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Department of Cardiology, Otto-v.-Guericke-Universität, Leipziger Str. 44, 39120 Magdeburg, Germany

(Received 10 April 2021; accepted 4 August 2021; published online 21 September 2021)

Associate Editor Stefan M. Duma oversaw the review of this article.

Abstract—A promising treatment for congestive heart failure
is the implementation of a left ventricular assist device
(LVAD) that works as a mechanical pump. Modern LVADs
work with adjustable constant rotor speed and provide
therefore continuous blood flow; however, recently under-
taken efforts try to mimic pulsatile blood flow by oscillating
the pump speed. This work proposes an algorithmic frame-
work to construct and evaluate optimal pump speed policies
with respect to generic objectives. We use a model that
captures the atrioventricular plane displacement, which is a
physiological indicator for heart failure. We employ math-
ematical optimization to adapt this model to patient specific
data and to find optimal pump speed policies with respect to
ventricular unloading and aortic valve opening. To this end,
we reformulate the cardiovascular dynamics into a switched
system and thereby reduce nonlinearities. We consider
system switches that stem from varying the constant pump
speed and that are state dependent such as valve opening or
closing. As a proof of concept study, we personalize the
model to a selected patient with respect to ventricular
pressure. The model fitting results in a root-mean-square
deviation of about 6 mmHg. The optimization that considers
aortic valve opening and ventricular unloading results in
speed modulation akin to counterpulsation. These in silico
findings demonstrate the potential of personalized hemody-
namical optimization for the LVAD therapy.

Keywords—Heart failure, Left ventricular assist device,

Optimal control, Switched systems.

INTRODUCTION

Left ventricular assist devices (LVADs) provide
mechanical circulatory blood support and have
become a well-established and successful therapy for
end-stage heart failure patients with estimated more
than 5000 implanted pumps annually worldwide.16,28

The role of the heart assist devices is growing in recent
years since there are major improvements in the long
term treatment.36 Contemporary LVADs implement
rotary continuous blood flow and are internally im-
planted in contrast to pulsatile and extracorporeal
pumps, which represent the original LVAD design, but
which are bigger, less durable, and more invasive than
their continuous flow counterpart.54

These either axial- or centrifugal-flow pumps were
originally designed to apply a fixed constant rotary
speed. However, there is evidence that this lack of
pulsatile flow can cause numerous adverse effects that
include gastrointestinal bleeding,17 reduced end-organ
function,45 aortic valve thrombosis and de novo aortic
insufficiency.18 To this end, the latest generation of
devices features a pulsatile mode in addition to the
constant speed option that oscillates the motor rota-
tion speed periodically for a short period of time before
returning to the constant speed operation. Examples of
these devices and modes are HeartMate 3TM with the
Pulse mode, HeartWare HVADTM with the Lavare
Cycle and EXCOR/INCORTM.29 For further details
on the devices, the medical background, therapy
planning and prognosis we refer to the
reviews.11,27,32,37

Address correspondence to Clemens Zeile, The Institute of

Mathematical Optimization, Otto-v.-Guericke-Universität, Univer-
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Related Work

A vast amount of preclinical models for evaluating
and testing LVADs via pump speed modulation have
been proposed. Amacher et al.4 reviewed a range of
studies47,52,60,61 where a preselected constant, sine or
square wave speed profile is assumed. Chosen param-
eters were adjusted for amplitude and phase shift to
analyzing the effect on relevant physiological quanti-
ties. Specifically, high-speed pumping during ventric-
ular contraction, also denoted as copulsative mode,
was found to be beneficial in terms of pulsatility in the
systemic arterial circulation. Counterpulsative pump-
ing, i.e., low-speed pumping during the ventricular
contraction, enhanced left ventricle (LV) unloading.44

A preselected speed profile does not adjust to dy-
namic changes in the state of the cardiovascular sys-
tem. For this reason, control strategies for the blood
pumps were developed that take into account different
physiological objectives and which were classified in
the review of Bozkurt.12 Physiological control follow-
ing the Frank–Starling mechanism by pumping pre-
load dependent has been proposed in References 6, 21,
50. Control algorithms that aim for unloading the LV
were elaborated in References 13, 43. Speed regulation
algorithms for generating sufficient perfusion and
detecting ventricular suction10,20 or pulmonary oxygen
gas exchange tracking30 are other goals, and, finally,
multi-objective variants exist.46

Due to the increased necessity of LVADs for clinical
use, a wide range of different methods from control
engineering has been proposed, such as adaptive,42,65

robust,48 model predictive,1 fuzzy logic,14 proportional
integral derivative,25 sliding mode,8 and iterative
learning control.34 We refer to Reference 2 for a de-
tailed review and for a discussion on the applicability
of these methods in clinical practice.

Contributions

This case study follows an optimal control approach
since it offers a flexible framework to include and
combine multiple objective and constraint functions.
So far, optimal control studies based on cardiovascular
system modeling appear to be very limited in the
context of ventricular assist devices. Reference 24
investigated the use of LVADs for preload manipula-
tion maneuvers in animal trials. We build on Reference
3, where the continuous pump speed profile is found
with an optimal control algorithm based on a lumped
cardiovascular system model and compared with both
a constant and a sinusoidal-speed profile. In contrast,
we do only numerical simulation and no verification
with a mock circulation system. Our idea is to consider
the cardiovascular dynamics as a system that switches

between different phases in a single cardiac cycle, e.g.,
valve opening or closing, in which different dynamics
apply. We use solving techniques tailored for switched
systems to reduce the underlying system nonlinearities
and leverage the computations. Within this frame-
work, we present a novel algorithm to calculate opti-
mal piecewise constant (pwc) pump speed modulation
following the above-mentioned pulsatility modes for
modern devices and concerning ventricular unloading
and opening of the aortic valve. For comparison, we
compute the optimal continuous and constant speed
profiles. In this study, we consider a single cardiac
cycle to control intra-cycle unloading, but claim that
our approach can be extended to longer time horizons.
Furthermore, we consider adapting model parameters
to patient-specific data with a nonlinear regression
objective function to deal with a personalized model.

