Skip to main content

Advertisement

Log in

Effect of Angiogenesis in Bone Tissue Engineering

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The reconstruction of large skeletal defects is still a tricky challenge in orthopedics. The newly formed bone tissue migrates sluggishly from the periphery to the center of the scaffold due to the restrictions of exchange of oxygen and nutrition impotent cells osteogenic differentiation. Angiogenesis plays an important role in bone reconstruction and more and more studies on angiogenesis in bone tissue engineering had been published. Promising advances of angiogenesis in bone tissue engineering by scaffold designs, angiogenic factor delivery, in vivo prevascularization and in vitro prevascularization are discussed in detail. Among all the angiogenesis mode, angiogenic factor delivery is the common methods of angiogenesis in bone tissue engineering and possible research directions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alazraki, N., J. Moitoza, J. Heaphy, and A. Taylor Jr. The effect of iatrogenic trauma on the bone scintigram: an animal study: concise communication. J. Nucl. Med. 25:978–981, 1984.

    CAS  PubMed  Google Scholar 

  2. Alge, D. L., and T. M. G. Chu. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. J. Biomed. Mater. Res. Part A. 94A:547–555, 2010.

    CAS  Google Scholar 

  3. Ammann, P. Strontium ranelate: a physiological approach for an improved bone quality. Bone. 38:15–18, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Assouline-Dayan, Y., C. Chang, A. Greenspan, Y. Shoenfeld, and M. E. Gershwin. Pathogenesis and natural history of osteonecrosis. Semin. Arthritis Rheum. 32:94–124, 2002.

    Article  PubMed  Google Scholar 

  5. Azarpira, N., M. Kaviani, and F. S. Sarvestani. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell.72:101539, 2021.

    Article  CAS  PubMed  Google Scholar 

  6. Azimi-Nezhad, M. Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Rep. Biochem. Mol. Biol. 2:59–69, 2014.

    PubMed  PubMed Central  Google Scholar 

  7. Balla, V. K., S. Bodhak, S. Bose, and A. Bandyopadhyay. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 6:3349–3359, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bandyopadhyay, A., A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, and S. Bose. In vivo response of laser processed porous titanium implants for load-bearing implants. Ann Biomed Eng. 45:249–260, 2017.

    Article  PubMed  Google Scholar 

  9. Banerjee, S. S., S. Tarafder, N. M. Davies, A. Bandyopadhyay, and S. Bose. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics. Acta Biomater. 6:4167–4174, 2010.

    Article  CAS  PubMed  Google Scholar 

  10. Bayer, E. A., J. Jordan, A. Roy, R. Gottardi, M. V. Fedorchak, P. N. Kumta, and S. R. Little. (*) Programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate/alginate scaffold. Tissue Eng Part A. 23:1382–1393, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bose, S., S. Tarafder, S. S. Banerjee, N. M. Davies, and A. Bandyopadhyay. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped beta-TCP. Bone. 48:1282–1290, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today. 16:496–504, 2013.

    Article  CAS  Google Scholar 

  13. Brennan, M., P. Layrolle, and D. J. Mooney. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv. Funct. Mater. 2020. https://doi.org/10.1002/adfm.201909125.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carlisle, E. M. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J. Nutr. 106:478–484, 1976.

    Article  CAS  PubMed  Google Scholar 

  15. Carmeliet, P., V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau, and A. Nagy. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 380:435–439, 1996.

    Article  CAS  PubMed  Google Scholar 

  16. Cartland, S. P., S. W. Genner, A. Zahoor, and M. M. Kavurma. Comparative evaluation of TRAIL, FGF-2 and VEGF-A-induced angiogenesis in vitro and in vivo. Int. J. Mol. Sci. 17:2025, 2016.

