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Abstract—Previous patient-specific model calibration tech-
niques have treated each patient independently, making the
methods expensive for large-scale clinical adoption. In this
work, we show how we can reuse simulations to accelerate
the patient-specific model calibration pipeline. To represent
anatomy, we used a Statistical Shape Model and to represent
function, we ran electrophysiological simulations. We study
the use of 14 biomarkers to calibrate the model, training one
Gaussian Process Emulator (GPE) per biomarker. To fit the
models, we followed a Bayesian History Matching (BHM)
strategy, wherein each iteration a region of the parameter
space is ruled out if the emulation with that set of parameter
values produces is ‘‘implausible’’. We found that without
running any extra simulations we can find 87.41% of the
non-implausible parameter combinations. Moreover, we
showed how reducing the uncertainty of the measurements
from 10 to 5% can reduce the final parameter space by 6
orders of magnitude. This innovation allows for a model
fitting technique, therefore reducing the computational load
of future biomedical studies.

Keywords—Gaussian process emulator, Heart model, Statis-

tical shape model, Uncertainty quantification, In-silico trial,

Virtual clinical trial.

INTRODUCTION

Model calibration is the process of adjusting the
parameters of a model to maximize the agreement
between observed data and simulations. Patient-
specific cardiac models are being used to prospectively
guide therapies2 and retrospectively to perform in-sil-
ico trials.24 Both these applications require the cali-
bration of a large number of models, before proceeding
with the analysis of the results of the simulations.

As computer models are increasingly being used in
the clinic, there is a need to improve and accelerate the
process of model calibration to patient data.15 More-
over, although it is not the end-goal, the acceleration
process of parametrization is one of the technical
barriers to overcome to be able to scale digital twins to
the industrial level.16

Current Limitations of the State of the Art

Classical techniques for calibration of patient-
specific cardiac models include sweeping over the
parameter space,13 genetic algorithms12 or multivariate
regression or Markov chain Monte Carlo (MCMC).7

In Ref. 13, Nasopoulou et al. reformulated Guccione’s
material law for cardiac mechanics to fit two parame-
ters. This fitting involved minimising with respect to
two cost functions using a sweeping of the space and
was therefore highly expensive. Genetic algorithms are
also used for parameter fitting. In Ref. 12, Margara
et al. use this family of algorithms to fit a full elec-
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tromechanical model, using a multiobjective cost
function based on the distance between the estimated
parameter and the experimental interval range. One of
the main disadvantages of all these approaches is that
they do not consider the uncertainty of the estimation.
In Ref. 7, Johnstone et al. consider the uncertainty of
the calibration using an MCMC approach to calibrate
electrophysiology models, but with the inherent cost of
this approach. In all the aforementioned techniques,
there is a need for a high number of evaluations of the
models. Each patient case is treated independently, so
the cost of calibrating each new patient remains con-
stant. This limits their utility in calibrating cohorts due
to their prohibitive cost.

Surrogate models offer a low-cost alternative to a
full model evaluation when performing calibration but
they require the evaluation of full simulations to gen-
erate a training data set. For instance, physics-In-
formed Neural Networks (PINNS)3 have been
proposed as surrogates for models, accelerating the
model evaluation by up to 30 times. However, PINNS
lack a method for tracking the uncertainty of the sur-
rogate model. A different choice for surrogate models
is Gaussian Process Emulators (GPEs).11 Using GPEs
we can rapidly evaluate a function that approximates a
costly simulation and obtain the uncertainty inherent
to the emulator as well. In Ref. 23 there was no
parameter fitting, but rather using literature values for
the parameters, all of them fixed, without personali-
sation. In this work we show how to accelerate the
fitting process to use patient-specific data instead of
literature-based. In Ref. 17 Noè et al. use GPEs to

emulate left-ventricular contraction and then fit the
Holzapfel–Ogden model by minimising a loss function
that takes into account the uncertainty of the emula-
tor. In this approach however a single solution is
provided for the combination of parameters while
multiple solutions could be viable, and the applicabil-
ity to a cohort is limited since the authors apply this
method to a single mesh.

Purpose of This Work

In this work we propose two important innovations:
1) representing the patient anatomy as a set of scalar
variables, since this allows all simulations for all
patients to be defined in a common parameter space,
and 2) using simulations used to calibrate previous
patients to accelerate the calibration of new patients.

