Skip to main content

Advertisement

Log in

Retinal Vessel Segmentation, a Review of Classic and Deep Methods

  • S.I. : 50Th Anniversary Reviews
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Retinal illnesses such as diabetic retinopathy (DR) are the main causes of vision loss. In the early recognition of eye diseases, the segmentation of blood vessels in retina images plays an important role. Different symptoms of ocular diseases can be identified by the geometric features of ocular arteries. However, due to the complex construction of the blood vessels and their different thicknesses, segmenting the retina image is a challenging task. There are a number of algorithms that helped the detection of retinal diseases. This paper presents an overview of papers from 2016 to 2022 that discuss machine learning and deep learning methods for automatic vessel segmentation. The methods are divided into two groups: Deep learning-based, and classic methods. Algorithms, classifiers, pre-processing and specific techniques of each group is described, comprehensively. The performances of recent works are compared based on their achieved accuracy in different datasets in inclusive tables. A survey of most popular datasets like DRIVE, STARE, HRF and CHASE_DB1 is also given in this paper. Finally, a list of findings from this review is presented in the conclusion section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abramoff, M. D., M. K. Garvin, and M. Sonka. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3:169–208, 2010. (This presents a review of retinal imaging and image analysis methods and their clinical implications, covering studies before September 2010 (2010))

  2. Ali, A., A. Hussain, and W. M. D. W. Zaki. Vessel extraction in retinal images using automatic thresholding and Gabor wavelet. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017

  3. Alom, M. Z., et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation, 2018

  4. Atli, I., and O. S. Gedik. Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation. Eng. Sci. Technol. Int. J. 24(2):271–283, 2021

    Google Scholar 

  5. Badar, M., M. Haris, and A. Fatima. Application of deep learning for retinal image analysis: a review. Comput. Sci. Rev. 35:100203, 2020

    Article  Google Scholar 

  6. Boudegga, H., et al. Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput. Med. Imaging Graph. 90:101902, 2021

    Article  PubMed  Google Scholar 

  7. Budak, Ü., et al. DCCMED-Net: Densely connected and concatenated multi-Encoder-Decoder CNNs for retinal vessel extraction from fundus images.". Med. Hypoth. 134:109426, 2020

    Article  Google Scholar 

  8. Buket, D. B., I. Saricicek, and B. Yildirim. Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl. Based Syst. 118:165–176, 2017. https://doi.org/10.1016/j.knosys.2016.11.022

    Article  Google Scholar 

  9. Chala, M., et al. An automatic retinal vessel segmentation approach based on Convolutional Neural Networks. Expert Syst. Appl. 184:115459, 2021

    Article  Google Scholar 

  10. Dabov, K., et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8):2080–2095, 2007

    Article  PubMed  Google Scholar 

  11. Dash, J., and N. Bhoi. A thresholding-based technique to extract retinal blood vessels from fundus images. Fut. Comput. Inf. J. 2(2):103–109, 2017. https://doi.org/10.1016/j.fcij.2017.10.001

    Article  Google Scholar 

  12. Dash, S., and M. R. Senapati. Enhancing detection of retinal blood vessels by combined approach of DWT, Tyler Coye and Gamma correction. Biomed. Signal Process. Control. 57:101740, 2020

    Article  Google Scholar 

  13. Deng, X., and J. Ye. A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network. Biomed. Signal Process. Control. 73:103467, 2022

    Article  Google Scholar 

  14. Duh, E. J., J. K. Sun, and A. W. Stitt. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2(14):e93751, 2017

    Article  PubMed Central  Google Scholar 

  15. Eman, A. M., S. Barakat, and M. Elmogy. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection. Comput. Biol. Med. 126:104039, 2020. https://doi.org/10.1016/j.compbiomed.2020.104039

    Article  Google Scholar 

  16. Escorcia-Gutierrez, J., et al. Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection. Comput. Biol. Med. 127:104049, 2020. https://doi.org/10.1016/j.compbiomed.2020.104049

