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Abstract—Plain radiography is the most common modality
to assess the stage of osteoarthritis. Our aims were to assess
the relationship of radiography-based bone density and
texture between radiographs with minimal and clinical post-
processing, and to compare the differences in bone charac-
teristics between controls and subjects with knee osteoarthri-
tis or medial tibial bone marrow lesions (BMLs). Tibial bone
density and texture was evaluated from radiographs with
both minimal and clinical post-processing in 109 subjects
with and without osteoarthritis. Bone texture was evaluated
using fractal signature analysis. Significant correlations
(p < 0.001) were found in all regions (between 0.94 and
0.97) for calibrated bone density between radiographs with
minimal and clinical post-processing. Correlations varied
between 0.51 and 0.97 (p < 0.001) for FDVer texture
parameter and between 2 0.10 and 0.97 for FDHor. Bone
density and texture were different (p < 0.05) between
controls and subjects with osteoarthritis or BMLs mainly
in medial tibial regions. When classifying healthy and
osteoarthritic subjects using a machine learning-based elastic
net model with bone characteristics, area under the receiver
operating characteristics (ROCAUC) curve was 0.77. For
classifying controls and subjects with BMLs, ROCAUC was
0.85. In conclusion, differences in bone density and texture
can be assessed from knee radiographs when using minimal
post-processing.

Keywords—Radiography, Osteoarthritis, Knee, Bone tex-

ture, Bone density, Bone marrow lesion.

INTRODUCTION

Osteoarthritis (OA) is the most common degenera-
tive joint disease and it causes a large economic burden
to the society as the direct and indirect costs can reach
as high as 2.5% of the gross domestic product of a
nation,21 not to mention the reduction of the quality of
life of an individual. OA-related changes in the sub-
chondral bone include bone sclerosis (hardening of
bone), osteophytes, bone cysts, and bone deforma-
tion.4

Plain radiography is a cheap, fast, and widely
available imaging method. It is especially suitable for
imaging of bone tissue. Plain radiographs are com-
monly used in diagnostics of diseases that affect bone
density and structure, such as OA. Due to the afore-
mentioned advantages of the plain radiography,
development of image analysis tools for the assessment
of OA-related changes is of interest. However, efforts
are needed to produce comparable plain radiographs
between X-ray imaging systems from different manu-
facturers, as image acquisition settings and post-pro-
cessing (PP) algorithms affect the appearance of the
final image and the assessment of bone density.14

Typical clinical PP algorithms apply non-linear filter-
ing and adjustment on contrast curves of an image to
improve diagnostic readability.14 In many cases, a
regular user does not have an access on details of the
PP method and parameters. To overcome the issue
with quantitative image analyses, calibration of the
grayscale values in an image using an aluminum step
wedge has been proposed.9,14,22,34

We have recently shown that bone texture assessed
from radiographs differs between subjects with and
without bone marrow lesions (BMLs).7 However, that
study did not assess bone density due to the lack of a

Address correspondence to Jukka Hirvasniemi, Center for Ma-

chine Vision and Signal Analysis, Faculty of Information Technol-

ogy and Electrical Engineering, University of Oulu, PO Box 4500,

90014 Oulu, Finland. Electronic mail: jukka.hirvasniemi@oulu.fi

Annals of Biomedical Engineering, Vol. 47, No. 5, May 2019 (� 2019) pp. 1181–1190

https://doi.org/10.1007/s10439-019-02227-y

BIOMEDICAL
ENGINEERING 
SOCIETY

0090-6964/19/0500-1181/0 � 2019 The Author(s)

1181

http://orcid.org/0000-0001-9278-4719
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-019-02227-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-019-02227-y&amp;domain=pdf


calibration object in images and the bone texture was
calculated only from two regions of interests (ROIs) in
medial tibia. Recently, multiple ROIs covering the
majority of the proximal tibia area have been proposed
to address this limitation.11,12