Another fundamental difference between our
approach to Reference 3 and all other model-based
approaches lies in the used model. Instead of applying
a time-varying elastance function to represent the
pressure–volume relationship in heart chambers, we
base our model on the contribution of the longitudinal
atrioventricular plane displacement (AVPD) to ven-
tricular pumping, which is novel in the LVAD context.
It has been established that the atrioventricular plane
(AVP) behaves like a piston unit by moving back and
forth in the base-apex direction, creating reciprocal
volume changes between atria and ventricles.39 Also,
there is strong evidence that the magnitude of AVPD is
a reliable index for heart failure diagnosis.64

Elastance functions are used in many LVAD studies
with realistic results (e.g. Reference 3), but it is con-
troversial whether they accurately simulate the dy-
namic interaction between the LV and an assist
device.15,62 As an alternative, we reuse and extend an
AVPD model introduced in Reference 40 and altered
to the switched systems setting in Reference 31. Other
alternatives for replacing the elastance model are
myofiber, or sarcomere mechanics approaches35 as in
the CircAdapt model,7,38 though a great number of
discontinuities and nonlinear equations limit their
applicability to (gradient-based) optimization and
control techniques. The presented approach is clini-
cally applicable since the AVP motion is relatively easy
to measure via noninvasive echocardiography.

The outline of this article is the following: We de-
scribe the cardiovascular and LVAD system model in
‘‘Cardiovascular System and LVAD Modeling’’ sec-
tion, before we define constraints in ‘‘Physiological
Assumptions and Constraints’’ section, the clinical
data and model personalization in ‘‘Clinical Data and
Model Personalization’’ section. Afterwards, we for-
mulate the optimal control problem (OCP) in ‘‘Opti-
mal Control Problem Formulation’’ section and we
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define an algorithmic approach to solve it in ‘‘Algo-
rithmic Approach’’ section. We present simulation re-
sults in ‘‘Results’’ section and discuss the realistic and
algorithmic setting together with limitations in
‘‘Discussion’’ section. We wrap up the article with
conclusions in ‘‘Concluding Remarks’’ section.

MATERIALS AND METHODS

Cardiovascular System and LVAD Modeling

This study uses a lumped model of the cardiovas-
cular system based on the representation of the left
heart, neglecting the right heart and the pulmonary
system. We combine the AVPD model as proposed
and validated in Reference 31 with an axial HeartMate
IITM pump LVAD model that has been validated in
Reference 53, but claim that our approach is generic,
i.e. another LVAD model could also be used. The
proposed model consists of nine ODEs for the pressure
P(t) (mmHg) of left atrium (LA), LV, aorta (A), sys-
temic artery (S), and venous system (V), the flow Q(t)
(mL/s) in the A and in the LVAD as well as the
velocity v(t) (cm/s) of the A and its position s(t) (cm),
where (t) denotes the time dependency. The cardio-
vascular system can be steered with the continuous
control u(t) that represents the rotary pump speed. The
ODE system reads for t 2 ½t0; tf� � R:

_PLAðtÞ ¼
PVðtÞ � PLAðtÞ

CLARV
�QMVðtÞ � ALAvðtÞ

CLA
; ð1aÞ

_PLVðtÞ ¼
ð1þ kRADÞALVvðtÞ

CLV
þQMVðtÞ �QAoVðtÞ �QLVADðtÞ

CLV
;

ð1bÞ

_PAðtÞ ¼
QAoVðtÞ þQLVADðtÞ �QAðtÞ

CA
; ð1cÞ

_PSðtÞ ¼
PVðtÞ � PSðtÞ

CSRS
þQAðtÞ

CS
; ð1dÞ

_PVðtÞ ¼
PSðtÞ � PVðtÞ

CVRS
þ PLAðtÞ � PVðtÞ

CVRV
; ð1eÞ

_QAðtÞ ¼
PAðtÞ � PSðtÞ � RCQAðtÞ

LS
; ð1fÞ

_QLVADðtÞ ¼
PLVðtÞ � PAðtÞ � RLVADQLVADðtÞ � buðtÞ2

LLVAD
;

ð1gÞ

_vðtÞ ¼ �RAVPvðtÞ � ALVPLVðtÞ þ ALAPLAðtÞ þ FCðtÞ
LAVP

;

ð1hÞ

_sðtÞ ¼ vðtÞ; ð1iÞ

where the default parameter values for the compli-
ances C, resistances R, and inertances L are given in
the Supplemental Material 1. The model uses the valve
flows1 defined by

QMVðtÞ ¼
PLAðtÞ�PLVðtÞ

RM
; if PLAðtÞ>PLVðtÞ;

0; else.

(

ð2aÞ

QAoVðtÞ ¼
PLVðtÞ�PAðtÞ

RAoV
; if PLVðtÞ>PAðtÞ;

0; else.

(
ð2bÞ

The ventricular (AV) plane contraction force is
assumed to be a pwc function in the following sense

FCðtÞ ¼
FAC; during atrial contraction;

FVC; during ventricular contraction;

0; else.

8><
>:

ð3Þ

We specify in ‘‘Algorithmic Approach’’ section how
these contraction phases are mathematically defined
and skip their formal introduction here.