    Article  PubMed  Google Scholar 

  17. Feng, S., Z. Zhuo, D. Pan, and Q. Tian. CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing. 392:268–276, 2020. https://doi.org/10.1016/j.neucom.2018.10.098

    Article  Google Scholar 

  18. Fraz, M. M., et al. Retinal image analysis aimed at extraction of vascular structure using linear discriminant classifier. In: International Conference on Computer Medical Applications (ICCMA), 2013, pp. 1–6

  19. Fu, H., et al. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016.‏

  20. Gegundez-Arias, M. E., D. Marin-Santos, I. Perez-Borrero, and M. J. Vasallo-Vazquez. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Comput. Methods Programs Biomed. 205:106081, 2021. https://doi.org/10.1016/j.cmpb.2021.106081

    Article  PubMed  Google Scholar 

  21. Ghazi, N. G., and W. R. Green. Pathology and pathogenesis of retinal detachment. Eye. 16(4):411–421, 2002

    Article  CAS  PubMed  Google Scholar 

  22. Guo, Y., Ü. Budak, and A. Şengür. A novel retinal vessel detection approach based on multiple deep convolution neural networks. Comput. Methods Program. Biomed. 167:43–48, 2018

    Article  Google Scholar 

  23. Hashemzadeh, M., and B. A. Azar. Retinal blood vessel extraction employing effective image features and combination of supervised and unsupervised machine learning methods. Artif. Intell. Med. 95:1–15, 2019. https://doi.org/10.1016/j.artmed.2019.03.001

    Article  PubMed  Google Scholar 

  24. Hildred, R. B. A brief history on the development of ophthalmic retinal photography into digital imaging. J. Audiovis. Media Med. 13(3):101–105, 1990

    Article  CAS  Google Scholar 

  25. Hoover, A. D., V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging. 19(3):203–210, 2000

    Article  CAS  PubMed  Google Scholar 

  26. https://maculacenter.com/eye-anatomy/

  27. Jain, A. K., and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12):1167–1186, 1991

    Article  Google Scholar 

  28. Javidi, M., A. Harati, and H. R. Pourreza. Retinal image assessment using bi-level adaptive morphological component analysis. Artif. Intel. Med. 99:101702, 2019

    Article  Google Scholar 

  29. Jebaseeli, T. J., et al. Segmentation of retinal blood vessels from ophthalmologic diabetic retinopathy images. Comput. Electr. Eng. 73:245–258, 2019

    Article  Google Scholar 

  30. Jen, H. T., U. R. Acharya, S. V. Bhandary, K. C. Chua, and S. Sivaprasad. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 20:70–79, 2017. https://doi.org/10.1016/j.jocs.2017.02.006

    Article  Google Scholar 

  31. Jiang, Z., et al. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 68:1–15, 2018

    Article  PubMed  Google Scholar 

  32. Kande, G. B., P. V. Subbaiah, and T. S. Savithri. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Syst. 34(5):849–858, 2010

    Article  PubMed  Google Scholar 

  33. Khan, B., A. A. Khaliq, and M. Shahid. A morphological hessian-based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS ONE. 11(7):e0158996, 2016

    Article  CAS  Google Scholar 

  34. Khan, T. M., et al. Width-wise vessel bifurcation for improved retinal vessel segmentation. Biomed. Signal Process. Control. 71:103169, 2022

    Article  Google Scholar 

  35. Koh, J. E. W., et al. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput. Biol. Med. 84:89–97, 2017

    Article  PubMed  Google Scholar 

  36. Latib, S. K., D. Saha, and C. Giri. Retinal vessel segmentation using unsharp masking and otsu thresholding. In: Proceedings of International Conference on Frontiers in Computing and Systems. Springer, Singapore, 2021

  37. Lee, D. A., and E. J. Higginbotham. Glaucoma and its treatment: a review. Am. J. Health Syst. Pharm. 62(7):691–699, 2005

