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member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

(Received 26 September 2019; accepted 23 January 2020; published online 30 January 2020)

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Abstract—Musculoskeletal models enable non-invasive esti-
mation of knee contact forces (KCFs) during functional
movements. However, the redundant nature of the muscu-
loskeletal system and uncertainty in model parameters
necessitates that model predictions are critically evaluated.
This study compared KCF and muscle activation patterns
predicted using a scaled generic model and OpenSim static
optimization tool against in vivo measurements from six
patients in the CAMS-knee datasets during level walking and
squatting. Generally, the total KCFs were under-predicted
(RMS: 47.55%BW, R2: 0.92) throughout the gait cycle, but
substiantially over-predicted (RMS: 105.7%BW, R2: 0.81)
during squatting. To understand the underlying etiology of
the errors, muscle activations were compared to electromyo-
graphy (EMG) signals, and showed good agreement during
level walking. For squatting, however, the muscle activations
showed large descrepancies especially for the biceps femoris
long head. Errors in the predicted KCF and muscle activa-
tion patterns were greatest during deep squat. Hence
suggesting that the errors mainly originate from muscle
represented at the hip and an associated muscle co-contrac-
tion at the knee. Furthermore, there were substaintial
differences in the ranking of subjects and activities based
on peak KCFs in the simulations versus measurements.
Thus, future simulation study designs must account for
subject-specific uncertainties in musculoskeletal predictions.
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INTRODUCTION

Knowledge of the internal musculoskeletal forces
acting on the knee joint during dynamic functional
movements has significant potential for informing in-
jury and degenerative disease prevention strategies,48

improving the outcomes of orthopedic treatments,31

enhancing implant designs,3,24 and validating compu-
tational model predictions.18,38 Since the 1970s,
multibody musculoskeletal models of increasing com-
plexity have been proposed to predict such internal
knee joint loading conditions.45 Currently, several
musculoskeletal modeling software packages such as
AnyBody,7 LifeModeler,25 SIMM,9 BodyMech,13 and
OpenSim,8 provide simulation tools for predicting
joint loading. However, while standard motion analy-
sis measurements and rigid body mechanics can di-
rectly determine inter-segmental joint loads and
moments, distribution of these loads to muscles, liga-
ments, and articular contact surfaces remains compli-
cated by the inherent redundancy within the
musculoskeletal system,11 particularily with regards to
muscle co-contraction.44 Thus, in vivo validation re-
mains a major obstacle in widespread acceptance of
model predictions of knee loading and hence limits
clinical translation of the technology.

Historically, EMG measurements of muscle activity
have provided the primary validation methodology.26

The development of instrumented joint replacements
introduced a new ‘‘gold standard’’ for model valida-
tion,16 and a number of these datasets have been made
publicly available. Here, the Orthoload team have re-
leased datasets including knee contact forces, whole
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body marker kinematics, and ground reaction forces
(GRFs) for a single subject performing a single trial of
level walking (https://orthoload.com/comprehensive-
data-sample/). In addition, the ‘‘Grand Challenge to
Predict In Vivo Knee Loads’’ has released a compre-
hensive dataset including joint contact forces, marker
kinematics, GRFs, EMG, computed tomography (CT)
scans, and stationary fluoroscopy for four subjects
perfoming normal and modified walking (https://simt
k.org/projects/kneeloads).12,19

These publicly available benchmark validation da-
tasets provide an invaluable resource for critically
evaluating musculoskeletal modeling predictions. The
Grand Challenge to Predict In Vivo Knee Loads
competition inspired substantial improvements in the
sophistication of modeling techniques, however the
accuracy of the KCF predictions over the five years of
the competition remained relatively unimproved.19

Here, the format of the Grand Challenge competition
focused on evaluating the capacity of musculoskeletal
models to predict absolute metrics of subject-specific
KCFs during various forms of walking. However, the
capacity of musculoskeletal models to predict KCFs
during other activities has been less thoroughly stud-
ied.37,43 Furthermore, because musculoskeletal models
have previously struggled to predict absolute measures
of joint loading, they are often used instead to predict
differences in metrics between e.g., subjects, groups of
subjects, activities, or pathologies. However, due to the
limited number of subjects and activities in the publicly
available benchmark validation datasets, the ability to
establish differences has not been extensively validated.