    Article  PubMed Central  CAS  Google Scholar 

  17. Certelli, A., P. Valente, A. Uccelli, A. Grosso, N. Di Maggio, R. D’Amico, P. S. Briquez, J. A. Hubbell, T. Wolff, L. Gürke, E. Mujagic, R. Gianni-Barrera, and A. Banfi. Robust angiogenesis and arteriogenesis in the skin of diabetic mice by transient delivery of engineered VEGF and PDGF-BB proteins in fibrin hydrogels. Front Bioeng Biotechnol.9:688467, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cha, H., S. Hong, J. H. Park, and H. H. Park. Stem cell-derived exosomes and nanovesicles: promotion of cell proliferation, migration, and anti-senescence for treatment of wound damage and skin ageing. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12121135.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chia, H. N., and B. M. Wu. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015. https://doi.org/10.1186/s13036-015-0001-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cohen, D. L., E. Malone, H. Lipson, and L. J. Bonassar. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 12:1325–1335, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Dabrowski, B., W. Swieszkowski, D. Godlinski, and K. J. Kurzydlowski. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 95:53–61, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Dai, J., and A. B. M. Rabie. VEGF: an essential mediator of both angiogenesis and endochondral ossification. J. Dent. Res. 86:937–950, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Dashnyam, K., A. El-Fiqi, J. O. Buitrago, R. A. Perez, J. C. Knowles, and H. W. Kim. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J. Tissue Eng. 8:2041731417707339, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dingsheng, L., L. Zengbing, and H. Dong. Favorable effects of progesterone on skin random flap survival in rats. Iran J. Basic Med. Sci. 19:1166–1170, 2016.

    PubMed  PubMed Central  Google Scholar 

  25. Dreyer, C. H., K. Kjaergaard, M. Ding, and L. Qin. Vascular endothelial growth factor for in vivo bone formation: a systematic review. J. Orthop. Translat. 24:46–57, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Druecke, D., S. Langer, E. Lamme, J. Pieper, M. Ugarkovic, H. U. Steinau, and H. H. Homann. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. Part A. 68A:10–18, 2004.

    Article  CAS  Google Scholar 

  27. Eftekhari, H., A. Jahandideh, A. Asghari, A. Akbarzadeh, and S. Hesaraki. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif. Cells Nanomed. Biotechnol. 45:961–968, 2017.

    Article  CAS  PubMed  Google Scholar 

  28. Ehrbar, M., V. G. Djonov, C. Schnell, S. A. Tschanz, G. Martiny-Baron, U. Schenk, J. Wood, P. H. Burri, J. A. Hubbell, and A. H. Zisch. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res. 94:1124–1132, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Est-Witte, S. E., A. L. Farris, S. Y. Tzeng, D. L. Hutton, D. H. Gong, K. G. Calabresi, W. L. Grayson, and J. J. Green. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater. 113:279–288, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan, W., R. Crawford, and Y. Xiao. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials. 31:3580–3589, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Fei, Y., G. Gronowicz, and M. M. Hurley. Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr. Pharm. Des. 19:3354–3363, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara, N., K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K. S. O’Shea, L. Powell-Braxton, K. J. Hillan, and M. W. Moore. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 380:439–442, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Fielding, G. A., A. Bandyopadhyay, and S. Bose. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28:113–122, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 32:6692–6709, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Freeman, F. E., A. B. Allen, H. Y. Stevens, R. E. Guldberg, and L. M. McNamara. Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo. Stem Cell Res. Ther. 6:218, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gao, G. F., A. F. Schilling, T. Yonezawa, J. Wang, G. H. Dai, and X. F. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia, P., T. Histing, J. H. Holstein, M. Klein, M. W. Laschke, R. Matthys, A. Ignatius, B. Wildemann, J. Lienau, A. Peters, B. Willie, G. Duda, L. Claes, T. Pohlemann, and M. D. Menger. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur. Cells Mater. 26:1–14, 2013.

    Article  CAS  Google Scholar 

  38. Geng, Z., Z. Li, Z. Cui, J. Wang, X. Yang, and C. Liu. Novel bionic topography with MiR-21 coating for improving bone-implant integration through regulating cell adhesion and angiogenesis. Nano Lett. 20:7716–7721, 2020.

    Article  CAS  PubMed  Google Scholar 

  39. Grimes, D. R., C. Kelly, K. Bloch, and M. Partridge. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. R. Soc. Interface. 2014. https://doi.org/10.1098/rsif.2013.1124.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grosso, A., M. G. Burger, A. Lunger, D. J. Schaefer, A. Banfi, and N. Di Maggio. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front. Bioeng. Biotechnol. 5:68, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gu, J. N., Q. Q. Zhang, M. R. Geng, W. Z. Wang, J. Yang, A. U. R. Khan, H. B. Du, Z. Sha, X. J. Zhou, and C. L. He. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioactive Mater. 6:3254–3268, 2021.