In theory, texture analysis of bone is not as depen-
dent on the imaging conditions as the direct evaluation
of grayscale values. However, because clinical PP
algorithm enhances edges in an image, it may still af-
fect texture of the processed image. In OA research,
fractal analysis is the most common method for the
assessment of bone structure from plain radio-
graphs.3,7,11,12,16,17,19,20,26 To date, bone texture or
density has not been assessed from clinical X-ray
images with minimal PP and compared between con-
trols and OA subjects. We believe that simultaneous
assessment of bone density and structure from a plain
radiograph would be an advantage. Furthermore, we
also believe that especially in multicenter studies, the
results would be more comparable if the effect of PP
algorithms is minimized, i.e., by calculating the bone
density and texture from X-ray images with minimal
possible PP strength, or using an identical PP algo-
rithms for the images.

Consequently, the first aim of this study was to
investigate the relationship of radiography-based bone
density and texture between X-ray images with mini-
mal PP and with default clinical PP algorithm to find
out how much the PP algorithm affect these measure-
ments. The second aim was to compare the differences
in bone characteristics (density and texture) between
controls and subjects with knee OA or medial tibial
BMLs to find out whether the changes in bone char-
acteristics can be detected from X-ray image with
minimal PP. Finally, a machine learning model was
built to assess how well subjects with and without OA
or medial tibial BMLs can be discriminated based on
their bone density and texture (from X-ray image with
minimal PP) only.

SUBJECTS AND METHODS

Study Subjects

This cross-sectional study included 109 subjects (66
women, 43 men) with and without OA (Table 1).
Written informed consent was obtained from each
participant. The study was carried out in accordance
with the Declaration of Helsinki and approved by the
Ethical Committee of Northern Ostrobothnia Hospital
District, Oulu University Hospital (number 7/2016).

Acquisition and Grading of the Radiographs

Bilateral posterior-anterior weight-bearing radio-
graphs with knees in semi-flexion were acquired (Dig-
italDiagnost, Philips Medical Systems, 10� X-ray beam
angle, 60 kVp, automatic exposure, pixel size:
0.148 mm 9 0.148 mm, source—detector distance:
153 cm) and processed with minimal PP and default
clinical PP algorithm. Right knees of the subjects were
used in the analyses. Three radiographs with minimal
PP and two radiographs with default clinical PP were
missing and, thus, the total numbers of radiographs
with minimal and clinical PP were 106 and 107,
respectively.

An experienced musculoskeletal radiologist (initials:
JN) classified the knees according to the KL grading,13

in which grade zero corresponds to a healthy knee and
grade four to severe OA.

Selection of Regions of Interests

To assess bone density and texture from the radio-
graphs, 18 ROIs were semi-automatically placed across
the proximal tibia (Fig. 1). The locations were identical
in radiographs with minimal and default PP. Two
ROIs (size: 14 mm 9 6 mm) were placed into the
subchondral bone in the middle of the medial and
lateral tibial plateaus immediately below the carti-
lage—bone interface. Anatomical landmarks for the
ROIs were tibial spine, subchondral bone plate, the
dense subchondral trabecular bone, and outer borders
of the proximal tibia. The locations and sizes of the
ROIs were based on the previous literature.7,8,10–12 A
custom-made MATLAB software (version R2017b,
The MathWorks, Inc., Natick, MA, USA) was used
for the placement (initials: JH) of the ROIs. We have
previously shown that the reproducibility of the texture

TABLE 1. Description of the subjects (n = 109).