More recently, the ‘‘Comprehensive Assessment of
the Musculoskeletal System’’ (CAMS-Knee) project re-
leased in vivo measured KCFs, skeletal knee joint kine-
matics using moving fluoroscopy, EMG, motion
capture, and GRFs (https://cams-knee.orthoload.
com/).42 These datasets now offer the opportunity to
compare trial repetitions for multiple subjects, each
performing five complete cycles of different activities of
daily living. The objective of this study was therefore to
use the CAMS-Knee datasets to evaluate the predictive
capacity of generic open source (OpenSim) models to
estimate knee joint loading throughout complete cycles
of functional movements. This is intended to provide a
baseline validation using the most standard tools avail-
able that can later be used to benchmark more complex
models and simulation techniques.

MATERIALS AND METHODS

In this study, a validation of the absolute knee joint
contact forces and moments, as well as muscle acti-
vations, was performed by comparing in vivo mea-

surements versus modeling predictions during level
walking and squatting. In addition, to establish whe-
ther subject-specific modelling predictions meaning-
fully represent real-world scenarios, a relative
validation of the order of measured versus predicted
KCFs for the different subjects and activities was
performed.

CAMS-Knee Datasets

The experimental data used in the current study
were obtained from the CAMS-Knee datasets.42 The
datasets include six patients (5 m, 1 f, age 68 ± 5 years,
mass 88 ± 12 kg, height 173 ± 4 cm) with each pos-
sessing a cemented INNEX knee implant (Zimmer,
Switzerland; FIXUC), for which the tibial component
was instrumented to allow the measurement of six load
components (three forces and three moments of tibio-
femoral joint).14 Here, whole body kinematics were
measured using 75 skin markers and a 26 camera
motion capture system (Vicon, UMG, UK) at 100 Hz.
GRFs were collected at 2000 Hz with six force plates
embedded in the walkway (Kistler Instrumentation,
Winterthur, Switzerland). Bilateral muscle activity for
eight major lower limb muscles (rectus femoris, vastus
medialis, vastus lateralis, tibialis anterior, semitendi-
nosus, biceps femoris long head, medial gastrocnemius,
and lateral gastrocnemius) were detected using a 16-
channel wireless EMG system (Trigno, Delsys, USA)
with signal delay of 48 ms. For each subject, five trials
of level overground walking and squatting were sim-
ulated in this study. A cycle of level walking was de-
fined as heel strike to heel strike of the instrumented
leg. For squatting, a complete cycle was defined from
upright standing to deep flexion back to upright
standing.

Musculoskeletal Modeling

OpenSim (version 3.3) was used to simulate the
measured movements and predict KCFs.8 A generic
full body musculoskeletal model,33 with 37 degrees of
freedom (DOFs), 80 muscle-tendon units, and 17 tor-
que actuators was used for the simulations. This model
included 6 DOFs at the pelvis, 3 DOFs at the hip, 1
DOF at each the knee and ankle. For each subject, the
generic model was scaled to match anthropometry
based on the positions of skin markers placed over
bone landmarks during a static reference trial. Inverse
kinematics (IK) was then used to calculate the joint
angles, and inverse dynamics (ID) to calculate the
intersegmental moments and forces throughout each
trial. Then, muscle activations were calculated using
the static optimization (SO) tool, which minimized the
sum of the muscle activations squared at each time
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frame.1 Finally, a joint reaction force (JRF) analysis
was performed to compute KCFs (Fig. 1) in the tibial
reference frame. The forces were computed in the tibial
reference frame of the musculoskeletal model, which is
located approximately at the midpoint of the femoral
condyles with the knee in full extension.2,33 Because the
axes of the tibial reference frames of the model and
implant measurements are approximately aligned, but
the origins have different positions, comparisons were
only made between the contact forces, but not the
contact moments.