    Article  CAS  Google Scholar 

  42. Guise, T. A. Bone loss and fracture risk associated with cancer therapy. Oncologist. 11:1121–1131, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Hankenson, K. D., M. Dishowitz, C. Gray, and M. Schenker. Angiogenesis in bone regeneration. Injury Int. J. Care Inj. 42:556–561, 2011.

    Article  Google Scholar 

  44. He, X., Y. Liu, Y. Tan, L. M. Grover, J. Song, S. Duan, D. Zhao, and X. Tan. Rubidium-containing mesoporous bioactive glass scaffolds support angiogenesis, osteogenesis and antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 105:110155, 2019.

    Article  CAS  PubMed  Google Scholar 

  45. Ho-Shui-Ling, A., J. Bolander, L. E. Rustom, A. W. Johnson, F. P. Luyten, and C. Picart. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 180:143–162, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoppe, A., N. S. Gueldal, and A. R. Boccaccini. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32:2757–2774, 2011.

    Article  CAS  PubMed  Google Scholar 

  47. Hoppe, A., N. S. Güldal, and A. R. Boccaccini. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32:2757–2774, 2011.

    Article  CAS  PubMed  Google Scholar 

  48. Hu, K., and B. R. Olsen. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Investig. 126:509–526, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang, B., W. H. Wang, Q. C. Li, Z. Y. Wang, B. Yan, Z. M. Zhang, L. Wang, M. J. Huang, C. H. Jia, J. S. Lu, S. C. Liu, H. D. Chen, M. M. Li, D. Z. Cai, Y. Jiang, D. D. Jin, and X. C. Bai. Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat. Commun. 2016. https://doi.org/10.1038/ncomms13885.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ibrahim, T., L. Mercatali, and D. Amadori. Bone and cancer: the osteoncology. Clin. Cases Miner. Bone Metab. 10:121–123, 2013.

    PubMed  PubMed Central  Google Scholar 

  51. Kang, M. S., J. H. Kim, R. K. Singh, J. H. Jang, and H. W. Kim. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 16:103–116, 2015.

    Article  CAS  PubMed  Google Scholar 

  52. Kang, Y. Q., N. Mochizuki, A. Khademhosseini, J. Fukuda, and Y. Z. Yang. Engineering a vascularized collagen-beta-tricalcium phosphate graft using an electrochemical approach. Acta Biomater. 11:449–458, 2015.

    Article  CAS  PubMed  Google Scholar 

  53. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26:5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  54. Kargozar, S., F. Baino, S. Hamzehlou, R. G. Hill, and M. Mozafari. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 36:430–444, 2018.

    Article  CAS  PubMed  Google Scholar 

  55. Ke, Q., and M. Costa. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70:1469–1480, 2006.

    Article  CAS  PubMed  Google Scholar 

  56. Kigami, R., S. Sato, N. Tsuchiya, N. Sato, D. Suzuki, Y. Arai, K. Ito, and B. Ogiso. Effect of basic fibroblast growth factor on angiogenesis and bone regeneration in non-critical-size bone defects in rat calvaria. J. Oral Sci. 56:17–22, 2014.

    Article  CAS  PubMed  Google Scholar 

  57. Kneser, U., E. Polykandriotis, J. Ohnolz, K. Heidner, L. Grabinger, S. Euler, K. U. Amann, A. Hess, K. Brune, P. Greil, M. Stürzl, and R. E. Horch. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 12:1721–1731, 2006.

    Article  CAS  PubMed  Google Scholar 

  58. Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rucker, D. Junker, J. M. Haufel, C. Carvalho, M. Heberer, G. Germann, B. Vollmar, and M. D. Menger. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12:2093–2104, 2006.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, J., D. Shin, and J. L. Roh. Use of a pre-vascularised oral mucosal cell sheet for promoting cutaneous burn wound healing. Theranostics. 8:5703–5712, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, J. H., and H. W. Kim. Emerging properties of hydrogels in tissue engineering. J. Tissue Eng. 2018. https://doi.org/10.1177/2041731418768285.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee, S. H., and H. Shin. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 59:339–359, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Lems, W. F., and H. G. Raterman. Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther. Adv. Musculoskelet. Dis. 9:299–316, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, J. P., J. R. de Wijn, C. A. Van Blitterswijk, and K. de Groot. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials. 27:1223–1235, 2006.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y., Q. Pan, N. Zhang, B. Wang, Z. Yang, J. T. Ryaby, E. I. Waldorff, W.Y.-W. Lee, and G. Li. A novel pulsed electromagnetic field promotes distraction osteogenesis via enhancing osteogenesis and angiogenesis in a rat model. J. Orthop. Translat. 25:87–95, 2020.