We wish to investigate the feasibility of Bayesian
History Matching (BHM) for repeated calibration of a
standard modelling framework to new data for a new
patient. This paper provides an implementation of this
approach and verifies that this conceptual method can
work using clinically relevant anatomies and simula-
tions where we know the ground truth parameters.
This provides a high throughput method to calibrate
patient-specific anatomy and material properties at
clinical timescales.

A conceptual abstract of the motivation is presented
in Fig. 1.

FIGURE 1. Conceptual abstract of the classical approach to model calibration (’’naı̈ve’’) vs our approach (‘‘scalable’’). The term
‘‘wave’’ refers to an iteration for BHM but it applies to other calibration methods. The main difference is to reuse the previously
done calibration on a different patient to reduce the number of simulations run.
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Paper Structure

In this work, we first give some background details
on the elements needed to perform BHM, including the
meshes used for the shape model, the shape model it-
self, and the simulations run. We also provide infor-
mation about the surrogate models used (GPEs) and
the biomarkers analysed. We used the evaluations of
the surrogate models to perform two different appli-
cations: a calibration of the models using purely liter-
ature data and to demonstrate how this can be used to
calibrate multiple models serially. In the latter case, we
first estimate the cost of calibrating 4 independent
models. We then show how the cost of calibrating 2
models is reduced when calibrating them serially. We
also test the effect of calibrating two more models with
highly dissimilar anatomy. Lastly, we investigate the
effect of the uncertainty assumed in the computational
models, showing how data acquisition with more
accuracy could improve the precision of model cali-
bration.

MATERIALS AND METHODS

In many cardiac calibration studies,11 a mesh is
generated and then the parameters are fitted. Here we
propose to represent the anatomy, and hence the mesh,
by the weights of the SSM. In this way, the mesh
becomes scalar parameters that need to be fit, and the
whole model can be represented as a vector of scalars.
This allows us to build a single emulator over this
vector, that applies to all models for all patients..

In this section, we describe the methods to build
meshes from the SSM and run the EP simulations, as
well as details about the emulators and the BHM.

Generation of Models and Simulation Data

Anatomical meshes are described by the modes of a
Statistical Shape Model (SSM), described previously
in.23 Briefly, the SSM used is based on 19 meshes
derived from patient CT images. PCA was then applied
to the distance from a target mesh and the template to
calculate the main directions (modes) of variability.
New meshes can be created as a linear combination of
the modes added to the template. The SSM had a total
of 18, but each mesh was described by the weights of
the first 9 modes only, which explain 89.99% of the
total variance, setting the rest to 0. The bounds for the
initial parameter space of the 9 modes were con-
strained to be the smallest interval containing the
modes of the CT cohort defined in Ref. 23.

EP simulations were performed on the biventricular
mesh of each case using the finite element framework

Cardiac Arrhythmia Research Package (CARP),1,26

built upon extensions of the openCARP EP frame-
work20 (http://www.opencarp.org). The reaction-eiko-
nal model14 was used, including fibre architecture and
a fast endocardial conduction (FEC) layer modelling
the Purkinje network. The parameters modified are the
fibre angle (aÞ, the FEC layer height, the conduction
velocity in the fibre direction (CV) and two scalars for
the relative conduction velocity with respect to the fi-
bre direction: one in the cross-fibre direction (kxf) and

one in the FEC layer (kFEC).
More details on the SSM and the EP simulations

including the rationale for the bounds of the parameter
values and the ranges for the 9 SSM modes can be
found in the Supplementary Material.

Clinical data is inherently noisy and sparse. This
means that we may not always have the quantity and
quality of data that we need to calibrate a model. We
would like to create models that capture this uncer-
tainty and can in turn propagate this uncertainty for-
ward into model predictions. By identifying the
plausible parameter ranges that can explain the data,
we quantify this uncertainty and can reflect this in
model predictions. This will be key for the creation and
translation of credible patient specific models.6

A summary of the material and structural parame-
ter values is shown in Table 1.

This provides an approximation for the parameter
space for all plausible healthy human heart electro-
physiology models. We propose to use a combination
of GPE and BHM to identify the region within this 14-
dimensional space that yields the parameter values for
the simulations that are plausible explanations for
patient data observations. This approach accounts for
both uncertainty due to errors in the GPE and errors in
observations.