    Article  PubMed  Google Scholar 

  38. Lei, Z., Q. Yu, X. Xu, Y. Gu, and J. Yang. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Comput. Methods Programs Biomed. 148:13–25, 2017. https://doi.org/10.1016/j.cmpb.2017.06.016

    Article  Google Scholar 

  39. Li, Q., et al. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. imaging. 35(1):109–118, 2015

    Article  PubMed  Google Scholar 

  40. Lin, Z., et al. A High-Resolution Representation Network with Multi-Path Scale for Retinal Vessel Segmentation. Web, 2021

  41. Linfang, Y., Z. Qin, T. Zhuang, Y. Ding, Z. Qin, and K.-K.R. Choo. A framework for hierarchical division of retinal vascular networks. Neurocomputing. 392:221–232, 2020. https://doi.org/10.1016/j.neucom.2018.11.113

    Article  Google Scholar 

  42. Luiz-Carlos, R., and M. Marengoni. Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed. Signal Process. Control. 36:39–49, 2017. https://doi.org/10.1016/j.bspc.2017.03.014

    Article  Google Scholar 

  43. Lupaşcu, C. A., and D. Tegolo. Automatic unsupervised segmentation of retinal vessels using self-organizing maps and k-means clustering. In: International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics. Springer, Berlin, Heidelberg, 2010

  44. Lupascu, C. A., D. Tegolo, and E. Trucco. FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5):1267–1274, 2010

    Article  PubMed  Google Scholar 

  45. Mahdiraji, S. A., Y. Baleghi, and S. M. Sakhaei. Skin lesion images classification using new color pigmented boundary descriptors. In: 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE, 2017

  46. Maji, D., et al. Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015

  47. Mardani, K., and K. Maghooli. Enhancing retinal blood vessel segmentation in medical images using combined segmentation modes extracted by DBSCAN and morphological reconstruction. Biomed. Signal Process. Control. 69:102837, 2021

    Article  Google Scholar 

  48. McCaa, C. S. The eye and visual nervous system: anatomy, physiology and toxicology. Environ. Health Perspect. 44:1–8, 1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Memari, N., et al. Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J. Med. Biol. Eng. 39(5):713–731, 2019

    Article  Google Scholar 

  50. Mo, J., and L. Zhang. Multi-level deep supervised networks for retinal vessel segmentation. Int J CARS. 12:2181–2193, 2017. https://doi.org/10.1007/s11548-017-1619-0

    Article  Google Scholar 

  51. Moccia, S., et al. Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158:71–91, 2018

    Article  PubMed  Google Scholar 

  52. Mohammadpour, E., and Y. Baleghi. Retinal blood vessel segmentation based on vessel branch width adaptation. In: 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME), pp. 1–6, 2018

  53. Mondal, S. S., et al. Blood vessel detection from Retinal fundas images using GIFKCN classifier. Procedia Comput. Sci. 167:2060–2069, 2020

    Article  Google Scholar 

  54. Mookiah, M. R. K., et al. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 68:101905, 2021

    Article  PubMed  Google Scholar 

  55. Najafi, M., Y. Baleghi, S. A. Gholamian, and S. M. Mirimani. Fault diagnosis of electrical equipment through thermal imaging and interpretable machine learning applied on a newly-introduced dataset. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–7. IEEE, 2020

  56. Nandy, M., and M. Banerjee. Retinal vessel segmentation using Gabor filter and artificial neural network. In: 2012 Third International Conference on Emerging Applications of Information Technology. IEEE, 2012

  57. Niemeijer, M., et al. DRIVE: digital retinal images for vessel extraction. In: Methods for evaluating segmentation and indexing techniques dedicated to retinal ophthalmology, 2004

  58. Nikbakhsh, N., Y. Baleghi, and H. Agahi. Maximum mutual information and Tsallis entropy for unsupervised segmentation of tree leaves in natural scenes. Comput. Electron. Agricult. 162:440–449, 2019

    Article  Google Scholar 

  59. Nikbakhsh, N., Y. Baleghi, and H. Agahi. A novel approach for unsupervised image segmentation fusion of plant leaves based on G-mutual information. Mach. Vis. Appl. 32(1):1–12, 2021