    Article  Google Scholar 

  65. Lichte, P., H. C. Pape, T. Pufe, P. Kobbe, and H. Fischer. Scaffolds for bone healing: concepts, materials and evidence. Injury Int. J. Care Inj. 42:569–573, 2011.

    Article  CAS  Google Scholar 

  66. Lin, K., L. Xia, H. Li, X. Jiang, H. Pan, Y. Xu, W. W. Lu, Z. Zhang, and J. Chang. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 34:10028–10042, 2013.

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y., J. Fang, Q. Zhang, X. Zhang, Y. Cao, W. Chen, Z. Shao, S. Yang, D. Wu, M. Hung, Y. Zhang, W. Tong, and H. Tian. Wnt10b-overexpressing umbilical cord mesenchymal stem cells promote critical size rat calvarial defect healing by enhanced osteogenesis and VEGF-mediated angiogenesis. J. Orthop. Translat. 23:29–37, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Maes, C. Role and regulation of vascularization processes in endochondral bones. Calcif. Tissue Int. 92:307–323, 2013.

    Article  CAS  PubMed  Google Scholar 

  69. Maes, C., P. Carmeliet, K. Moermans, I. Stockmans, N. Smets, D. Collen, R. Bouillon, and G. Carmeliet. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111:61–73, 2002.

    Article  CAS  PubMed  Google Scholar 

  70. Maes, C., I. Stockmans, K. Moermans, R. Van Looveren, N. Smets, P. Carmeliet, R. Bouillon, and G. Carmeliet. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Investig. 113:188–199, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maggiore, U., R. Oberbauer, J. Pascual, O. Viklicky, C. Dudley, K. Budde, S. S. Sorensen, M. Hazzan, M. Klinger, and D. Abramowicz. Strategies to increase the donor pool and access to kidney transplantation: an international perspective. Nephrol. Dial. Transplant. 30:217–222, 2015.

    Article  PubMed  Google Scholar 

  72. Maier, J. A., D. Bernardini, Y. Rayssiguier, and A. Mazur. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta. 1689:6–12, 2004.

    Article  CAS  PubMed  Google Scholar 

  73. Marchand, M., C. Monnot, L. Muller, and S. Germain. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin. Cell Dev. Biol. 89:147–156, 2019.

    Article  CAS  PubMed  Google Scholar 

  74. Mehdizadeh, H., E. S. Bayrak, C. Lu, S. I. Somo, B. Akar, E. M. Brey, and A. Cinar. Agent-based modeling of porous scaffold degradation and vascularization: optimal scaffold design based on architecture and degradation dynamics. Acta Biomater. 27:167–178, 2015.

    Article  CAS  PubMed  Google Scholar 

  75. Mercado-Pagán, Á. E., A. M. Stahl, Y. Shanjani, and Y. Yang. Vascularization in bone tissue engineering constructs. Ann. Biomed. Eng. 43:718–729, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mitra, I., S. Bose, W. S. Dernell, N. Dasgupta, C. Eckstrand, J. Herrick, M. J. Yaszemski, S. B. Goodman, and A. Bandyopadhyay. 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today (Kidlington). 45:20–34, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pajarinen, J., T. Lin, E. Gibon, Y. Kohno, M. Maruyama, K. Nathan, L. Lu, Z. Yao, and S. B. Goodman. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 196:80–89, 2019.