Gaussian Process Emulators

To accelerate the evaluation of the different values
for the parameters through the simulations, we used
GPEs as surrogates for each simulation output of
interest. Each GPE f (one per output feature) was de-
fined as

TABLE 1. Functional parameters used in the EP simulations,
with the initial range tested.

Parameter Initial range Units

Fibre angle (a) [40, 90] �

FEC layer height [33, 100] % of the apico-basal extension

CV [0.64, 0.92] m/s

kxf [0.11, 0.35] –

kFEC [1.1, 8.75] –
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f xð Þ def m xð Þ þ G xð Þ þ e

where x ¼ ðx1; _s; xnÞ is the vector of input parameters,
mð�Þ, also called a ‘‘mean’’ function is a linear inter-
polation:

m xð Þ ¼ b0 þ
X

bixi;

and G �ð Þ is a zero-mean Gaussian Process with a
covariance matrix, also called ‘‘kernel’’, with the form

K x; x0ð Þ ¼ r2f � exp �
X

i

xi � x0i
d2i

 !2
0
@

1
A:

This specific kernel is also known as the radial basis
function (RBF) kernel. Lastly, the term e corresponds
to Gaussian noise with zero mean and variance rn.

This formulation satisfies desirable properties (in
the noise-free case) such as having zero variance in the
training points and having less variance when the
evaluated point is close to a previously trained point.

The parameters to optimise are then the vectors of
weights b ¼ ðb1; _s; bnÞ and length-scaled ¼ ðd1; _s; dnÞ;
and the scalars of biasb0, output-scale rf and noise

variancern. The GPE training is performed as de-
scribed previously.10 All the hyper-parameters are fit-
ted to maximize the log-marginal likelihood (more
details in Ref. 22).

The accuracy of a GPE was evaluated using both

the coefficient of determination R2 and the indepen-
dent standard error:

ISE ¼ # kf xð Þ � yk<2 � SD f xð Þð Þ
n o

;

where # represents the cardinal (number of elements),
y is the output of the simulation with x as input, the
overline indicates the average value and SD �ð Þ indi-
cates the standard deviation. Intuitively, the ISE metric
takes into account the distance between the simulation
prediction to the target observed value but also takes
into account the uncertainty of the emulator. There-
fore, if the real observed value falls within 2 SD of the
predicted output, it will be counted as a ‘‘success’’.

Bayesian History Matching

To fit the models and reduce the initial range of
parameter values, we followed a BHM strategy as
reported previously.10 BHM is an iterative method,
wherein each iteration (or ‘‘wave’’) a region of the
parameter space is ruled out.

The approach has one initialising step that is fol-
lowed by four steps that are iterated on. To initialise
BHM, the first step consists on sampling the initial
space, in our case, using Latin hypercube sampling. In

the iterative stage, the sampled points are used to run
simulations (and generate meshes). Next, a set of GPEs
are trained, one for each phenotype, over the full
parameter space. The GPE outputs are then compared
with observations from data (in our case, patient
measurements and literature data) and GPE evalua-
tions that are deemed non-implausible are kept. Lastly,
the reduced NROY region is used to sample new
points, in our case, using the cloud technique. The
process is then repeated.

The criterion to rule it out is if the emulation (with
GPEs in our case) with that set of parameter values
produces an implausible result. The implausibility
score for a vector of parameters x is defined as

I2 xð Þ ¼ max
i¼1;...;m

E fi xð Þ½ � � lið Þ2

Var fi xð Þ½ � þ r2i
;

where m is the number of univariate GPEs (one per
each output feature), and li � ri 2 R represents the
observed or desired feature value taken from literature,
clinical data or simulations.

This implausibility measure quantifies the discrep-
ancy between the expected and obtained output and
also considers the variance of the data. High values of
IðxÞ imply that x is unlikely to give a good match (x is
implausible), but low values mean that x is a non-im-
plausible candidate parameter set. Due to this, the
current parameter region in each wave is defined as a
‘‘not-ruled-out-yet’’ (NROY) region.

A summary of the steps of one wave are described in
Fig. 2.