Parameter Mean (SD) Min–max

Anthropometric variables

Age (years) 58.1 (6.0) 45–68

Height (m) 1.70 (0.09) 1.50–1.92

Weight (kg) 78.3 (14.2) 50.0–127.6

Body mass index (kg/m2) 27.2 (4.4) 19.7–40.3

KL grade distribution

KL 0 14

KL 1 43

KL 2 28

KL 3 22

KL 4 2
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variables from the tibial subchondral and trabecular
bone is high.8,10

Bone Density Assessment

Two different methods to evaluate bone density
were used, i.e., (1) the mean grayscale value of the ROI
(= GV) and (2) the aluminum step wedge thickness
that corresponds to the measured GV (= GVmmAl).
The corresponding step wedge thickness was calculated
by fitting a third order polynomial to the mean
grayscale values of the eight first steps in the step
wedge in each image and comparing the values of that
fitted curve to the GV. The two thickest steps were
omitted because the grayscale values were saturated at
those steps. The step wedge was present in all images.
For one subject, mean GV in medial subchondral bone
ROI was higher than the highest grayscale value in step
wedge and that ROI was therefore excluded from the
analyses (extrapolation of the step wedge values would
have been needed).

Bone Texture

Fractal signature analysis (FSA) method was used
to estimate fractal dimension.19,20 In brief, the image
was dilated and eroded in horizontal and vertical
directions with a rod-shaped one-pixel wide structuring
element. After that, the volume, V, between dilated
and eroded images was calculated. Calculations were
repeated by varying the element length r from 2 to 7
pixels. The surface area, A(r), was obtained from the
Eq. (1):

AðrÞ ¼ ðVðrÞ � Vðr� 1ÞÞ=2; ð1Þ

Subsequently, a log–log plot was constructed by
plotting log of A(r) against log of r. Finally, the fractal
dimension was estimated by fitting a regression line to
points in the plot and local fractal dimensions were
obtained at 0.30, 0.44, 0.59, and 0.74 mm sizes. When
the structuring element is pointing in the horizontal
direction, fractal dimension of vertical structures
(FDVer) is produced and vice versa. High fractal
dimension values are associated with high complexity
of the image, whereas low complexity results in low
fractal dimension values.

Magnetic Resonance Imaging

Right knees of all but one subjects (n = 108) were
scanned with a 3-Tesla magnetic resonance imaging
(MRI) scanner (Siemens Skyra, Siemens Healthcare)
using sagittal T2-weighted dual-echo steady-state
(repetition time (TR): 14.1 ms, echo time (TE): 5 ms,
echo train length (ETL): 2, pixel size:
0.6 mm 9 0.6 mm, slice thickness: 0.6 mm), 3-D
sagittal proton-density (PD)-weighted SPACE fat-
suppressed turbo spin-echo (TSE) (TR: 1200 ms, TE:
26 ms, ETL: 49, pixel size: 0.6 mm 9 0.6 mm, slice
thickness: 0.6 mm), coronal PD-weighted TSE (TR:
2800 ms, TE: 33 ms, ETL: 4, pixel size:
0.4 mm 9 0.4 mm, slice thickness: 3 mm), and coronal
T1-weighted TSE (TR: 650 ms, TE: 18 ms, ETL: 2,
pixel size: 0.4 mm 9 0.4 mm, slice thickness: 3 mm)
sequences. An experienced musculoskeletal radiologist
(initials: JN) assessed the presence of BMLs and a

FIGURE 1. Location of regions of interest (ROIs). The ROIs were exactly in the same location in images with default clinical post-
processing (left) and with minimal post-processing (right). Two ROIs were placed in subchondral trabecular bone immediately
below the cartilage-bone interface in the middle part of the medial and lateral tibial plateaus. Sixteen ROIs were placed under the
dense subchondral trabecular bone area. Dashed rectangles show the areas where the mean value of the steps of the aluminum
step wedge were calculated.
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subject was included in the medial tibial BML group if
he/she had any BML (including ill-defined lesions,
bone marrow edema and subchondral cysts) in the
medial anterior, central, or posterior part of tibia.

