 using the same algorithm, found re-
sults different from estimates in literature40,43 and the
results of this study. Specifically, Christen et al. found
high amounts of shear forces (45 to 465 N) and rela-
tively low normal forces (1 to 235 N). However, dif-
ferent boundary conditions, by the addition of a soft
connector layer, were applied to the models. Further-
more, also rotational load cases were added to predict
moments, which was not the case in this study. Such
load cases were not added in this study, as only lFE
and hFE-based IBR were compared to each other and
evaluating the moments is not strictly necessary.14

Differences between IBR-predicted and physiologi-
cal load magnitudes could also be the result of the
chosen target stimulus value. While the predicted load
magnitude is influenced directly by the tissue target
stimulus, the load angle (i.e., the ratio of force com-
ponents) remains unaffected.46 In this study, a tissue
target stimulus of 0.02 MPa was used.13 The value

TABLE 5. Regression coefficients for full model: Optimized
Reaction forces.

Slope Intercept in N R2 in % CCC in %

sf-hFE Fopt ;1 0.471 99.9 26.80 49.05

Fopt ;2 0.999 2 19.5 86.54 92.34

Fopt ;3 1.39 2 176 96.83 84.12

s-hFE Fopt ;1 1.07 46.6 91.24 86.23

Fopt ;2 0.97 38.8 81.32 89.20

Fopt ;3 0.852 2 62.8 85.82 86.25

v-hFE Fopt ;1 0.274 69.1 19.29 24.76

Fopt ;2 0.152 81.8 7.38 8.97

Fopt ;3 0.963 2 83.1 96.94 97.08
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originates from the assumption that bone has to
experience 2000le to 3000le of peak strain every day32

in order to maintain its mass, which can be converted
to an SED when the material properties are known.
For the herein used material properties, an effective
strain for the current tissue stimulus is 1826le and is
thus in a realistic region for in vivo strains.24 Without
additional information on the physiological range of
strains, the tissue stimulus must be chosen arbitrarily
or calibrated from in vivo data. For example, Christen
et al.10 found a value of around 0.01 MPa (equivalent
to 1715le) for homeostasis at the distal tibia.

This study has some limitations. The hFE models
were, so far, only tested on the distal radius sections.
This location is characterized by relatively homoge-
neous trabecular bone predominately loaded in axial
compression. In proximity to joints loaded in a multi-
directional way, such as the proximal or distal femur, the
hFE-based IBR might deviate more from lFE-based
IBR. The continuum stimulus was identified on bone
cubes loaded with KUBC, which were also used to
identify the homogenized elastic material properties for
the hFE models. Other boundary conditions might lead
to different exponents in the continuum stimulus as well
as to other elastic material properties. The here used
target stimulus is a scalar quantity, which ignores other
information at the continuum level, such as the orien-
tation of the microstructure. Further, the inclusion of
mechanobiological factors, such as metabolism or
genetics, in the model might also increase the predictive
power of IBR in general. The simplified theory of IBR
assumes that the microstructure can fully be explained
by mechanical stimuli alone, which holds true only for
artificial bone structures.13 In general, bone is however
influenced bymany different factors such as genetics and
metabolism.46 Recent publications also incorporated
mechanoregulation theory49 into the target stimulus but
required time-lapsed CT to identify remodeling sites in
the bone, which is not always available. Only three load
cases were applied to the radius sections for simplicity of
the models. As these load cases can only predict the
reaction force, three rotational load cases should be
added for the prediction of moments, to predict physi-
ological loading conditions more accurately.

Despite these limitations, this study could show that
lFE-based IBR can be translated to hFE to provide a
faster way of predicting physiological loadings from
bones. hFE-based IBR was tested on distal radius sec-
tions using different kinds of meshing and material
mappings. Both lFEandhFE showed a good agreement
in terms of predicted load angle if the cortical bone was
included in the model and further improved if the bone’s
anisotropy is added. The predicted loads correlated well,
but systematic differences between lFE and hFE due to
the homogenization of the microstructure were

observed. Smooth hFE models, including the cortex,
showed the best agreement with lFE results. Overall,
lFE-based IBR still provides a robust way to infer
physiological loading conditions from the bone
microstructure, but hFEmodels offer a computationally
more efficient alternative with the ability to model more
realistic boundary conditions and more complex load
cases.
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APPENDIX

Derivation of Optimization Criterion

To use the optimization criterion given in Eq. (2)
with finite element models, it has to be discretized first.
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The SED is measured at the centroid of each of the k
element of the FE mesh. The volume of each element
Vj has to be calculated and the density of each element

qj is known from the homogenization. Substituting the

integral with a finite sum gives:

min
si2Rþ

0

r sið Þ ¼
Xk
j¼1

Xn
i¼1

siUj;i

� �
� ~U0q

d
j

 !2

Vj ð6Þ

This function can be transformed into a matrix form
rðxÞ ¼ kAx� bk, in order to be solved efficiently. To

write thematrix equations efficiently, 1m ¼ 1; 1; . . . ; 1ð ÞT
defines a column vector of shape m� 1 filled with ones
of arbitrary length. Further, A � B½ �ij ¼ ½A�ij½B�ij is the

Hadamard product of two matrices of equal size and
a� b ¼ Cij ¼ aibj is the dyadic product of two vectors

of equal size.
The SED values of all k elements of the FE mesh for

the n unit load cases are stored in a matrix U of shape
k� n, the element volumes in a vector V of shape
k� 1, and the relative densities for each element in a
vector q of shape k� 1.

Then, the optimization using the scaling vector s of
shape n� 1, can be written in matrix form as:

min
s2fRþ

0
gn
r sð Þ ¼ kU0s� ~Uk ð7Þ

where U0 is the volume corrected matrix of SED, de-

fined as U0 ¼ U �
ffiffiffiffi
V

p
� 1n

� �
and ~U is the target stim-

ulus vector, defined as ~U ¼ ~U0q
d �

ffiffiffiffi
V

p
. The same

equation can still be used for optimization of lFE: As
Vj ¼ const: and qj ¼ 1 for each element j, the equation

will simplify to ~U ¼ ~U01k and U0 ¼ U.

Homogenized Material Models

The here used material models are either a density
dependent power-law model or a density and fabric
dependent Zysset-Curnier51 type model. While the
power-law yields an isotropic model (two independent
material parameters), the Zysset-Curnier model is or-
thotropic (nine independent material parameters).

The power-law uses three parameters: The base
elastic-modulus E0, the base shear modulus l0, and the
density exponent k. The following equation is used to
get the density dependent elastic-modulus:

E ¼ E0q
k ð8Þ

The Poisson number can be calculated as:

m ¼ E0

2l0
� 1 ð9Þ

The Zysset-Curnier model uses, additionally to the
density, the eigenvalues mi of the fabric tensor, which
is a measure for the orientation of the microstructure.
The fabric tensor has to be scaled such that the trace of
the tensor is equal to 3. An additional exponent l is
used to scale the eigenvalues. There are now three
elastic-moduli:

Ei ¼ E0q
km2l

i ð10Þ

As well as three shear moduli:

Gij ¼ l0q
k mimj

� �l ð11Þ

And three independent Poisson numbers:

mij ¼ m0
mj

mi

� �l

ð12Þ

In the case of an isotropic material, where all
eigenvalues are 1, the model reduces to the power-law
model (Eq. (8)), if Eq. (9) is fulfilled for m0.
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