Figure 1 gives a schematic overview of the lumped
model of the heart and the circulatory system. In the
following, we group the differential states into the
vector

x ¼ ½PLA;PLV;PA;PS;PV;QA;QLVAD; v; s�> ð4Þ

and write the dynamical system (1a)–(1i) as

_xðtÞ ¼ fðxðtÞ; uðtÞÞ; for t 2 ½t0; tf�: ð5Þ

Figure 2 illustrates the AVPD model, where the AVP
refers to the separating tissue between LV and LA that
surrounds the mitral valve. During atrial contraction,
the force FC pulls the AVP towards the base and
redistributes blood from the LA to the LV via the
mitral valve. When it reaches the switching threshold
�SD, the contraction force FC starts to work in the
opposite direction, which represents ventricular con-

1We neglect valve regurgitation and set the back flow to zero. We

discuss this assumption in ‘‘Limitations’’ section.
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traction. In this way, the AVPD leverages longitudinal
pumping that results in ejection of blood to the Aorta.
The ventricular contraction stops as soon as the AVP
reaches the threshold SD. A relaxation phase follows
where FC equals zero and the AVP moves slowly to its
original position. This longitudinal pumping is well
described by a piston unit concept, where the piston is
placed between LA and LV with constant cross-sec-
tions ALA and ALV respectively. We illustrate this pis-
ton representation at the bottom of Fig. 2. The AVP
model assumes that longitudinal pumping is supported
by the radial squeezing of LV walls. Many morpho-
logical changes accompany end-stage heart failure
influencing AVP motion. The AVP model can be
adapted to this situation since the parameter SD cap-
tures the AVPD.

Physiological Assumptions and Constraints

This study makes a series of assumptions, which are
explained here. We list the applied constraint param-
eter values in Supplemental Material 2.

Dilated Left Heart Failure

The proposed model is adapted in order to represent
a typical LVAD patient candidate’s heart situation.27

This includes modeling left-sided heart failure with

decreased cardiac output and dilated cardiomyopathy2

with enlarged LA and LV. To this end, we modify
certain model parameters, including an increased
compliance and increased cross-sectional area of LV as
described in more detail in Supplemental Material 1. In
addition, further parameters can be adapted to a
specific patient, as explained in ‘‘Clinical data and
Model Personalization’’ section.

Steady-State Situation

We assume the cardiovascular and circulatory sys-
tem is in steady-state, in the sense of

� there are no rapid or major changes of cardiac
output and the heart cycle length, meaning these
two quantities hardly change over different cardiac
cycles,

� the system has already adapted to the LVAD
implementation,

� the patient is at rest.

These assumptions justify to neglect the autoregulatory
mechanisms of cardiovascular pumping such as the
systemic baroreflex feedback process and beat to beat

FIGURE 2. Illustration of the atrioventricular plane
displacement concept for the left heart. The atrioventricular
plane moves forth and back between �SD and SD, pulled by
the contraction force FC resulting in blood redistribution from
LA to the LV to the Aorta. This behavior resembles a piston
pump, as depicted at the bottom, where �SD and SD mark the
longitudinal displacement into basal and apical direction
respectively.

FIGURE 1. Illustration of the simplified model of the left
heart, the circulatory system, and the LVAD. Differential states
and the pump speed control u(t) are depicted in red. The
cyclic flow is indicated by the arrows. The model consists of
five compartments for the left atrium (LA), left ventricle (LV),
aorta (A), systemic artery, and venous system, represented
with the pressure functions P(t). These variables interact with
the flows Q(t) in the LVAD and the aorta, while the AV
interaction is modeled by the velocity v(t) and position s(t) of
the atrioventricular plane displacement (AVPD). Compliance,
resistance and inertance parameters C, R, L are depicted next
to the corresponding compartment.

2Alternatively, myocardial infarction is a common case related to

LVAD patients; however, it is challenging to represent scars ade-

quately with a zero-dimensional lumped model.
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myocardium wall strain adaptation based upon the
Frank–Starling effect.

Feasible Instantaneous Pump Speed Changes

In practice, due to blood inertia, it is impossible to
arbitrarily adjust the pump speed. Here we neglect
blood and rotor inertia effects and assume that the
pump speed can be varied without restrictions. Con-
nected to this, blood is considered as Newtonian fluid
and no blood rheology changes are taken into account.

Blood Inflow Equals Outflow

In conjunction with the steady-state assumption, we
require that the amount of accumulated incoming
blood in the LV is equal to the accumulated amount of
blood ejected out of the LV over the time horizon
½t0; tf�. For this purpose we introduce the tolerance
parameter �flow>0 and define (with
QMVðtÞ;QAoVðtÞ � 0) the constraint:

Ztf
t0

½QMVðtÞ �QAoVðtÞ �QLVADðtÞ� dt

������
������ � �flow: ð6Þ

Periodicity of the Heart Cycle

The steady-state assumption implies that it is suffi-
cient to consider only one heart cycle since there are no
significant differences between several heart cycles.
Thus, in this study we fix the time horizon to the length
of one heart cycle. In this way, the steady-state con-
dition translates into a periodicity constraint denoting
that the differential state values at the beginning of the
heart cycle should be equal to the ones at the end of the
cycle. In mathematical terms this results with �per>0 in

xiðtfÞ � xiðt0Þj j � �per; for i ¼ 1; . . . ; 9: ð7Þ

Partial LVAD Support

When using an LVAD in the clinical setting, a dis-
tinction is made between full and partial support.
While the LV does not contribute to blood ejection
through the aortic valve with full support, the aortic
valve still opens with partial support because the LV
contraction force is still strong enough to pump par-
tially. We assume partial support, that is:

Ztf
t0

QAoVðtÞ dt � �partial; ð8Þ

with �partial>0.

Back Flow of Blood from the Aorta in the LV

We want to restrict the back flow from the Aorta in
the LV via the LVAD. For this, we introduce the tol-
erance �back>0 and require

QLVADðtÞ � ��back; for t 2 ½t0; tf�: ð9Þ

Adequate Blood Supply

One objective of using an LVAD is to provide suf-
ficient perfusion to the patient’s body. Hence, we seek
a pump speed control policy that results in an actual
cardiac output that equals approximately a desired and
preselected cardiac output VCO 2 Rþ:

60

tf � t0

Ztf
t0

½QAoVðtÞ þQLVADðtÞ� dt� VCO

������
������ � �CO;

ð10Þ

where �CO>0. We note that the actual cardiac output
should not exceed the desired cardiac output up to the
tolerance, since this could result in fatigue for the pa-
tient.