Statistical Analyses

The normality of the variables was assessed using
Shapiro–Wilk test. The relationship between normally
distributed variables was evaluated using Pearson’s
correlation analysis (r) while Spearman’s rank corre-
lation (rs) was applied if at least one of the variables
was not normally distributed. Absolute values of cor-
relation coefficients were interpreted as follows: 0.00–
0.19 very weak, 0.20–0.39 weak, 0.40–0.59 moderate,
0.60–0.79 strong and 0.80–1.00 very strong correla-
tion.30 No adjustments for multiple comparisons were
performed.28

For comparing differences between controls (group
0, KL < 2), subjects with radiographic knee OA
(KL ‡ 2) without medial tibial BML (group 1), and
subjects with medial tibial BML (group 2), based on
the normality of the variables either analysis of vari-
ance (ANOVA) or Kruskal–Wallis test was applied.
These analyses were combined with post hoc tests
without correction for the Type I error rate across the
pairwise tests and using Bonferroni correction. Clinical
covariates were age, gender, and body mass index.
Bone characteristics from X-rays images with minimal
PP was used.

Machine learning was used for dimensionality
reduction and to assess how well subjects with (KL ‡
2) and without OA (KL < 2) or BMLs can be dis-
criminated based on their bone density and texture
(from X-ray images with minimal PP) only. For this, a
regularized logistic regression method called elastic net
was used.6,35 The elastic net linearly combines the L1
and L2 penalties of lasso and ridge regression methods.
To optimize the ratio of the L1 and L2 penalties (a)
and the strength of the penalty parameter (k) of the
elastic net, leave-one-out cross-validation (analyses
were repeated so many times that each sample was
once in the validation set while the rest of the samples
were used for training) with a grid search was per-
formed. In the grid, the values of a varied from 0.1 to 1
with an increment of 0.05 and k from 0.001 to 0.15
with an increment of 0.009. When a is close to zero, the
elastic net approaches ridge regression, while when a is
1, lasso regression is performed. In cross-validation,
the performance of the bone density and texture (from
X-ray images with minimal PP) feature model to dis-
criminate subjects with and without OA as well as
subjects with and without medial tibial BMLs was
assessed using area under the receiver operating char-
acteristics curve (ROC AUC). Statistical analyses and

elastic net experiments were done using R (version
3.1.2) software with Caret18 (version 6.0), pROC27

(version 1.8), glmnet6 (version 2.0), and dunn.test
(version 1.3.2) packages.

RESULTS

Comparison of Bone Density and Texture Between
Minimal and Default Clinical PP

Without normalization of grayscale values in the
reference step wedge, the correlations between GVs
from X-ray images with minimal PP and default clin-
ical PP varied from 0.18 (p = 0.07) to 0.63
(p < 0.001) depending on the ROI (Fig. 2, Supple-
mentary Table 5). For the GVmmAl variable, statisti-
cally significant (p < 0.001) very strong correlations
were found in all ROIs (between 0.94 and 0.97) (Fig. 2,
Supplementary Table 5).

For the FDVer texture variable, strong to very
strong correlations (between 0.62 and 0.97, p < 0.001)
were found between X-ray images with minimal PP
and default clinical PP at all scales and ROIs (Fig. 2,
Supplementary Table 5), except FDVer,0.59mm in ROI7
(0.51, p < 0.001). For FDHor, the correlations varied
at different scales and ROIs from no correlation to
very strong correlation (between 2 0.10 and 0.97)
(Fig. 2, Supplementary Table 5). The correlation
coefficients were especially low for FDHor,0.74mm (be-
tween 2 0.10 and 0.49).

Differences in Bone Characteristics Between Controls,
OA Subjects, and Subjects with Medial Tibial BMLs

Subjects with medial tibial BMLs (group 2) had
significantly (p < 0.05) higher body mass index than
subjects with OA but without BMLs (group 1) or
controls (Table 2). Moreover, subjects with medial
tibial BMLs were older (p < 0.05) than controls.