    Article  Google Scholar 

  60. Nowak, J. Z. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol. Rep. 58(3):353, 2006

    CAS  PubMed  Google Scholar 

  61. Odstrcilik, J., et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image dataset. IET Image Process. 7(4):373–383, 2013

    Article  Google Scholar 

  62. Orujov, F., R. Maskeliunas, R. Damaševičius, and W. Wei. Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Appl. Soft Comput. 94:106452, 2020. https://doi.org/10.1016/j.asoc.2020.106452

    Article  Google Scholar 

  63. Owen, C. G., et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthalmol Visu. Sci. 50(5):2004–2010, 2009

    Article  Google Scholar 

  64. Pachade, S., et al. Retinal vasculature segmentation and measurement framework for color fundus and SLO images. Biocybernet. Biomed. Eng. 40(3):865–900, 2020

    Article  Google Scholar 

  65. Prentašić, P., et al. Diabetic retinopathy image dataset (DRiDB): a new dataset for diabetic retinopathy screening programs research. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2013

  66. Ramos-Soto, O., et al. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Comput. Methods Programs Biomed. 201:105949, 2021

    Article  PubMed  Google Scholar 

  67. Rehman, A., et al. Microscopic retinal blood vessels detection and segmentation using support vector machine and K-nearest neighbors. Microscopy Res. Tech. 2022. https://doi.org/10.1002/jemt.24051

    Article  Google Scholar 

  68. Relan, D., and R. Relan. Unsupervised sorting of retinal vessels using locally consistent Gaussian mixtures. Comput. Methods Progr. Biomed. 199:105894, 2021

    Article  CAS  Google Scholar 

  69. Ricci, E., and R. Perfetti. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging. 26(10):1357–1365, 2007

    Article  PubMed  Google Scholar 

  70. Ronneberger, O., P. Fischer, and T Brox. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015

  71. Salamat, N., M. M. Saad-Missen, and A. Rashid. Diabetic retinopathy techniques in retinal images: A review. Artific. Intel. Med. 97:168–188, 2019

    Article  Google Scholar 

  72. Sathananthavathi, V., and G. Indumathi. Encoder enhanced atrous (EEA) unet architecture for retinal blood vessel segmentation. Cognit. Syst. Res. 67:84–95, 2021

    Article  Google Scholar 

  73. Sazak, C et al. The Multiscale Bowler-Hat Transform for Blood Vessel Enhancement in Retinal Images. http://arxiv.org/1709.05495 (2019)

  74. Shah, S. A. A., et al. Blood vessel segmentation in color fundus images based on regional and Hessian features. Graefe’s Arch. Clin. Exp. Ophthalmol. 255(8):1525–1533, 2017

    Article  Google Scholar 

  75. Shi, Z., et al. MD-Net: a multi-scale dense network for retinal vessel segmentation. Biomed. Signal Process. Control. 70:102977, 2021

    Article  Google Scholar 

  76. Singh, N. P., and R. Srivastava. Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Progr Biomed. 129:40–50, 2016

    Article  Google Scholar 

  77. Song, J. and B. Lee, Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks, In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 681–684. https://doi.org/10.1109/EMBC.2017.8036916

  78. Soomro, T. A., et al. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst. Appl. 134:36–52, 2019

    Article  Google Scholar 

  79. Tang, X., et al. Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Appl. Soft Comput. 93:106353, 2020

    Article  Google Scholar 

  80. Tchinda, B. S., et al. Retinal blood vessels segmentation using classical edge detection filters and the neural network. Inform. Med. Unlock. 23:100521, 2021

    Article  Google Scholar 

  81. Thangaraj, S., V. Periyasamy, and R. Balaji. Retinal vessel segmentation using neural network. IET Image Process. 12(5):669–678, 2018

    Article  Google Scholar 

  82. Toptaş, Buket, and Davut Hanbay. Retinal blood vessel segmentation using pixel-based feature vector. Biomed. Signal Process. Control. 70:103053, 2021