Variable Bounds and Suction Prevention

We require the differential state variables to be in
realistic ranges. We denote appropriate lower and
upper bounds for the state and control variables with

xlb; xub 2 R9 and ulb; uub 2 R. The box constraints read

xlb � xðtÞ � xub; ulb � uðtÞ � uub; for t 2 ½t0; tf�:
ð11Þ

In this way, we are able to prevent the occurrence of
suction, which describes the situation of excessive
pumping that may cause a collapse of the ventricle if
PLVðtÞ is very low.

Clinical Data and Model Personalization

This study uses data that were obtained retrospec-
tively from the University Hospital Magdeburg,
Department of Cardiology, CRT-responder trial,51

registered under the Trial Identifier DRKS000111333

and approved by the Institutional Review Board. All
patients gave written informed consent. An exemplary
subject was selected who involved a dilated LV and
suffered from systolic left-sided heart failure. Data
collection was performed via conductance catheteriza-
tion for LV pressure measurements and via echocar-
diography for other data. The subject showed in rest a

3https://www.drks.de/drks_web/navigate.do?navigationId=trial.HT

ML&TRIAL_ID=DRKS00011133.
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heart frequency of 67 beats per minute with a cardiac
output of about 3.5 L/min. Further hemodynamic
characteristics of the selected subject are shown in
Table 1.

We selected a representative cardiac cycle with the
duration hcycle ¼ 0:89 s and 27 measured data points.

We propose to personalize the model via a parameter
estimation (PE) method. For this, we formulate an
optimization problem with the model equations as
constraints and a nonlinear regression term as objec-
tive that minimizes the difference of model response
values to the measured subject data. Here, we minimize
the difference between measured LV pressure for se-
lected time points and their corresponding model
output values, however, this approach can also be
applied to a general measured data set with more dif-

ferential state types involved. We denote with bPLVðtiÞ
the measured LV pressure at time point ti 2 ½t0; tf�. We
choose the parameters to be estimated as proposed in
Reference 30 with high sensitivity with respect to the
LV pressure. These parameters are

p ¼ ½RAVP;CLV;LAVP;FVC;FAC;ALV;ALA; kRAD;SD�>:

We bound the parameters to be in a realistic range, i.e.,
plb � p � pub, see Supplemental Material 2 for further
details. The selected subject had not (yet) implanted an
LVAD, so we set QLVADðtÞ to zero and neglect the
control u(t) and constraints on QLVADðtÞ for the PE.
The parameter (point) estimation problem is defined as
the following optimization problem:

min
p

1

2

Xnm
i¼1

bPLVðtiÞ � PLVðtiÞ
� �2

r2i
þ /ðpÞ ð12Þ

s.t. 0:3cm _xðtÞ ¼ fðxðtÞ; pÞ; for t 2 ½t0; tf�; ð13Þ

xðt0Þ ¼ x0;

constraintsð7Þ; ð8Þ; ð11Þ;
ð14Þ

where nm ¼ 27 denotes the number of available mea-
surements, x0 is the initial values, and ri is the standard
deviation of the measurement at time ti, here set to

one. The term /ðpÞ allows to incorporate a priori
information of the parameters, which we here set to
zero4.

Optimal Control Problem Formulation

Based on a personalized model, we take interest in
an advantageous application of the LVAD for a
(possible) patient. An OCP offers the framework to
include generic constraints and objective functions.
While we have already defined the constraints in
‘‘Physiological Assumptions and Constraints’’ section,
for the objective we reuse the multiobjective function
from Reference 4. This objective constitutes a com-
promise function that aims for ventricular unloading
and ensures the opening of the aortic valve. A per-
manent closure of the aortic valve may lead to fusion
of the aortic valvular cusps and a resulting thrombus
formation.37 By ventricular unloading we refer to
reducing the hydraulic work that the LV has to per-
form in order to provide sufficient perfusion. Let q1 2
½0; 1� denote a weighting parameter that facilitates to
put one objective more into focus and let q2 and q3
denote unit scaling factors, see Supplemental Material
2 for more details. Then, we introduce the objective as

Jðxð�ÞÞ :¼
Ztf
t0

½q1q2PLVðtÞðQAoVðtÞ þQLVADðtÞ

�QMVðtÞÞ � ð1� q1Þq3QAoVðtÞ� dt:

ð15Þ

The first term accounts for the ventricular unloading,
while the second term causes aortic valve opening via
maximizing the flow through this valve. We consider
the following optimization problem, where we mini-
mize the above objective over the differential states xð�Þ
and the continuous control uð�Þ:

min
xð�Þ;uð�Þ

Jðxð�ÞÞ

s.t. model equations ð5Þ;
inflow equals outflow ð6Þ;
periodicity of heart cycle ð7Þ;
partial LVAD support ð8Þ;
restricted LVAD back flow ð9Þ;
sufficient perfusion ð10Þ;
variable bounds ð11Þ:

For this optimization problem we investigate three
different scenarios regarding the pump speed control.

TABLE 1. Measured hemodynamic data for the example
subject.

Parameter End-systolic End-diastolic

LV volume (mL) 228 281

LV pressure (mmHg) 120 5

PCW pressure (mmHg) 28 14

Aortic pressure (mmHg) 121 53

PCW pressure represents a surrogate for LA pressure.

4Future work should consider a priori information in the form of

/ðpÞ ¼ �kp� �pk2 instead of imposing lower and upper bounds on p.
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(1) Constant speed this represents the usual clinical
setting and is expressed by uðtÞ :¼ ucon 2
½ulb; uub� for t 2 ½t0; tf�, meaning the pump speed
optimization variable is constant over time.

(2) Continuous speed there are no restrictions on uð�Þ
apart from lower and upper bounds.

(3) Pwc speed this scenario considers to switch
between different constant speed modes, similar
as performed in modern devices. For this, we use
the indicator function notation

v½t1;t2�ðtÞ :¼
1; if t 2 ½t1; t2�;
0; else.