    Article  CAS  PubMed  Google Scholar 

  78. Pandya, M., M. Saxon, J. Bozanich, C. Tillberg, X. Luan, and T. G. H. Diekwisch. The glycoprotein/cytokine erythropoietin promotes rapid alveolar ridge regeneration in vivo by promoting new bone extracellular matrix deposition in conjunction with coupled angiogenesis/osteogenesis. Int. J. Mol. Sci. 2021. https://doi.org/10.3390/ijms22062788.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Patel, Z. S., S. Young, Y. Tabata, J. A. Jansen, M. E. Wong, and A. G. Mikos. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 43:931–940, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paul, J. D., K. L. K. Coulombe, P. T. Toth, Y. Zhang, G. Marsboom, V. P. Bindokas, D. W. Smith, C. E. Murry, and J. Rehman. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J. Mol. Cell Cardiol. 64:124–131, 2013.

    Article  CAS  PubMed  Google Scholar 

  81. Pérez, R. A., J. E. Won, J. C. Knowles, and H. W. Kim. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev. 65:471–496, 2013.

    Article  PubMed  CAS  Google Scholar 

  82. Post, M. J., R. Laham, F. W. Sellke, and M. Simons. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc. Res. 49:522–531, 2001.

    Article  CAS  PubMed  Google Scholar 

  83. Qian, B., Q. Yang, M. Wang, S. Huang, C. Jiang, H. Shi, Q. Long, M. Zhou, Q. Zhao, and X. Ye. Encapsulation of lyophilized platelet-rich fibrin in alginate-hyaluronic acid hydrogel as a novel vascularized substitution for myocardial infarction. Bioact. Mater. 7:401–411, 2022.

    Article  CAS  PubMed  Google Scholar 

  84. Quade, M., S. Knaack, D. Weber, U. König, B. Paul, P. Simon, A. Rösen-Wolff, R. Schwartz-Albiez, M. Gelinsky, and A. Lode. Heparin modification of a biomimetic bone matrix modulates osteogenic and angiogenic cell response in vitro. Eur. Cell Mater. 33:105–120, 2017.

    Article  CAS  PubMed  Google Scholar 

  85. Rademakers, T., J. M. Horvath, C. A. van Blitterswijk, and V. L. S. LaPointe. Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J. Tissue Eng. Regen. Med. 13:1815–1829, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramasamy, S. K., A. P. Kusumbe, L. Wang, and R. H. Adams. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 27:3413–3431, 2006.

    Article  CAS  PubMed  Google Scholar 

  88. Rivron, N. C., J. J. Liu, J. Rouwkema, J. de Boer, and C. A. van Blitterswijk. Engineering vascularised tissues in vitro. Eur. Cell Mater. 15:27–40, 2008.

    Article  CAS  PubMed  Google Scholar 

  89. Rong, Q., S. Li, Y. Zhou, Y. Geng, S. Liu, W. Wu, T. Forouzanfar, G. Wu, Z. Zhang, and M. Zhou. A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions. Cell Prolif.53:e12740, 2020.

    PubMed  Google Scholar 

  90. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.

    Article  CAS  PubMed  Google Scholar 

  91. Rutanen, J., T. T. Rissanen, A. Kivelä, I. Vajanto, and S. Ylä-Herttuala. Clinical applications of vascular gene therapy. Curr. Cardiol. Rep. 3:29–36, 2001.

    Article  CAS  PubMed  Google Scholar 

  92. Santos, L., G. Fuhrmann, M. Juenet, N. Amdursky, C. M. Horejs, P. Campagnolo, and M. M. Stevens. Extracellular stiffness modulates the expression of functional proteins and growth factors in endothelial cells. Adv. Healthc. Mater. 4:2056–2063, 2015.

    Article  CAS  PubMed  Google Scholar 

  93. Saridis, A., E. Panagiotopoulos, M. Tyllianakis, C. Matzaroglou, N. Vandoros, and E. Lambiris. The use of the Ilizarov method as a salvage procedure in infected nonunion of the distal femur with bone loss. J. Bone Joint Surg. Br. 88B:232–237, 2006.

    Article  Google Scholar 

  94. Savkovic, V., H. Li, D. Obradovic, F. F. Masieri, A. K. Bartella, R. Zimmerer, J. C. Simon, C. Etz, and B. Lethaus. The angiogenic potential of mesenchymal stem cells from the hair follicle outer root sheath. J. Clin. Med. 2021. https://doi.org/10.3390/jcm10050911.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sen, C. K., S. Khanna, M. Venojarvi, P. Trikha, E. C. Ellison, T. K. Hunt, and S. Roy. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 282:H1821-1827, 2002.