To calibrate using simulation data, the variance
term (ri) is not obtained as the simulated results are

FIGURE 2. Graphical abstract of one wave of Bayesian
History Matching (BHM). ‘‘NROY’’ stands for ‘‘not-ruled-out-
yet’’, fðxÞ refers to the emulation of the point x and l� r
corresponds to the clinical variability observed for the
biomarker.
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deterministic (and individual) simulations. Nonethe-
less, setting to 0 that term might not be an appropriate
option since the models and simulations themselves
always carry extra uncertainty. Moreover, that choice
would raise the value of the implausibility, potentially
discarding regions that could be compatible with the
results of the simulations if these were modified
slightly. To tackle this problem, we set as an initial
estimation the SD to be 10% of the corresponding
mean value, (ri ¼ 0:1 � li). This value is in agreement
with those reported by Ref. 9, where the minimum
value of SD over the mean is 0.1. To assess how much
the final space would be reduced if we modify the
uncertainty of the simulations, we repeated the analysis
setting the SD to be 5% of the corresponding mean
value, (ri ¼ 0:05 � li).

The initial NROY space for the first wave is sam-
pled using Sobol’ sequences25 as the space-filling
experimental design. For each following wave, a subset
of 140 points from the current NROY space is simu-
lated using the full model. These results are added to
previous simulation results and the GPE is then re-
trained. With each wave the GPE is expected to
become more accurate in the NROY space, thus
allowing the NROY to be reduced further. Additional
NROY points can be generated using the ‘‘cloud’’
technique5 if too few points remain for the next wave.
Briefly, for every point in NROY space, we generate
new points by sampling from a multinormal distribu-
tion centred on that point and ‘‘expanding’’ further out
with a scaling factor. Intuitively, the idea is to look
closer at the borders between the NROY region and

the implausible space. A constant number of 10
thousand points were emulated in all the waves.

The final implausibility threshold is aimed to be 3,
based on Pukelsheim’s 3-sigma rule21 as previously
used in other studies.10 In this pilot study, we run
BHM for three waves. In the first two waves, we set an
implausibility threshold of 3.2. Finally, we run a third
wave with an implausibility threshold of 3.

To quantify how the uncertainty of the emulators
evolves as we add more waves, we measured the quo-
tient between the variance of the emulator over the
variance of the ground truth. Since there is an emula-
tor for every biomarker, we took the maximum value
for each of the GPEs, so we have a ‘‘worst-case sce-
nario’’ situation. This produces a value for every point
of the space, that we will refer to as the variance
quotient. Formally, we have that

VQ xð Þ ¼def max
i¼1;...m

Var fi xð Þ½ �
r2i

is the point-wise variance quotient where x is a
parameter vector, m being the number of GPEs, fi a

univariate GPE and r2i the experimental variance. We

therefore will report the maximum and median values
of VQðxÞ for x 2 NROY.

We report the NROY space size as a percentage of
the original space as well. When comparing different
emulators for the same case, we report the percentage
of agreement in terms of NROY space and of the
whole space (both NROY region and implausible
space).

FIGURE 3. Diagram of the anatomical measurements analysed; LV mass (not shown in the diagram) was also analysed.
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In our framework, a GPE was trained for each
biomarker or clinical measurement. A diagram of
some of the anatomical measurements analysed is
shown in Fig. 3.

For the EP simulations, the metrics chosen are the
total activation time of both ventricles (TAT) and the
total activation time of the left ventricular endo-
cardium (TATLVendo). The former would translate
almost directly to QRS duration, routinely used in
clinical assessments. Although TATLVendo is not
measured as often as QRS duration, it has been mea-
sured previously in humans4 and can help to fit the
values of the parameters related to the FEC layer. The
target values for TAT and TATLVendo are
76.4 ± 8.2 ms18 and 31.3 ± 11.21 ms,4 respectively.
More details on how the biomarkers are computed
from the meshes and the values extracted from litera-
ture can be found in the Supplementary Material.

RESULTS

Creating a Reference GPE Across Population
Parameter Space

To train the GPEs in the initial space (before nar-
rowing it down in successive waves), we ran 438 sim-
ulations, with 280, 70 and 88 allocated to training,
validation and test sets. The maximum scores were
achieved for all the emulators, except for the emulator

of the TAT which achieved R2 ¼ 0:99 and TATLVendo

which achieved an ISE ¼ 98:86%.
A calibration example using these emulators with

literature data can be found in the Supplementary
Material.

Calibration to CT-Based Patient Data

To verify the model calibration process we used
simulations to generate synthetic data with known

FIGURE 4. The proportion of points with the values specified in the x-axis in the NROY regions of subject #01 across different
waves.
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ground truth. We start with the reference GPE cali-
brated to simulations over the full 14-dimensional
parameter space. We first wanted to test the marginal
benefit of additional simulations in the NROY space in
subsequent waves of BHM.