Data Analysis

The predicted muscle activation patterns were
compared against the experimentally measured EMG
signals for each trial. The raw EMG signals were
bandpass filtered (4th order Butterworth, lowpass 10
Hz, highpass 300 Hz), offset corrected, rectified, and
finally low pass filtered with moving average filter
(window 0.25 s). Then, the EMG signal of each muscle
was normalized to the maximum of muscle activiations
value across all trials of both activities for each subject.
Because EMG signals are difficult to normalize and
subject to measurement error,16 only qualitative com-
parisons were made between the predicted muscle
activations and measured EMG signals. Data analysis
was performed using MATLAB (R2017b, Math-
Works, USA).

To evaluate the accuracy of the simulation predic-
tions, the predicted and measured knee joint contact
forces for all trials of each subject over each activity
cycle were compared. The root mean square (RMS)

error and R2 Pearson correlation coefficient between
the measured and predicted contact forces was com-
puted for each measurement trial and averaged across
all subjects for each activity. Additionally, a relative
error criterion (KCFerror) was used to compare the
predicted KCF components (KCFpredicted) against the

measured components (KCFmeasured) (Eq. 1).
38

KCFerror %½ � ¼ KCFpredicted�KCFmeasured

� �
=KCFmeasured

� �

�100

ð1Þ

RESULTS

Knee Contact Forces

The simulations generally underestimated the com-
pressive KCFs during the stance phase of level walking
(Fig. 2, middle) but showed good predictions for the
swing phase. The only exceptions were for subjects
K3R and K8L, where the compressive contact forces
were overestimated at the second peak (late stance
phase) (Supplementary material Fig. S1). The RMS
error between the predicted and measured total contact
force throughout the gait cycle averaged across all
subjects was 47.5%BW (R2 = 0.92). The average
predicted and measured peak total contact forces were
2.64 BW and 2.36 BW respectively. The anterior con-
tact force was under-predicted throughout the mid
stance phase. The lateral component of the contact
force was over-predicted during stance phase, coin-
ciding with peak gastrocnemii activation (Fig. 6).

FIGURE 1. The CAMS-Knee datasets were used to validate musculoskeletal simulation predictions of KCFs and muscle
activations for six total knee replacement (TKR) subjects perfoming level walking and squatting. The OpenSim platform was used
to scale a generic model,33 perform inverse kinematics, inverse dynamics, static optimization, and joint reaction force analysis to
calculate the KCFs.
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Substantially larger errors in the predictions of the
KCF were observed during squatting compared to gait.
Near the initial and final standing poses, the superior
contact force magnitude was under-predicted (Fig. 2).
However, the magnitudes of all three force components
were greatly over-predicted during the majority of the
activity, especially during deep squat. As a result, a
general overestimation of the KCFs was observed over
the entire squat cycle, with an average RMS error across
all subjects of 105.7%BW (R2 = 0.81). The peak total
contact force occurred at the instant of deepest squat,
where the model predicted an average of 4.59 BW,
whereas the average measured value was 2.60 BW.

The relative error in the predicted contact forces
showed clear correlation with the hip and knee flexion
angles for the squat activity, but no such correlation was
observed for level walking (Fig. 3). To clarify the inter-
pretation of this figure, the hip and knee angles
throughout both activity cycles are also provided (Sup-
plementary material Fig. S3). During squatting, the
model consistently under-predicted the contact forces at
extended hip and knee angles, and over-predicted con-
tact forces in deep hip and knee flexion. During level
walking, substantial under-prediction was observed over
the swing phase (average relative error 84%), with
smaller relative errors found during stance phase (aver-
age relative error 22%). No trend was observed between
hip flexion angle and error in the predicted contact force.
At the knee, the relative errors indicated under-predic-
tions were observed at high flexion angles, whereas the
relative errors in extended knee postures differed
between the stance and swing phases. The relatively high
contact force errors were therefore not merely joint angle
dependent, since at deep knee flexion angles, the model
substantially under-predicted KCFs during walking and
over-predicted KCFs during squatting.

Interestingly, while the simulation predictions of
KCF showed far greater absolute errors for squatting

compared to walking, the predicted differences in peak
KCF between subjects showed better agreement with
the measurements for squatting over walking. A
comparison of the subject order in lists based on
measured and predicted peak KCFs shows K1L and
K2L changed rank for the squat activity (Fig. 4, right).
For level walking, the subject rankings based on peak
KCF are substaintially different between the measured
and predicted list (Fig. 4, left).