    Article  CAS  PubMed  Google Scholar 

  96. Shi, Y., G. Kramer, A. Schröder, C. J. Kirkpatrick, A. Seekamp, H. Schmidt, and S. Fuchs. Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs. Eur. Cell Mater. 27:64–79, 2014. (discussion 79–80)

    Article  CAS  PubMed  Google Scholar 

  97. Silva, A. S., L. F. Santos, M. C. Mendes, and J. F. Mano. Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials.231:119664, 2020.

    Article  CAS  PubMed  Google Scholar 

  98. Somo, S. I., B. Akar, E. S. Bayrak, J. C. Larson, A. A. Appel, H. Mehdizadeh, A. Cinar, and E. M. Brey. Pore interconnectivity influences growth factor-mediated vascularization in sphere-templated hydrogels. Tissue Eng. Part C Methods. 21:773–785, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sozen, T., L. Ozisik, and N. C. Basaran. An overview and management of osteoporosis. Eur. J. Rheumatol. 4:46–56, 2017.

    Article  PubMed  Google Scholar 

  100. Subbiah, R., and R. E. Guldberg. Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv. Healthc. Mater. 8:e1801000, 2019.

    Article  PubMed  CAS  Google Scholar 

  101. Subbiah, R., C. Hipfinger, A. Tahayeri, A. Athirasala, S. Horsophonphong, G. Thrivikraman, C. M. França, D. A. Cunha, A. Mansoorifar, A. Zahariev, J. M. Jones, P. G. Coelho, L. Witek, H. Xie, R. E. Guldberg, and L. E. Bertassoni. 3D printing of microgel-loaded modular microcages as instructive scaffolds for tissue engineering. Adv. Mater. 32:e2001736, 2020.

    Article  PubMed  CAS  Google Scholar 

  102. Subbiah, R., M. P. Hwang, S. Y. Van, S. H. Do, H. Park, K. Lee, S. H. Kim, K. Yun, and K. Park. Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv. Healthc. Mater. 4:1982–1992, 2015.

    Article  CAS  PubMed  Google Scholar 

  103. Sun, Y., X. Jiang, Y. Liu, D. Liu, C. Chen, C. Lu, S. Zhuang, A. Kumar, and J. Liu. Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J. Inorg. Biochem.225:111599, 2021.

    Article  CAS  PubMed  Google Scholar 

  104. Sun, X., Y. Kang, J. Bao, Y. Zhang, Y. Yang, and X. Zhou. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials. 34:4971–4981, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.

    Article  CAS  PubMed  Google Scholar 

  106. Thomlinson, R. H., and L. H. Gray. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer. 9:539–549, 1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thummarati, P., and M. Kino-Oka. Exogenous FGF-2 prolongs endothelial connection in multilayered human skeletal muscle cell sheet. J. Biosci. Bioeng. 131:686–695, 2021.

    Article  CAS  PubMed  Google Scholar 

  108. Vasvári, G. F., D. Csonka, T. Zsebe, Á. Schiffer, I. Samardžić, R. Told, A. Péntek, and P. Maróti. CMT additive manufacturing parameters defining aluminium alloy object geometry and mechanical properties. Materials (Basel). 2021. https://doi.org/10.3390/ma14061545.

    Article  Google Scholar 

  109. Walker, J., S. Shadanbaz, T. B. Woodfield, M. P. Staiger, and G. J. Dias. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J. Biomed. Mater. Res. B Appl. Biomater. 102:1316–1331, 2014.

    Article  PubMed  CAS  Google Scholar 

  110. Walthers, C. M., A. K. Nazemi, S. L. Patel, B. M. Wu, and J. C. Dunn. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Biomaterials. 35:5129–5137, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, M., Y. Yu, K. Dai, Z. Ma, Y. Liu, J. Wang, and C. Liu. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater. Sci. 4:1574–1583, 2016.

    Article  CAS  PubMed  Google Scholar 

  112. Wascher, D. C., and L. Bulthuis. Extremity trauma: field management of sports injuries. Curr. Rev. Musculoskelet. Med. 7:387–393, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wilson, C. E., J. D. de Bruijn, C. A. van Blitterswijk, A. J. Verbout, and W. J. A. Dhert. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J. Biomed. Mater. Res. Part A. 68A:123–132, 2004.