Using the reference population GPE for the first
wave, we applied BHM to generate functional and
measured anatomical biomarkers from case #01 from
the cohort of patients described in.23 All the cases used
from that cohort are based on CT imaging. We de-
scribe the changes in the parameter space with each
BHM wave by frequency maps of each parameter as
shown in Fig. 4. Applying BHM to the measurements
and simulations from case #01 saw the parameter
space reduced from 11.24% at wave one to 10.53%
after three waves. The accuracy of the emulator
decreased from a maximum and median VQ value of
2.59 and 0.93, respectively in the first wave with the
reference GPE to 2.92 and 1.11 in the third wave with
the patient-specific GPE. The implausibility at the
ground truth parameter set is equal to 0.38.

The limited change in the size of the NROY space
and distribution of non-implausible parameters indi-
cates that additional simulations in the NROY
parameter space in latter waves do not demonstrably
improve the GPE. The high accuracy of the reference

GPE (R2 � 1) for all biomarkers means that the GPE
does not get meaningfully more accurate with addi-
tional simulations in latter waves, hence the parameter
space remains nearly unchanged in latter waves.

Reusing Emulators with a Different Subject

To test the impact of reusing emulators (reusing
simulations) for new and unseen patients, we used
subjects #01 and #02. Firstly, we ran the BHM pipeline
for 3 waves with patient #02. This required an addi-
tional 280 simulations, for a total of 560 simulations.
In this case, the NROY size was 9.49% of the original

space by the first wave, and we achieve a final NROY
size of 7.51% of the original space by the third wave.
The implausibility for the known target parameter
point was 0.2, and the maximum and median VQ were
2.2 and 0.72, respectively.

We then used the emulators from the third wave of
subject #01 to fit the model to the biomarkers gener-
ated from subject #02. This scenario would mimic the
situation of having a bank of simulation data in the
clinic and a new patient, for whom there are no pre-
vious simulations, needs to be modelled. Using the
previously calibrated emulator, we obtained an NROY
size of 7.13% of the original size without running any
extra waves. This compares with the value of 9.49% in
the first wave (no additional simulations) and 7.51% in
the final third wave (280 additional simulations). The
implausibility of the target ground-truth parameter
point was 0.7 which, although higher compared with
the full patient-specific pipeline, is still considered non-
implausible. The uncertainties were higher, with a
maximum and median of 2.99 and 1.38, respectively.

Conversely, we tested the emulators from the third
wave of subject #02, but to fit the biomarkers gener-
ated from subject #01. Using these already trained
emulators, we obtained an NROY size of 8.34% of the
original size without running any extra waves. This
compares with the value of 11.24% in the first wave
(no additional simulations) and 10.53% in the final
third wave (280 additional simulations). The implau-
sibility of the target ground-truth parameter point was
0.72. The uncertainties had a maximum and median of
2.51 and 0.82, respectively.

To further understand the similarity of the NROY
spaces of the reusing emulators vs running more (pa-
tient-specific) waves, we show the match in terms of the
NROY region. Using the biomarkers from #01 and the
emulators of the third wave of #02 we find a 95.76%
match. This means that 95.76% of the points of this
NROY (that has a size of 8.34% of the original space)

TABLE 2. Summary of the statistics when using the emulators of #01 and #02 on each other.

Using biomarkers from

subject

Using emulators from

#01

Using emulators from

#02

Using emulators from the initial

wave

NROY size as % of original

space

#01 10.53 8.34 11.24

#02 7.13 7.51 9.49

Implausibility of simulated

point

#01 0.38 0.72 0.65

#02 0.7 0.2 0.47

VQ

Max/median

#01 2.92/1.11 2.51/0.82 2.53/0.93

#02 2.99/1.38 2.2/0.72 2.27/0.82

NROY + RO / NROY match #01 – 98.7/95.76% 98.09/86.09%

#02 98.95/97.29% – 98.02/87.81%

‘‘Using emulators from #’’ refer to the third wave of each subject. In the scenarios where the emulators and biomarkers come from different

patients, no extra waves were run. NROY stands for ‘‘Not-ruled-out-yet’’ region, RO for ‘‘ruled-out’’. More details on VQ ’s meaning in the text.