The model predictions of the difference in peak
contact force between level walking and squatting did
not match the measurements (Fig. 5). For all subjects,
the simulations predicted that the KCFs during
squatting were greater than those during walking.
However, the actual measurements indicated that the
peak contact forces were generally similar between the
two activities, with some subjects showing greater
forces during walking while others showed greater
forces during squatting.

Muscle Activations

For level walking, there was generally good agree-
ment between the trends in predicted muscle activa-
tions and the EMG measurements for all subjects
(Figs. 6, S2). The EMG measures of the vastii showed
the characteristic peak during load acceptance, which
was also present in the simulation results. Here, the
models failed to capture the early peak in the activa-
tion of the rectus femoris at load acceptance compared
to the measured EMG signals. The hamstrings’ EMG
signals and simulated muscle activations increased
during terminal swing and peaked just after heel strike.
The gastrocnemii EMG signals peaked during push
off. A similar pattern was predicted in the simulations,
however peak gastrocnemii activity was predicted
slightly earlier in the stance phase.

FIGURE 2. The predicted (dashed) and measured (solid) KCFs for all subjects performing level walking (black) and squatting
(red). The bold lines represent the mean across all subjects and all trials, while the shaded areas represent 6 1SD.
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Compared to walking, the predicted muscle activa-
tions for squatting showed considerably larger
descrepancies from the EMG measurements. The
simulated biceps femoris long head activity showed a
distinct peak during deep squat, but the measured

EMG signal showed minimal activation with only a
small peak at the end of the squat cycle. The measured
tibialis anterior EMG signal displayed a peak during
deep squat, while the simulations predicted minimal
activity throughout the whole squat motion. The gas-

FIGURE 3. The percent error in the predicted total KCF plotted against the hip and knee angles during level walking and
squatting. The bold dashed black line represents the mean of all subjects. The colored lines represent the mean of all trials for each
single subject. In the level walking plots, the red circles represent heel strike and the arrows designate the direction of the gait
cycle. In the squat plot, the initial standing pose is shown to the left, and the final standing pose to the right.

FIGURE 4. Comparison of the predicted and measured peak KCF for each subject averaged across all trials of walking and
squatting.
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trocnemii were minimally activated in both the simu-
lations and the measurements, while the rectus femoris
was predicted to be minimally activated throughout
the entire squat motion.

The measured quadriceps EMG signals increased as
the subjects lowered into deep squat, and decreased
when the subject returned to standing, but a substan-
tially greater activation level was observed between the
final and initial standing poses (resulting in an average
of + 5.3% in measured KCF). Interestingly here, the
hip, knee, and ankle angles and moments all returned
to their intial values. Thus, given the measured peak in
biceps femoris EMG at the end of squatting, there was
likely some residual co-contraction at the end of the
squat activity. However, the predicted vastii activation
demonstrated a symmetric pattern across the squat
cycle, with similar activation levels between the final
and initial standing poses. As such, the models were
unable to capture the co-contraction observed during
the experimental conditions.

DISCUSSION

Musculoskeletal models allow the non-invasive
estimation of muscle and joint contact forces, but
previous studies have indicated that substantial errors

are present, especially when generic models are
used.19,36,38 It is critical that the errors in such models
are studied across subjects and activities to establish
their applicability and allow an improved under-
standing the etiology of the errors. This study assessed
the accuracy of a widely used musculoskeletal simu-
lation framework (OpenSim) and generic muscu-
loskeletal model,33 to predict KCFs and muscle
activation patterns during level walking and squatting
based on measurements of six patients with instru-
mented implants.42 Generally, the KCFs were under-
predicted during the stance phase of level walking, but
substiantially over predicted during deep squat. The
predicted muscle activation patterns largely agreed
with the EMG signals for level walking, but squatting
exhibited large discrepencies, especially in the activa-
tion patterns of the hamstrings. The models demon-
strated limited ability to differentiate between subjects
and activities based on a ranking of the peak contact
forces. These results demonstrate that predicting sub-
ject-specific KCFs using traditional musculoskeletal
simulation approaches (scaled generic model and static
optimization) remains a considerable challenge and
that future simulation study designs must take this
uncertainty into account.