GVmmAl from X-ray images with minimal PP was
significantly (p < 0.05) higher in group 1 (OA without
medial tibial BML) and in group 2 (medial tibial BML)
than in control group in all medial side ROIs (sub-
chondral bone ROI and ROI6, ROI7, and ROI12)
(Table 2).

Statistically significant differences (p < 0.05) in
FDVer (in all scales) from X-ray images with minimal
PP in medial side ROIs were found. For example,
FDVer,0.44mm in subchondral bone and in ROI7 was
significantly different among controls than in group 1
(OA without medial tibial BML) or group 2 (medial
tibial BML) (Table 2). Statistically significant differ-
ences (p < 0.05) in FDHor were found in medial and
lateral side ROIs (Table 2).
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Classification of OA or BML Subjects and Controls

A ROC AUC value of 0.77 (95% confidence inter-
val (CI) 0.68–0.87) was obtained for classifying healthy
and OA subjects using the elastic model with variables
describing bone density and texture from X-ray image
with minimal PP (Fig. 3a). The values for a and k
hyperparameters of the elastic model were 1 and 0.118,
respectively. The bone density and texture variables
that were selected in the final model are shown in
Table 3. A ROC AUC value of 0.81 (95% CI 0.72–
0.89) was obtained when covariates (age, gender, and
body mass index) were included in the model (Fig. 3a).

A ROC AUC value of 0.85 (95% CI 0.76–0.95) was
obtained for classifying controls and subjects with
medial tibial BML using the elastic model with vari-
ables describing bone density and texture (Fig. 3b).
The values for a and k hyperparameters of the elastic
model were 0.8 and 0.037, respectively. The bone
density and texture variables that were selected in the
final model are shown in Table 4. A similar ROC AUC

value of 0.85 (95% CI 0.76–0.94) was obtained when
covariates were included in the model (Fig. 3b).

DISCUSSION

This study evaluated bone density and texture from
knee X-ray images with minimal PP. First, the asso-
ciation of bone density and texture between X-ray
images with minimal PP and default clinical PP was
assessed. Our results show that bone density was
strongly correlated between these two PP methods
when the grayscale values were calibrated with the
reference step wedge. Correlations of bone texture
parameters, on the other hand, varied from weak to
very strong. Second, we assessed bone density and
bone texture from X-ray images with minimal PP, and
significant differences between controls (group 0),
subjects with OA but without medial tibial BMLs
(group 1), and subjects with medial tibial BMLs (group
2) were found. Third, machine learning based elastic

FIGURE 2. Correlations between (a) GV, (b) GVmmAl, (c) FDVer,0.44mm, and (d) FDHor,0.44mm measured from X-ray images with
minimal and default clinical post-processing (PP) in medial subchondral bone (SB) and ROI7. The scale varies between figures but
is constant within a figure.
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net model showed that both bone density and texture
parameters from X-ray images with minimal PP con-
tributed to the model when discriminating controls and
subjects with OA or subjects with BMLs. Furthermore,
relatively good ROC AUC values to discriminate
subjects without and with OA (0.77), as well as without
and with BMLs (0.85), using bone density and texture
parameters were obtained.

Strong associations were obtained when the grays-
cale values were calibrated, whereas the correlations
between the grayscale values without calibration were
weak or moderate. Based on this and earlier results,
calibration of grayscale values are required when
assessing bone density from plain radiographs.9,14

Varying correlations in texture variables between X-
ray images were found. In general, for example reso-
lution and structures in an image affect fractal
dimension values. One reason for varying correlations
may be that the clinical PP algorithm applies non-lin-
ear filtering and adjusts contrast curves of an image

and, for example, edges in the image are enhanced. The
appearance of the bone contours and trabeculae was
visually different between these two images. The lower
correlation were found especially in FDVer and FDHor

parameters at larger scales (0.59 or 0.74 mm) and may
be due to different appearance of the bone trabeculae.
Our results indicate that when assessing bone texture
at larger scales, the effect of PP should be considered
especially if the images come from X-ray imaging
systems from different manufacturers.