    Article  CAS  Google Scholar 

  114. Wood, K. J., and R. Goto. Mechanisms of rejection: current perspectives. Transplantation. 93:1–10, 2012.

    Article  PubMed  Google Scholar 

  115. Woodruff, M. A., and D. W. Hutmacher. The return of a forgotten polymer—polycaprolactone in the 21st century. Progress Polym. Sci. 35:1217–1256, 2010.

    Article  CAS  Google Scholar 

  116. Wu, C., Y. Zhou, W. Fan, P. Han, J. Chang, J. Yuen, M. Zhang, and Y. Xiao. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 33:2076–2085, 2012.

    Article  CAS  PubMed  Google Scholar 

  117. Wu, C., Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, and Y. Xiao. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 34:422–433, 2013.

    Article  CAS  PubMed  Google Scholar 

  118. Xie, H., Z. Cui, L. Wang, Z. Xia, Y. Hu, L. Xian, C. Li, L. Xie, J. Crane, M. Wan, G. Zhen, Q. Bian, B. Yu, W. Chang, T. Qiu, M. Pickarski, L. T. Duong, J. J. Windle, X. Luo, E. Liao, and X. Cao. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 20:1270–1278, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, K., L. Wang, Y. Guo, S. Zhao, Y. Yang, D. Dong, W. Ding, K. Dai, W. Gong, G. Yuan, and Y. Hao. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J. Orthop. Translat. 27:96–100, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xu, R., A. Yallowitz, A. Qin, Z. Wu, D. Y. Shin, J. M. Kim, S. Debnath, G. Ji, M. P. Bostrom, X. Yang, C. Zhang, H. Dong, P. Kermani, S. Lalani, N. Li, Y. Liu, M. G. Poulos, A. Wach, Y. Zhang, K. Inoue, A. Di Lorenzo, B. Zhao, J. M. Butler, J. H. Shim, L. H. Glimcher, and M. B. Greenblatt. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med. 24:823–833, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, F., D. Yang, J. Tu, Q. Zheng, L. Cai, and L. Wang. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 29:981–991, 2011.

    Article  CAS  PubMed  Google Scholar 

  122. Yu, W. L., T. W. Sun, C. Qi, H. K. Zhao, Z. Y. Ding, Z. W. Zhang, B. B. Sun, J. Shen, F. Chen, Y. J. Zhu, D. Y. Chen, and Y. H. He. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci. Rep. 7:44129, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yun, Y. R., J. E. Won, E. Jeon, S. Lee, W. Kang, H. Jo, J. H. Jang, U. S. Shin, and H. W. Kim. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010:218142, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhang, Z., B. Jia, H. Yang, Y. Han, Q. Wu, K. Dai, and Y. Zheng. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact. Mater. 6:3999–4013, 2021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang, Y., Y. Ma, C. Wu, R. J. Miron, and X. Cheng. Platelet-derived growth factor BB gene-released scaffolds: biosynthesis and characterization. J. Tissue Eng. Regen. Med. 10:E372-e381, 2016.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, J., J. Pan, and W. Jing. Motivating role of type H vessels in bone regeneration. Cell Prolif. 53:e12874, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, L., G. Yang, B. N. Johnson, and X. Jia. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 84:16–33, 2019.

    Article  CAS  PubMed  Google Scholar 

  128. Zhao, F., B. Lei, X. Li, Y. Mo, R. Wang, D. Chen, and X. Chen. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 178:36–47, 2018.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, H., S. Shen, L. Zhao, Y. Xu, Y. Li, and N. Zhuo. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. BMC Musculoskelet. Disord. 22:734, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, L., Y. Han, J. Ding, X. Chen, S. Huang, X. Xing, D. Wu, and J. Chen. Regulation of an antimicrobial peptide GL13K-modified titanium surface on osteogenesis, osteoclastogenesis, and angiogenesis base on osteoimmunology. ACS Biomater. Sci. Eng. 7:4569–4580, 2021.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) received partial financial support for the research by Jiangsu Commission of Health M2020025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingwei Lu or Guangxin Zhou.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Han, Q., Cai, M. et al. Effect of Angiogenesis in Bone Tissue Engineering. Ann Biomed Eng 50, 898–913 (2022). https://doi.org/10.1007/s10439-022-02970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02970-9

Keywords

Navigation