�
ð16Þ

We assume uð�Þ to be a step function with three dif-
ferent levels u1; u2; u3 2 ½ulb; uub�:

uðtÞ :¼u1v½t0;t1ÞðtÞ þ u2v½t1;t2ÞðtÞ þ u3v½t2;t3ÞðtÞ
þ u1v½t3;tf�ðtÞ;

ð17Þ

where t1; t2; t3 are switching times to be determined5.
We require minimal time durations for the different
speed levels because rapid changes are not feasible in a
realistic setting. Let D1;D2;D3>0 denote these so-
called minimum dwell times and we introduce the
constraints

t1 � t0 þ tf � t3 � D1; t2 � t1 � D2; t3 � t2 � D3:

ð18Þ

Algorithmic Approach

We distinguish between explicit and implicit
switches that result in discontinuous variables for the
PE and the OCP. The pump speed control should be in
one scenario pwc; however, since we can control when
this switch occurs between different speed modes, we
call this switch explicit. By implicit switches we refer to
changes of the model equations in f that happen as
soon as the differential states satisfy certain conditions.
The valve flows and the contraction force induce such
implicit switches. While the valve switches are defined
in (2a)–(2b), we specify the contraction force switches
in the following.

Implicit Switches Through the Contraction Force

As we consider only one heart cycle, the atrial and
ventricular contraction takes place once. We assume a
physiological order, that is atrial before ventricular
contraction followed by a relaxation phase. Initially,
let �SD � sðt0Þ � SD. We further assume the following
switching times exist:

tVC :¼ argmin
t2ðt0;tfÞ

fsðtÞ ¼ �SDg; ð19Þ

tR :¼ argmin
t2ðtVC;tfÞ

fsðtÞ ¼ SDg: ð20Þ

Then, the contraction force is defined as

FCðtÞ :¼
FAC; for t0 � t � tVC;

FVC; for tVC<t � tR;

0; for tR<t � tf:

8><
>: ð21Þ

Dividing the Cardiac Cycle into Phases

The periodic switching nature of the cardiac cycle
model makes the solving process challenging. We need
to identify when switching happens and what the suc-
cessive active subsystems of f are. If we combine all
possible valve positions and contraction force settings,
we get 12 different subsystems. To reduce complexity
we assume a specific sequence of active subsystems for
the cardiac cycle taking advantage of physiological
relationships in the human heart. Thus, we divide the
heart cycle into seven phases similar as in Reference 30.
Table 2 and Fig. 3 explain the phases of the ordered
sequence, where the switching times are denoted with
si, i ¼ 1; . . . ; 6.

The modes from Table 2 translate into the following
constraints for the optimization problem and for f:

TABLE 2. Assumed sequence of active phases.

Phase FC mode

Mitral

valve

Aortic

valve

1 AC Open Closed

2 VC Open Closed

3 VC Closed Closed

4 VC Closed Open

5 0 Closed Open

6 0 Closed Closed

7 0 Open Closed

For instance, in the first phase the LA contracts, the mitral valve is

open and the aortic valve is closed.

5In fact, we can drop v½t3 ;tf �ðtÞ since xð0Þ is free. However, the algo-

rithmic idea in the next section exploits a fixed sequence of active

system phases so that we keep this term.
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‘AC‘ : FCðtÞ ¼ FAC; and sðtÞ>� SD;

‘VC‘ : FCðtÞ ¼ FVC; and sðtÞ<SD;

‘0‘ : FCðtÞ ¼ 0;

‘MV open‘ : QMVðtÞ ¼
PLAðtÞ � PLVðtÞ

RM
;

and PLAðtÞ>PLVðtÞ;
‘MV closed‘ : QMVðtÞ ¼ 0; and PLAðtÞ � PLVðtÞ;

‘AoV open‘ : QAoVðtÞ ¼
PLVðtÞ � PAðtÞ

RAoV
;

and PLVðtÞ>PAðtÞ;
‘AoV closed‘ : QAoVðtÞ ¼ 0; and PLVðtÞ � PAðtÞ:

By fixing the sequence of active subsystems, the PE and
OCP transform into multiphase problems,41 where
only the switching times needs to be determined.

Switching Time Optimization

We use switching time optimization23,41 to deter-
mine the switching times s1; . . . ; s6 so that we can
transform the originally discrete optimization prob-
lems into continuous ones. The idea of switching time
optimization relies on a time transformation

t ¼ ð~t2 � ~t1Þs, which exploits that

_xðtÞ ¼ fðt; �Þ; t 2 ½~t1; ~t2�; ð22Þ

is equivalent to

_xðsÞ ¼ ð~t2 � ~t1Þfðs; �Þ; s 2 ½0; 1�: ð23Þ

With this idea, we reformulate the multiphase model
equation:

_xðsÞ ¼
ðs1 � t0Þf1ðs; �Þ; if s 2 ½0; 1Þ;
ðsi � si�1Þfiðs; �Þ; if s 2 ½i� 1; iÞ; for i ¼ 2; . . . ; 6;

ðtf � s6Þf7ðs; �Þ; if s 2 ½6; 7�;

8><
>:

ð24Þ

where fi denotes the model equation for the ith phase.
We notice that the phase durations enter the equation
via ðsi � si�1Þ as continuous variables. At the end of
each phase, the switching constraints for the contrac-
tion force and the valve flows as described in ‘‘Steady-
State Situation’’ section need to be fulfilled at the

transformed switching time points up to a tolerance
�sw>0:

jsð1Þ þ SDj � �sw; jPLAð2Þ � PLVð2Þj � �sw;

jPLVð3Þ � PAð3Þj � �sw; jsð4Þ � SDj � �sw;

jPLVð5Þ � PAð5Þj � �sw; jPLAð6Þ � PLVð6Þj � �sw:

ð25Þ

This switching time reformulation provides the
framework to solve the PE problem and the OCP with
constant and continuous pump speed as optimization
problem with solely continuous variables. For the pwc
pump speed modulation we also need to find the
switching times t1; t2; t3 between the three different
speed levels as introduced in ‘‘Optimal Control Prob-
lem Formulation’’ section. Here, we assume

s2<t1<s3; s5<t2<s6; s6<t3<tf; ð26Þ

i.e., the first speed change occurs between mitral valve
closing and aortic valve opening, the second between
aortic valve closing and mitral valve opening, and the
third between mitral valve opening and the end of the
heart cycle. Thus, we divide the third, sixth and sev-
enth phase from ‘‘Dividing the Cardiac Cycle into
Phases’’ section into two phases each so that in total
nine switching times for ten phases need to be deter-
mined.