Errors in musculoskeletal model predictions of
KCFs can generally be attributed to four main factors:

FIGURE 5. Predicted and measured peak contact forces for level walking and squat for each subject. The open circles and
dashed lines represent the mean of the simulations for all trials, the closed circles and solid lines represent the mean of the
measurements. The error bars indicate the range of all trials.
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(1) errors in the experimentally derived joint kine-
matics and external forces,23 (2) inaccurate represen-
tation of the anatomy and physiology of the
musculoskeletal system, (3) uncertainty in subject-
specific model parameters, and (4) an incomplete
understanding of the solution to muscle redundancy.
Inaccuracy in the representation of the musculoskeletal
system includes the basic model of muscle contraction
that ignores history dependencies,28 simplified repre-
sentation of the three-dimensional muscle fiber paths,5

and idealized kinematic joints that do not include
contact or passive soft tissue structures.22,50 The per-
sonalization of musculoskeletal models remains a ma-
jor challenge, and errors in joint centers, muscle
moment arms, and muscle-tendon model parameters
can have a significant effect on predicted contact
forces.27,30,46,50 Finally, the ability to solve muscle
redundancy remains a considerable challenge,15 and
different optimization criteria can yield substantially
different predictions of muscle activation patterns and
consequently KCFs.10,39 Inherently, our simplistic
approach of scaling a generic model and performing
static optimization contains errors due to each of these
factors. While the sensitivity of model predictions to
many of these factors have been evaluated in different

combinations,10,30,46 the relative importance of each
factor to accurately predict KCFs requires more
extensive study.

In light of these known limitations, we aimed to
better understand the observed clear discrepancies in
predicted versus measured KCFs during squatting,
especially considering the relatively good results
achieved during walking. The substantial error in the
KCF predictions during deep squat (Fig. 2) was likely
caused by a disproportionate co-contraction of the
hamstrings and quadriceps. Here, the simulations
predicted excessive activation of the biceps femoris
long head muscle compared to the EMG signals. To
balance the external moments observed during deep
squat, the model must generate large knee extension
moments, hence necessitating activity of the quadri-
ceps. In addition, to balance the hip flexion, internal
rotation, and abduction moments, activation of the hip
musculature is required. Here, the combination of the
optimization cost function, muscle-tendon parameters,
and muscle moment arms led the hamstrings (specifi-
cally the biceps femoris long head: see Fig. 6) to be
activated to generate the hip moments. Due to their
biarticular function, the predicted hamstrings forces
resulted in additional knee flexion moments, which

FIGURE 6. The predicted (dashed) and measured (solid) muscle activity for all subjects performing level walking (black) and
squatting (red). The bold lines represent the mean across all subjects and all trials, while the shaded areas represent 6 1SD. The
data is presented only for the leg with the instrumented implant.
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must be overcome by further quadriceps activation.
This co-contraction at the knee leads to increased
contact force predictions, which can explain the large
errors observed during squatting that are not seen
during walking. Unfortunately, direct measurement of
gluteal activity to verify these assumptions was not
taken within the CAMS-Knee measurements. As a
result, while the evidence provided in this study is
compelling, further investigation into this overloading
mechanism through exaggerated co-contration is
clearly required in other datasets.

Possible improvements to the model to reduce the
hamstrings activation include a more refined repre-
sentation of the muscles crossing the hip to improve
the capacity of the gluteus muscles to generate hip
flexion moments at deeper angles, and improve repre-
sentations of the abductor muscles to generate the hip
internal rotation and abduction moments. Two studies
have proposed adapting the muscle paths or modifying
the wrapping surfaces of the Rajagopal model to im-
prove the ability to simulate activities with high knee
and hip flexion.6,21 Both of these studies exhibited
improvements in the predicted EMG patterns during
pedalling and squatting activities. However, for
squatting the updated model still showed high activa-
tion of the biceps femoris long head during deep
squat,6 similar to the results observed in our study,
suggesting that further improvement is still required.
In future, it will be important to benchmark such
model adaptations using the CAMS-Knee datasets to
investigate whether they improve predictions of KCFs.