    Article  Google Scholar 

  83. Truc, P. T. H., et al. Vessel enhancement filter using directional filter bank. Comput. Vis. Image Understand. 113(1):101–112, 2009

    Article  Google Scholar 

  84. Turell, M. E., and A. D. Singh. Vascular tumors of the retina and choroid: diagnosis and treatment. Mid. East Afr. J. Ophthalmol. 17(3):191, 2010

    Article  Google Scholar 

  85. Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years: evaluating the prevalence of avoidable blindness about “VISION 2020: the Right to Sight.” Lancet Global Health. 2020. https://doi.org/10.1016/S2214-109X(20)30489-7

    Article  Google Scholar 

  86. Wang, H., et al. Attention-inception-based U-Net for retinal vessel segmentation with advanced residual. Comput. Electric. Eng. 98:107670, 2022

    Article  Google Scholar 

  87. Wang, W., and A. C. Y. Lo. Diabetic retinopathy: pathophysiology and treatments. Int. J. Mol. Sci. 19(6):1816, 2018

    Article  PubMed Central  CAS  Google Scholar 

  88. Wong, T. Y., and I. U. Scott. Retinal-vein occlusion. N. Engl. J. Med. 363(22):2135–2144, 2010

    Article  CAS  PubMed  Google Scholar 

  89. Wu, Y., et al. Multiscale network followed network model for retinal vessel segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018

  90. Wu, Y., et al. NFN+: a novel network followed network for retinal vessel segmentation. Neural Netw. 126:153–162, 2020

    Article  PubMed  Google Scholar 

  91. Xiao, Z., M. Adel, and S. Bourennane. Bayesian method with spatial constraint for retinal vessel segmentation. Comput. Math. Methods Med. 2013. https://doi.org/10.1155/2013/401413

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yan, Z., X. Yang, and K.-T. Cheng. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65(9):1912–1923, 2018

    Article  PubMed  Google Scholar 

  93. Yang, J., M. Huang, J. Fu, C. Lou, and C. Feng. Frangi based multi-scale level sets for retinal vascular segmentation. Comput. Methods Progr. Biomed. 197:105752, 2020. https://doi.org/10.1016/j.cmpb.2020.105752

    Article  Google Scholar 

  94. Yin, P., H. Cai, and W. Qingyao. DF-Net: deep fusion network for multi-source vessel segmentation. Inf Fusion. 78:199–208, 2022

    Article  Google Scholar 

  95. Yousefi, J. Image Binarization Using Otsu Thresholding Algorithm. Ontario, Canada: University of Guelph, 2011

    Google Scholar 

  96. Yu, Z., J. Fang, Y. Chen, and L. Jia. Edge-aware U-net with gated convolution for retinal vessel segmentation. Biomed. Signal Process Control. 73:103472, 2022. https://doi.org/10.1016/j.bspc.2021.103472

    Article  Google Scholar 

  97. Zhang, Y., et al. Bridge-Net: context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst. Appl. 195:116526, 2022

    Article  Google Scholar 

  98. Zhao, R., et al. A nested U-shape network with multi-scale upsample attention for robust retinal vascular segmentation. Pattern Recognit. 120:107998, 2021

    Article  Google Scholar 

  99. Zhou, C., X. Zhang, and H. Chen. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model. Comput. Methods Programs Biomed. 187:105231, 2020

    Article  PubMed  Google Scholar 

  100. Zhuo, Z., et al. A size-invariant convolutional network with dense connectivity applied to retinal vessel segmentation measured by a unique index. Comput. Methods Programs Biomed. 196:105508, 2020

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Baleghi.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandouzi, A., Ariafar, A., Mashayekhpour, Z. et al. Retinal Vessel Segmentation, a Review of Classic and Deep Methods. Ann Biomed Eng 50, 1292–1314 (2022). https://doi.org/10.1007/s10439-022-03058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03058-0

Keywords

Navigation