Numerical Solution of Optimization Problems

We use direct collocation59 to transform the con-
tinuous time optimization problems via temporal dis-
cretization into NLPs. We apply an equidistant
discretization grid with time resolution of Dt ¼ 1 ms.
The differential state trajectories are approximated
with Radau collocation polynomials9 of degree 3. We
implemented the optimization problems in python
v3.7.5 and used CasADi v3.4.55 to parse the resulting
NLP with efficient derivative calculation of Jacobians
and Hessians to the solver IPOPT v3.12.3.63 For the
PE problem we applied the Gauss–Newton method9 so
that calculation of Hessians is not required.

The lengths of the model phases were extracted
from pressure time series and other continuous data
and used for initialization of the switching times si.
These phase durations were fixed for the PE problem

FIGURE 3. Time course of the assumed active phase sequence with switching events. The switching times si are variables in the
optimization problem.
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and set variable for the OCP. We further initialized the
PE problem with variable values based on a simulation
with default parameter values, see Supplemental
Material 1. The OCP was initialized with simulated
variable values obtained with estimated parameters
and constant pump speed equal to 8000 rpm. In the
OCP, we permitted a deviation of up to 50 ms for the
model heart cycle from the subject’s measured cycle
length, meaning tf 2 ½0:84; 0:94�. In this way, the con-

straints (6)–(11) are relaxed in order to enhance
robustness of the optimization algorithm.

RESULTS

Patient Specification

Solving the PE problem from ‘‘Clinical Data and
Model Personalization’’ section resulted in the values

p	 ¼ ½324:2; 0:6; 20:4; 4709; 900; 42; 25; 1:35; 0:5�>:

The result of the switching distance parameter, i.e.
SD ¼ 0:5, is equivalent to an AVPD of only 10 mm and
thus indicates a reduced ventricular function. The sit-
uation of heart failure is reflected well by the estimated
parameter values. Particularly, the LV compliance is
increased, the amplitude of the contraction forces FAC

and FVC is decreased and the parameter kRAD

accounting for relative contribution of radial pumping
is increased. Figure 4 shows the measured data pointsbPLV together with the obtained PLV from the PE
solution.

The model response PLV reflects the measured data
points especially with respect to the duration of ven-
tricular contraction, while its peak is slightly underes-
timated. The transcripted nonlinear regression
problem was solved by IPOPT after 230 s and with an
objective value in (12) of 512, which is equivalent to a
root-mean-square deviation of 6.16 mmHg. We
observed numerical instabilities when solving the PE
problem. The convergence of the algorithm seems to
depend heavily on the initial solution, which stresses
the importance of the proposed initialization from
‘‘Numerical Solution of Optimization Problems’’ sec-
tion. In addition, we have used mild termination cri-
teria for IPOPT and chose a large tolerance value for
the periodicity constraint (7). Figure 5 depicts all
model pressure trajectories based on the PE and the six
switching times between the different model phases.
We observe that the aortic pressure PA resembles the
LV pressure PLV during ventricular systole and the
systemic pressure PS else, apart from some small
oscillations. Likewise, PLA and PV represent similarly
high pressures, although PLA adopts to PLV depending
on the mitral valve opening. While the left atrial
pressure range is between 10 and 20 mmHg and, thus,
appears realistically,57 the missing increase of PLA at
the end of diastole seems to indicate that the left atrial
function is partly inappropriately modeled.

Pump Control Policies

We solved the OCP according to the proposed
algorithm from ‘‘Algorithmic Approach’’ section. The

FIGURE 4. Measured bPLV values and resulting PLV trajectory
based on the parameters obtained from solving the PE
problem from ‘‘Clinical Data and Model Personalization’’
section.

FIGURE 5. Simulated pressure functions based on the
parameters obtained from solving the PE problem from
‘‘Clinical Data and Model Personalization’’ section. The
switching times si are depicted with the vertical grey lines.
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applied parameters for the objective and constraints
such as the tolerance parameters ��, the dwell times D�,
and lower and upper bounds on variables are listed in
Supplemental Material 2. Figure 6 shows the pressure
functions for the three pump speed scenarios. The
outcomes of the continuous and pwc scenario are very
similar. They show an elevated peak of PLV compared
to the parameter estimated solution from Fig. 5. While
the rise and fall of the pressure profiles before and after
the ventricular contraction is significantly steeper than
with the parameter estimated solution, its duration, i.e.

s4 � s1, is in a similar range due to an enforced mini-
mum dwell time of 0.2 s for the ventricular contraction.
Very low values occur for PLV directly before s1,
however, they are still above the threshold for suction.
We notice that the cycle duration for the pwc scenario
is 0.88 s and slightly longer than for the other two
scenarios with a duration of about 0.84 s, as we allow a
slight deviation of 50 ms from the standard cycle
length. The constant speed scenario results in uð�Þ 

10; 036 rpm and involves also an increased aortic and
ventricular pressure compared to the parameter esti-

FIGURE 7. Calculated pump speed and differential states for the OCP solutions. The superscripts cont, const, and pwc abbreviate
continuous, constant and piecewise constant rotor speed.

FIGURE 6. Calculated pressure differential states for the OCP solutions with different pump speed scenarios. The switching times
si and pwc speed changing times ti are depicted with the vertical grey lines.
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mated solution, though their peaks are significantly
lower compared with the continuous and pwc speed
scenarios.