The NROY + RO/NROY match is comparing the specified emulators with the ground truth of running 3 waves on the same subject.
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are also in the NROY region of the patient-specific
pipeline for subject #01 (that has a size of 10.53% of
the original space). Analogously, 97.29% of the points
in the NROY when using emulators from #01 and
biomarkers from #02 are present in the #02-specific
pipeline.

A summary of the statistics for the first two subjects
can be found in Table 2.

A common feature between the two subjects is that
when we cross the emulators used and the biomarkers,
the NROY size is smaller than if we used the emulators
and biomarkers from the same subject. In these cases,
having a smaller NROY region does not necessarily
mean that the emulators are more accurate. Since the
NROY overlap is very high it means that when using
emulators and biomarkers of different patients, they do
a poor job predicting some of the points that would be
in the NROY region using the emulators trained on
the data of the same subject as the biomarker.

We repeated the analysis using the emulators
trained with the simulations from the initial space,
before obtaining a personalised NROY region. This
scenario reflects the situation of having an initial
emulator trained with data from literature ranges,
without specifying anything for any given subject. As
can be seen in the last column of Table 2, the results
are comparable (only slightly worse) to those trained
with more points of the NROY of any specific patient.
These results suggest that although running more
waves might narrow the NROY space, there is not a
qualitative change if we use instead a ‘‘global/refer-
ence’’ emulator.

Reusing Emulators with Very Different Subjects

One of the main caveats that might arise from this pi-
peline is that reusing emulators might work between sim-
ilar patients, but if a new subject is too different, the results
might not hold. To test this, we ran two more scenarios.

In the first scenario, we computed the 1 distance
between the input vector of subject #01 and the input
vector of each other subject of the cohort (patients
#02-#19). The farthest subject, in this case, was subject
#10. Similarly, as the outcome with patient #02, reus-
ing the third wave of patient #01 using the biomarkers
of this new subject, lead to similar results as running
the full pipeline. The NROY space was 11.5% without
running any extra waves in the reusing scenario,
compared to 12.2% in the full-pipeline scenario (after
three waves); the implausibility of the ground truth
point for that subject was 0.39 and VQ had a maxi-
mum of 2.44 and a median 1.1 if reusing the simula-
tions for patient #01 compared to an implausibility of
0.34 and VQ with a maximum of 2.02 and median of
1.18 if using the specialised pipeline.

In the second scenario, we computed the 1 distance
between the vector of biomarkers of subject #01 and
the vector of biomarkers of each other subject in the
cohort. The farthest subject, in this case, was subject
#18. Using the results of the last wave of #01 with the
biomarkers of #18 resulted in a reduction of the orig-
inal space down to 1.94%. The uncertainty quotient,
VQ, in the third wave of #18 had a maximum value of
3.64 and a median value of 1.64. The lowest match in
terms of the NROY region similarity was also achieved
when using the third wave of #01 with the biomarkers
of #18: 87.41% of the NROY points in the case of
using the emulators of #01 with the biomarkers of #18
had the same status (not implausible) as with the case
of running three waves using only case #18.

A summary of all aforementioned statistics for
subjects #01, #10 and #18 can be found in Table 3.

In Fig. 5 we visualize the parameter space of the
third wave for subject #01, for subject #18 and using
the emulators trained on #01 constrained with the
biomarkers from #18. In all the cases, even if the dis-
tribution of parameter values is qualitatively different
between the two subjects, the distributions when using

TABLE 3. Summary of the statistics when reusing subjects’ emulators.

NROY size as % of

original space

Implausibility of

\ simulated point VQMax/median

NROY + RO/NROY

match

Using emulators from #10 with biomarkers from #01 8.73 0.71 2.43/1.31 99.0/97.67%

Using emulators from #18 with biomarkers from #01 10.82 0.43 3.23/1.32 97.58/97.84%

Using emulators from #01 with biomarkers from #01 10.53 0.38 2.92/1.11 –

Using emulators from #01 with biomarkers from #10 11.5 0.39 2.44/1.1 98.83/97.83%

Using emulators from #10 with biomarkers from #10 12.2 0.34 2.02/1.18 –

Using emulators from #01 with biomarkers from #18 1.94 0.93 3.64/1.64 99.41/87.41%

Using emulators from #18 with biomarkers from #18 2.14 0.48 3.93/1.7 –

When the emulators were used on the biomarkers of the same subject, three waves were run on that subject. Otherwise, the emulators from

the third wave of the specified subject were used, without running any extra waves for the new subject. NROY stands for ‘‘Not-ruled-out-yet’’

region, RO for ‘‘ruled-out’’. More details on the VQ ’s meaning in the text.
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the biomarkers from #18 follow very similar shapes (in
agreement with the NROY match shown in Table 3.