The limited capacity of the model to correctly pre-
dict the relative ranking of the subjects and activities
based on peak KCFs is an important finding (Figs. 4
and 5). Musculoskeletal simulations are commonly
applied to estimate joint contact forces in groups of
healthy and pathologic subjects and to investigate the
role of joint loading in pathologies.4,20,29,34,35,40,47,49

However, musculoskeletal models have traditionally
overestimated the absolute magnitude of joint load-
ing,41,43 our results indicate that the capacity of tra-
ditional musculoskeletal modeling techniques to
relatively differentitate the order of knee joint loading
between subjects is also limited. Advances in modeling
techniques such as the inclusion of EMG driven sim-
ulations,17 or detailed six DOF knee models,29 may
improve the capacity of musculoskeletal simulations
perform such studies. The CAMS-Knee datasets will
provide an important resource for benchmarking these
novel techniques and evaluating their ability to predict
KCFs.

While many studies have validated musculoskeletal
model predictions of KCFs during walking,19 other
activities of daily living are less well investigated. One
study found average peak KCF errors of 11% for level

walking, 26% for stair climbing, 15% for sit-to-stand
and 14% for squat.43 Our original study also used the
CAMS-knee data set, but a different musculoskeletal
model (Gait 2392), and despite updating the modelling
tools used in this study, we have found similarly high
average peak force errors for squat (110%) to those
observed using the original model (59%).38 Here, our
results were highly subject specific, with an average
peak force error of about 60% for some subjects (e.g.,
K2L), but more than 140% for others (e.g., K7L). This
study builds upon our original study by providing an
understanding of the etiology of the underlying mod-
elling errors through comparison of the muscle acti-
vation predictions against EMG. The next stages of
this process require an adaption of the musculoskeletal
models to e.g., improve lever arms of the gluteal
muscles etc,32 and investigate whether the reported
errors can be mitigated. This continuing process
highlights the importance of benchmarking muscu-
loskeletal modeling techniques using multiple subjects
and activities.43

This study provides a demonstration of the com-
prehensive validation of musculoskeletal model pre-
dictions enabled through the CAMS-Knee datasets.
However, the datasets are still limited to six elderly
patients with total knee replacements. Thus, it remains
unknown whether the presented limitations of mus-
culoskeletal model predictions can be extrapolated to
healthy subjects or patients with pathologic knee
conditions. Furthermore, we used a publically avail-
able musculoskeletal model,33 and simulation soft-
ware,8 to perform static optimization and predict
KCFs. However, other models and simulation algo-
rithms will likely result in different KCF predictions.
Thus, our results simply express the likely lower bound
of accuracy that can be achieved in KCFs predictions
using musculoskeletal models. Finally, we only per-
sonalized the musculoskeletal models by linear scaling
based on a static motion capture collection, further
personalization that accounts for subject specific
musculoskeletal geometries and component alignment
may reduce errors in KCF predictions. Despite these
limitations, our average errors in the predicted peak
forces for level walking were only 22%, thus demon-
strating the efficacy of this gait model for investigating
walking activities. This study therefore provides an
initial benchmark using the CAMS-Knee datasets of
walking and squatting, and demonstrates the impor-
tance of validation for all future simulation
approaches.

Several guidelines have been proposed for evaluat-
ing musculoskeletal model predictions,16,26 that define
in vivo joint contact force measurements as the ‘gold
standard’ for validation. The CAMS-Knee datasets
will now compliment the Grand Challenge to Predict
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In Vivo Knee Loads, as publicly available validation
benchmark datasets. This study intended to provide a
baseline assessment of a scaled generic model,33 and
open-source OpenSim static optimization tool.8 As
more complex modeling methods and simulation rou-
tines are developed, their accuracy in predicting sub-
ject-specific knee loads can be compared against this
traditional approach. However, the uncertainty in
measuring patient-specific model parameters and
muscle redundancy remain major obstacles in the
accurate prediction of patient-specific knee loading.

In this study, we demonstrate that current generic
musculoskeletal modelling techniques are able to
reproduce the in vivo conditions measured during
walking. However, large errors were observed in
loading predictions during activities that involve deep
flexion, and we present compelling evidence that these
limitations lie in the activation patterns of the hip
musculature. Importantly, in addition to the observed
errors in the absolute magnitude of the predicted joint
loading, our results indicate that the ability of mus-
culoskeletal models to predict the differences in KCFs
between subjects and activities is also limited.
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