Figure 7 illustrates the different optimal pump
speed profiles and the according results for the flows,
AVPD speed, and AVPD position. We observe that
the continuous speed profile provides counterpulsative
pump support and the pwc speed profile approximates
this profile. Due to this similar pump speed behavior,
the optimal differential state trajectories resemble each
other. The main portion of the flows through the
LVAD and the aorta appears for constant pump speed
during ventricular contraction. In contrast, with con-
tinuous or pwc speed, large flow values occur already
during atrial contraction followed by a peak during
ventricular contraction, which accounts for the
remaining physiological contraction force. The flow
for the continuous pump speed appears to be slightly
negative around t ¼ 0:4 since we relaxed the tolerance
parameter in (9) for achieving numerical convergence.
The upper right panel shows that the larger amplitudes
of the pumping speed for the continuous and pwc
scenario compared with constant speed translate into
faster AVP movements. The more pronounced ven-
tricular unloading in the continuous and pwc scenario
also leads to the AVPD speed peak and the switching
distance (lower right panel) being reached earlier than
in the constant speed scenario. Since the parameter SD

is fixed, there is no difference in the AVPD distance
realized between the scenarios. However, the AVP in
the continuous and pwc scenarios returns to its starting

position earlier than in the constant speed scenario,
which can again be explained by more pronounced
unloading.

Figure 8 summarizes the objective values and run-
times for the OCP solutions. Clearly, the obtained
objective value with the pwc speed profile is only
slightly larger than the one calculated with continuous
pump speed, while the objective value with constant
speed is not competitive.

DISCUSSION

The root-mean-square error between bPLV and PLV is
about twice as large as the one constructed via a trial
method in Reference 30. However, the latter study did
not take into account the constraints (7), (8), and (11)
during the data fitting procedure. The performed PE
should be discussed critically with respect to overfitting
since we optimized nine parameters with available
measurements for only one differential state. To this
end, we calculated the relative standard deviation (SD)
values based on the Fisher-information matrix as de-
fined in Reference 33, which represents a common
criteria for evaluating the quality of the results of a PE.
The SD values with respect to the optimal parameter
vector p	 are

%SDðp	Þ ¼ ½42:3; 24:5; 40:4; 35:5; 354:2; 34:6; 267:7; 49:1; 26:2�>:

The calculated SD values are mostly quite low and
thus indicate a robust quality of the obtained estima-
tion. In contrast, the values for FAC and ALA with
about 354 and 268% are quite large and we postulate
that they have a minor impact on PLV. Future work
should focus on sensitivity analysis for choosing the
right parameters to be estimated.

The increased peak of the LV pressure function
after using pumping assist is consistent with typical
partial LVAD support44 The causality can be ex-
plained as follows: The LVAD delivers continuously
blood to the aorta, increasing the aortic pressure.
Therefore the LV pressure must be elevated for the
aortic valve to open. This effect is more pronounced in
the scenarios with continuous and pwc pump speed,
which can be categorized as counterpulsative policies
and thus facilitate the aortic pressure to oscillate less.

The counterpulsative pumping involves high rota-
tional speeds during diastole and low speeds in systole
and provides minimization of the objective function in
two ways. First, strong LVAD pumping before the
ejection phase causes a substantial amount of blood to
already pass from the ventricle into the aorta, thus
unloading the ventricle. Second, low rotational veloc-

FIGURE 8. Comparison of constructed optimal objective
values for the OCP from ‘‘Optimal Control Problem
Formulation’’ section. The objective values for the default
initialization are obtained with uð�Þ 
 8000 rpm. Notice that the
total objective value results from subtracting the aortic valve
flow value from the ventricular unloading, as defined in (15).
The objective value decreases from 0.531 after initialization to
0.368 with constant speed. Continuous and pwc speed
modulation construct even lower objective values, which
amount to 0.191 and 0.222, respectively.
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ities during systole cause a lower aortic pressure and
therefore a large aortic valve flow. Our finding that a
counterpulsative pumping strategy minimizes the given
objective function is in accordance with Reference 3,
where the same objective function was applied.

In the continuous scenario, an increased rotational
speed at the beginning of diastole is also noticeable,
which is necessary to prevent and limit LVAD back-
flow [Constraint (9)].

After applying the LVAD support, we observed
shortened atrial contraction phases, which is equiva-
lent to shortened ventricular filling phases. We inter-
pret this behavior as a result of maximizing the
ventricular unloading. This implies the LA pumps
against less resistance and reaches the maximum con-
traction state more quickly, which is represented by
theAVP reaching the switching distance �SD. In this
way, the AVPD model can realistically capture inter-
actions of an LVAD and the cardiac system, as elab-
orated in References 15, 62. The continuous and pwc
pump speed scenarios have more degrees of freedom
compared with the constant speed scenario and thus
improve the diastolic function even more as depicted
by the shortened atrial contraction phases (0.111,
0.073, and 0.083 s in constant, continuous, and pwc
scenarios, respectively).

With regard to the constraints, it should be noted
that some conditions significantly shape the optimisa-
tion result. These include sufficient blood perfusion
(10), periodicity constraint (7), and the blood flow
balance constraint (6). In contrast, some of the vari-
able bounds and the backflow condition (9) turned out
to be often not active in the optimization process and
can be (partly) neglected.

Connection to Clinical Application

LVADs work in an online environment where the
system state can change rapidly, especially the heart
rate and blood volume shift. Currently, there are no
sensors available that provide long-term measure sig-
nals of the presented differential states,12 including
QAoV and PLV for the objective function. Despite these
aspects and our restricting assumptions (see next sub-
section), we claim that optimized speed profiles from
offline computations may provide superior perfor-
mance (see Fig. 8) and could be considered in the
following way.

(1) The optimal control framework can be used to
benchmark a whole range of speed profiles, in
particular modern pwc speed profiles, that result
from different objective functions, models, and
constraints.

(2) These evaluations can be carried out on a
patient-specific basis. As a proof of concept,
we demonstrated for one patient that the
cardiovascular model can be efficiently altered
to represent the patient’s LV pressure function.
This approach can be extended to include time
series measurements of the aortic and LA
pressure (via PCW pressure and conductance
catheterization), the flows at the mitral and
aortic valve, and the AVP speed and displace-
ment (all via Doppler echocardiography). Over-
all, at least five differential states could be used
for model personalization. The data used so far
were measured invasively. In contrast, in routine
clinical investigations, echocardiography can be
used to measure and use non-invasive data
concerning approximated pressure–volume
(PV) loops and time series of valve flows.