Reducing the Uncertainty of the Simulations

In all the previous results, we used a prescribed SD
term for the data to compute the implausibility of the
emulated points. This value (ri ¼ 0:1 � li), was in line
with the variance observed in the literature data. We
then repeated the analysis but set the SD term to be
5% of the mean value for each biomarker. For the sake
of readability, we will refer to cases using ri ¼ 0:1 � li
as ‘‘cases with high uncertainty’’ and to cases using
ri ¼ 0:05 � li as ‘‘cases with low uncertainty’’. A sum-
mary of the results can be found in Table 4.

In the case of subject #01, the final NROY size went
from 10.18% of the original space, in the last wave of
the case of high uncertainty, down to 0.43%, in the
first wave of the case of low uncertainty. By the third
wave, the NROY space is 0.000096% of the original
space. Similarly, subject #02’s NROY changed from
7.26 to 0.00003%; subject #10, from 12.2 to 0.0008%
and subject #18, from 2.07 to 0.13%.

Since the variance of the subject was decreased, both
VQ and the implausibility values will, in general, in-
crease. In terms of VQ, the biggest increase was
observed in subjects #01 and #02 where the maximum
value of VQ changed from 2.2 to 17.34 in the case of
subject #02, and the median value changed from 1.11
to 8 in the case of #01.

FIGURE 5. The proportion of points with the values specified in the x-axis in the NROY regions of three different scenarios: using
the emulators from the third wave of subject #01 and biomarkers of #01; with the emulators of #18 and the biomarkers of #18 and
with the emulators #01 and the biomarkers of #18.
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In terms of the ‘‘shape’’ of the NROY region, we
compare the whole parameter space and the NROY
regions of the high and low uncertainty cases for the
four analysed subjects. We compared the implausibil-
ity status of every point (implausible or non-implau-
sible). The highest overlap of the NROY in the low
uncertainty case with the NROY of the high uncer-
tainty case was for subject #18, with 85.82% of the
non-implausible points in the low uncertainty case
being also non-implausible in the high uncertainty
case. The lowest percentage of overlap was for subject
#02, with 18.36%. We had expected that this value
would be closer to 100%.

To have more insight into these effects, we repeated
the H.U.C. and the L.U.C. for subject #01 but with an
increased initial training set. Instead of having 280
meshes and simulations in the initial space, we added
all the simulations ran for subjects #02, #10 and #18 in
all the waves. This would be equivalent to using the
simulation results from the previous three patients,
alongside the reference simulations to calibrate a
model for a new patient. Since we ran two more waves
for each subject using 140 points in each, the initial
space ended with a total of 1120 training points. Using
this initial space and running two more waves for
subject #01, we get that by the last wave 98.15% of the
L.U.C. NROY is included in the H.U.C. NROY,
showing that the emulators needed a bigger training set
to improve their accuracy.

DISCUSSION

In this pilot study, we showed how it is possible to
reuse results from previous simulations on new, unseen
subjects to save computational cost and time on con-
straining the parameter space and calibrating the
models. Although it is not feasible to predict how
emulators would behave in any given subject, the tests
performed over different subjects (whether from the
point of view of the input, or of the output) suggest
that as long as they are sufficiently similar (in consid-
eration of both subject characteristics and measure-
ment uncertainty), the calibration will converge to
similar parameter spaces.

In classical calibration methods, there is usually a
cost function to minimise to fit the parameters of the
model. However, this cost function usually involves a
comparison with specific biomarkers, such as cardiac
work or displacement. In contrast, a fundamental
advantage of a GPE + BHM pipeline is that it is ro-
bust in the situation where a specific biomarker is not
available for a patient or where new measurements are
taken.

In terms of computational cost, the cost of a wave of
BHM is essentially that of the emulators. As shown in
Fig. 1, rather than running multiple simulations every
time there is a new case, with this pipeline we build a
global/reference emulator that the first time would
need a number of simulations to be trained, but as new
cases are added, the need of running new simulations is
drastically reduced. The cost of evaluating an emulator
is virtually null as is essentially a polynomial.

