Skip to main content
Log in

A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 17 May 2021

This article has been updated

Abstract

This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below \(3.38^\circ\) for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  1. Breen, A., and A. Breen. Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy. Eur. Spine J. 27:145–153, 2018.

    Article  PubMed  Google Scholar 

  2. Bruno, A. G., M. L. Bouxsein, and D. E. Anderson. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and Rib cage. J. Biomech. Eng. 137:2015.

    Article  PubMed  Google Scholar 

  3. Christophy, M., N. A. Faruk Senan, J. C. Lotz, and O. M. O’Reilly. A musculoskeletal model for the lumbar spine. Biomech. Model Mechanobiol. 11:19–34, 2012.

    Article  PubMed  Google Scholar 

  4. De Groote, F., A. L. Kinney, A. V. Rao, and B. J. Fregly. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44:2922–2936, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dvorak, J., M. M. Panjabi, J. E. Novotny, D. G. Chang, and D. Grob. Clinical validation of functional flexion-extension roentgenograms of the lumbar spine. Spine 16:943–950, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eskandari, A. H., N. Arjmand, A. Shirazi-Adl, and F. Farahmand. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques. J. Biomech. 84:161–171, 2019.

    Article  CAS  PubMed  Google Scholar 

  7. Falisse, A., S. V. Rossom, I. Jonkers, and F. De Groote. EMG-driven optimal estimation of subject-SPECIFIC hill model muscle-tendon parameters of the knee joint actuators. IEEE Trans. Biomed. Eng. 64:2253–2262, 2017.

    Article  PubMed  Google Scholar 

  8. Falisse, A., G. Serrancoli, C. L. Dembia, J. Gillis, I. Jonkers, and F. De Groote. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. J. R. Soc. Interface 16:20190402, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hayes, M. A., T. C. Howard, C. R. Gruel, and J. A. Kopta. Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine 14:327–331, 1989.

    Article  CAS  PubMed  Google Scholar 

  10. Ignasiak, D., S. Dendorfer, and S. J. Ferguson. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J. Biomech. 49:959–966, 2016.

    Article  PubMed  Google Scholar 

  11. Kettler, A., F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke. Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur. Spine J. 20:578–584, 2011.

    Article  PubMed  Google Scholar 

  12. Li, G., S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 18:1013–1021, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma, H. T., Z. Yang, J. F. Griffith, P. C. Leung, and R. Y. Lee. A new method for determining lumbar spine motion using Bayesian belief network. Med. Biol. Eng. Comput. 46:333–340, 2008.

    Article  PubMed  Google Scholar 

  14. Marra, M. A., V. Vanheule, R. Fluit, B. H. Koopman, J. Rasmussen, N. Verdonschot, and M. S. Andersen. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 137:2015.

    Article  PubMed  Google Scholar 

  15. Mimura, M., M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto, and A. Vasavada. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Nagel, T. M., J. L. Zitnay, V. H. Barocas, and D. J. Nuckley. Quantification of continuous in vivo flexion-extension kinematics and intervertebral strains. Eur. Spine J. 23:754–761, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Needham, R., R. Naemi, A. Healy, and N. Chockalingam. Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait. Prosthet. Orthot. Int. 40:624–635, 2016.

    Article  PubMed  Google Scholar 

  18. Overbergh, T., P. Severijns, E. Beaucage-Gauvreau, I. Jonkers, L. Moke, and L. Scheys. Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity. J. Biomech. 110:2020.

    Article  PubMed  Google Scholar 

  19. Pearcy, M., and J. Shepherd. Is there instability in spondylolisthesis? Spine 10:175–177, 1985.

    Article  CAS  PubMed  Google Scholar 

  20. Petit, Y., C. É. Aubin, and H. Labelle. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med. Biol. Eng. Comput. 42:55–60, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Rozumalski, A., M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. Novacheck. The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28:378–384, 2008.

    Article  PubMed  Google Scholar 

  22. Severijns, P., T. Overbergh, A. Thauvoye, J. Baudewijns, D. Monari, L. Moke, K. Desloovere, and L. Scheys. A subject-specific method to measure dynamic spinal alignment in adult spinal deformity. Spine J. 20:934–946, 2020.

    Article  PubMed  Google Scholar 

  23. Shojaei, I., N. Arjmand, J. R. Meakin, and B. Bazrgari. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces. J. Biomech. 70:82–87, 2018.

    Article  PubMed  Google Scholar 

  24. Smit, T. H., M. S. van Tunen, A. J. van der Veen, I. Kingma, and J. H. van Dieen. Quantifying intervertebral disc mechanics: a new definition of the neutral zone. BMC Musculoskelet. Disord. 12:38, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Takayanagi, K., K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, and T. Tamaki. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W., D. M. Wang, F. De Groote, L. Scheys, and I. Jonkers. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J. Biomech. 98:2019.

    Article  PubMed  Google Scholar 

  27. Wang, W., D. M. Wang, M. Wesseling, B. Xue, and F. Y. Li. Comparison of modelling and tracking methods for analysing elbow and forearm kinematics. Proc. Inst. Mech. Eng. Part H 233(11):1113–1121, 2019.

    Article  Google Scholar 

  28. Widmer, J., P. Fornaciari, M. Senteler, T. Roth, J. G. Snedeker, and M. Farshad. Kinematics of the spine under healthy and degenerative conditions: a systematic review. Ann. Biomed. Eng. 47:1491–1522, 2019.

    Article  PubMed  Google Scholar 

  29. Wilke, H. J., A. Herkommer, K. Werner, and C. Liebsch. In vitro analysis of the segmental flexibility of the thoracic spine. PLoS ONE 12:2017.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zemp, R., R. List, T. Gulay, J. P. Elsig, J. Naxera, W. R. Taylor, and S. Lorenzetti. Soft tissue artefacts of the human back: comparison of the sagittal curvature of the spine measured using skin markers and an open upright MRI. PLoS ONE 9:2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from National Key Research and Development Program of China (No. 2019YFB1312501), China Scholarship Council (award to the first author, CSC No. 201706230047), Research Foundation Flanders (FWO) under PhD grants (No. 1S35416N and No. SB/1S56017N), the “Medtronic educational chair for spinal deformity research”, internal UZ Leuven Academic research funding (KOOR), and the KU Leuven Internal Funds (Grant No. C24/17/095—ASESP-P).

Conflict of interest

We have no conflicts of interest to disclose. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Wang.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to change the funding information listed in the “Acknowledgements” to National Key Research and Development Program of China (No. 2019YFB1312501).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, D., Falisse, A. et al. A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties. Ann Biomed Eng 49, 2311–2322 (2021). https://doi.org/10.1007/s10439-021-02774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02774-3

Keywords

Navigation