(3) Offline computations of an optimal speed profile
for different situations, e.g. rest, exercise or
rhythm disturbances such as atrial fibrillation,
could be done beforehand and used in an online
setting assuming information about the system
status is available.

(4) The presented algorithmic idea can be extended
to model predictive control. In particular, the
possibility to incorporate minimum dwell time
constraints to avoid rapid speed changes paves
the way for a realistic extension to the online
setting. Here, computational improvements on
the algorithm and the implementation would be
necessary to cope with the real-time setting.

Limitations

Simplified Model

We applied a lumped model that simplifies the
heart and the cardiovascular system by neglecting the
right heart, the pulmonary system, valve regurgita-
tion, and spatial interactions between compartments.
Dilated heart failure is very commonly associated
with valve regurgitation so that our assumption to
neglect it should be seen as critical. The model can be
easily extended to capture valve regurgitation by
replacing the zero value in the flow equations (2a)
and (2b) with a backflow value that corresponds to
the valve insufficiency. According to the Frank–
Starling law, the passive LV compliance CLV is set to
be constant but may change instantaneously. The way
we model the LVAD and its interaction with the
heart is also highly simplified. Moreover, neurological
feedback processes such as the baroreflex are not
captured.
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Assumptions

In reality, the heart rate and thus the duration of the
cycle is very variable, especially through exertion or
sport. In most cases of patients requiring the VAD
therapy the stable heart rhythm is a scarce phenomenon.
The rhythm disturbances are rather the dominant pat-
tern in the individuals suffering from heart failure.
Therefore the steady state assumption must be viewed
critically. Furthermore, we neglect rotor and blood
inertia so that the rotor speed can be controlled arbi-
trarily. Nevertheless, our framework may be good as a
general starting point for the twofold development as
part of future work. First we may be able to base the
optimization process on critical parameters with respect
to clinical availability. Second the early detection of
atrial fibrillation as the most common rhythm distur-
bance in heart failure could be implemented to switch
the working regime of the pump into different mode.49

Measured Data

We included in this study only one subject and
measured data for only one differential state. Future
work shall address numerical tests with several
patients, with additional measured states, with multi-
ple cycles for model personalization, and with addi-
tional beats as validation data set.

Control Approach

Other measures of ventricular work such as the PV
area could be applied for the objective function. Our
numerical result that counterpulsative speed modula-
tion maximizes ventricular unloading but neglects
pulsatility are consistent with a bovine study.56 In that
study, copulsive pumping and asynchronous pumping
relative to the cardiac cycle were beneficial for pul-
satility. In the future, the presented algorithm could be
used to find optimal pump speed trajectories related to
pulsatility, ideally over several cardiac cycles. This
study assumes a canonical order of the active phases
with respect to the valves and the contraction force.
This order might not always be true in practice so that
future work should consider optimization with implicit
switches, but without fixing the order of active phases.
Besides, we optimize over one heart cycle, whereas the
pulsatility speed mode profiles of some LVADs such as
HeartMate 3TM last for more than one heart cycle.
Regarding the numerical results, we note that we found
local optima by using the solver IPOPT, as finding
global optima for OCPs can be very laborious.19

Pump Flow Rates

The realistic range of LVAD pump flow rate is
between 2 and 10 L/min, where the lower bound is due

to the risk of thrombosis. The computed pump flow
rates fall below or exceed this range on some time
points but are on average over the whole heart cycle in
the realistic range. Moreover, the almost instantaneous
flow rate changes from almost 0 up to 18 L/min will
not happen in practice. This study permits a 800%
increase from the lowest pump speed set point, whereas
currently available LVADs allow an approximate in-
crease of 200%.

Switched Systems Framework Applicability

The developed multiphase algorithm is applicable to
other models and settings. For example, the OCP can
also be interpreted on a cardiac model with time-
varying elastance function as a switched system, with
the valves still representing the implicit switches and
changes of the constant pump speed representing
‘‘controllable’’ switches. Analogously, the framework
can be beneficial for PE of cardiac models without
LVAD application, but with different scope, e.g. car-
diac resynchronization therapy.

The presented algorithmic framework is suitable for
longer time periods than a single cardiac cycle, as the
switching sequence can be extended to the subsequent
heart beats.

There are similar devices to an LVAD available or
under development for which an OCP could be solved
efficiently with the switched systems framework. For
instance, total artificial hearts such as RealHeart58 and
Carmat55 or intra-aortic blood pumps22 involve also
discrete system changes, induced by piston pumps
(RealHeart), controlled valves (Carmat) or pulsatility
rotor speed modes (intra-aortic blood pump). Finally,
the next generation LVADs may include more ad-
vanced control features that can lead to different
control modes to switch on/off. The TORVAD
device26 falls into this category and works with two
magnetic pistons within a torus generating pulsatile
flow.

Concluding Remarks

We have proposed a novel switched systems algo-
rithm for the optimal control of LVADs that provides
the opportunity to calculate optimal constant, pwc, or
continuous pump speed profiles. As a proof of concept,
we showed that this algorithm can be used to adapt a
cardiovascular model to patient specific data and to
benchmark simulations of personalized LVAD control
policies. The importance of achieving hemodynamic
optimization in LVAD patients is highlighted by a
significantly lower rate of hospital readmissions,32 and
could benefit from in silico analysis such as the pre-
sented speed profile evaluations. Moreover, we have
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demonstrated realistic simulations of a model that is
based on AVPD instead of using the widespread time-
varying elastance model and examined thereby the
heart to LVAD interactions. Future work may test the
algorithm on more patient data, more realistic condi-
tions such as exercise or rhythm disturbance, and with
model extensions. The proposed algorithm could be
also beneficial for the evaluation of pulsatile speed
modulation modes of modern devices such as Heart-
Mate 3TM or HeartWare HVADTM.
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