Performance with a Single Population-Wide Emulator

We showed how the parameter space that describes
all electrophysiology and anatomical patient models
can be encompassed by a 14-dimension scalar vector.
This innovation allows for a global reference GPE to
be used in the first wave of a BHM pipeline for any
case, without the need of running more simulations.
The question is then, would it be enough with a single
emulator?

The answer is that this may even be enough if
measurements had a large uncertainty. Our experi-
ments using a 10% uncertainty demonstrated only a
slight reduction of the NROY size as we run more
waves (thus simulations) with the same subject. Fitting
the model to population-average parameters we can
reduce the NROY space down to 9.97% of the original
space so that we know that most cases are going to
exist in a parameter subspace. In the case of con-
straining with patient’s biomarkers, using the emula-
tors trained in the initial space, we obtain NROY sizes
of 11.24, 9.49, 14.48 and 2.57% of the original space
for subjects #01, #02, #10 and #18, respectively.
Running two more extra waves reduced the space to
10.53, 7.51, 12.2 and 2.14%, respectively. This differ-

TABLE 4. Comparison of the parameter spaces in the high uncertainty case (H.U.C.) and low uncertainty case (L.U.C.) for the
subjects analysed.

Subject

Space overlap (%) between the H.U.C.

and the L.U.C

NROY (%) of the L.U.C. present in the

NROY of the H.U.C

NROY (%) of the H.U.C. present in the

NROY of the L.U.C

#01 90.79 55.14 7.92

#02 92.19 18.36 5.76

#10 88.3 65.4 14.26

#18 97.76 85.82 10.88
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ence is quite small and highlights that the measurement
uncertainty of 10% is a quite large one that leads to a
similar NROY size for a single patient that is compa-
rable to the whole population level.

Nevertheless, a single population-wide emulator is
not enough if measurements have a smaller uncertainty
(i.e., a 5% in our experiments). The reason is that the
gain of refined emulators in successive waves is
potentially very large, with reductions of the NROY
size while preserving the ground truth parameter set.
The justification to search for an optimal way to refine
emulators without the cost of additional simulations is
thus clear in the scenario of low uncertainty in the
data.

Limitations

The biomarkers analysed involve only anatomical
reconstructions and EP simulations. In more complex
scenarios such as mechanics23 or computational fluid
dynamics simulations,8 a reduction of parameters
would be needed as a pre-processing step, possibly
using the results obtained from the global sensitivity
analysis like the ones performed in.23

This pilot study is framed in an early stage of the
modelling pipeline, and no clinical conclusions can be
extracted directly from it. Although the anatomical
measurements of the patients used are based on CT
imaging, functional data extracted directly from clini-
cal measurements would be needed to create an impact
to the clinical community.

The SSM was built over a small cohort (19) of
healthy cases. This can affect the results in two ways.
First, in a bigger cohort with higher variability, more
modes might be needed to explain 90% of the popu-
lation variability. For instance, in other whole-heart
SSMs19 with bigger cohorts (n = 100) over 30 modes
were required to reach 90% of the variance. This, in
turn, would increase the input parameter space size
and therefore the ability of the emulators to capture
the relation between model parameters and biomark-
ers. And second, the uncertainty of the emulators in
our case was in general low, but with more ‘‘distant’’
points (such as diseased cases), this uncertainty would
increase, and some extra waves might be needed for
personalised cases.

Several parameters remain fixed through this study,
and results should be interpreted taking these into
account. For instance, the uncertainty of the patient
data was set to a fixed percentage of the mean of each
biomarker (10 and 5% in the sensitivity analysis).
There are parameters qualitatively more influential
than others and therefore a change in the uncertainty
for this parameter will have a significant effect on the

reduction of the NROY space. A biomarker-specific
uncertainty might be needed for future approaches.

Lastly, in this pilot study, we set a fixed number of
waves with the same thresholds for all the subjects. A
natural next step would be to extend this to a con-
vergence-based pipeline where the implausibility
threshold is not lowered unless the space reduction (in
terms of NROY as % of the initial space) has sta-
bilised.

CONCLUSION

In this work, we have presented a pipeline that can
accelerate the calibration of cardiac models, an essen-
tial step to perform in-silico trials. Moreover, this pi-
peline can have any input/output combination and can
be further applied with any other framework the
modelling community.
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