Differences in bone density and texture between
controls and subjects with OA without medial tibial
BMLs as well as subjects with medial tibial BMLs were
found. Bone density was higher among subjects with
OA and among subjects with BMLs than among
controls in medial side ROIs. Bone sclerosis is most
probably the reason for the higher bone density values.
Differences in bone texture between groups using
FDVer was observed in medial side ROIs while FDHor

was significantly different in some lateral side ROIs,

TABLE 2. Mean (standard deviation) values of the selected variables among controls, subjects with radiographic OA but no
medial tibial BMLs, and subjects with medial tibial BMLs.

Variable

Group 0: Controls

(n = 52)

Group 1: OA, no medial tibial BML

(n = 30)

Group 2: Medial tibial BML

(n = 23) p value

Age (years) 56.4 (6.3)2 58.3 (5.5) 60.8 (4.4) 0.019a

Body mass index (kg/m2) 25.0 (2.5)1,2 28.1 (3.8)2 30.9 (5.8) < 0.001

GVmmAl in medial SB

(mmAl)

26.9 (3.1)1,2 29.2 (4.7) 29.6 (4.5) 0.011a

GVmmAl in ROI6 (mmAl) 25.0 (2.6)1,2 26.8 (3.4) 26.8 (3.9) 0.016

GVmmAl in ROI7 (mmAl) 20.1 (2.1)1,2 22.3 (2.9)2 24.0 (4.0) < 0.001

GVmmAl in ROI12 (mmAl) 23.6 (2.4)1,2 25.4 (2.9) 25.6 (3.7) 0.006

FDVer,0.30mm in medial SB 2.65 (0.09)2 2.68 (0.08) 2.71 (0.07) < 0.001

FDVer,0.30mm in ROI6 2.65 (0.08)2 2.66 (0.07) 2.70 (0.06) 0.028

FDVer,0.30mm in ROI7 2.55 (0.06)2 2.57 (0.06)2 2.62 (0.06) < 0.001a

FDVer,0.30mm in ROI12 2.70 (0.06)2 2.71 (0.06) 2.74 (0.06) 0.043

FDVer,0.30mm in ROI15 2.70 (0.06)2 2.72 (0.08)2 2.74 (0.05) 0.013a

FDVer,0.44mm in medial SB 2.86 (0.09)1,2 2.90 (0.08)2 2.95 (0.08) < 0.001

FDVer,0.44mm in ROI7 2.76 (0.08)1,2 2.80 (0.09)2 2.85 (0.08) < 0.001a

FDVer,0.59mm in medial SB 2.90 (0.11)1,2 2.96 (0.12) 3.01 (0.11) < 0.001

FDVer,0.59mm in ROI7 2.79 (0.11)1,2 2.85 (0.12)2 2.92 (0.12) < 0.001

FDVer,0.59mm in ROI12 3.14 (0.10)1,2 3.19 (0.12) 3.20 (0.07) 0.024

FDVer,0.74mm in medial SB 2.84 (0.11)2 2.90 (0.16)2 2.96 (0.13) 0.002a

FDVer,0.74mm in ROI7 2.70 (0.15)1,2 2.77 (0.15) 2.85 (0.17) < 0.001

FDVer,0.74mm in ROI12 3.08 (0.13)1,2 3.16 (0.13) 3.17 (0.13) 0.005

FDHor,0.30mm in lateral SB 2.52 (0.08)2 2.55 (0.10) 2.57 (0.08) 0.046

FDHor,0.30mm in ROI7 2.57 (0.08)2 2.59 (0.08) 2.62 (0.07) 0.025

FDHor,0.59mm in ROI2 2.96 (0.07) 2.98 (0.05)2 2.93 (0.10) 0.020

FDHor,0.59mm in ROI3 2.98 (0.07)2 2.97 (0.07)2 2.91 (0.09) < 0.001a

FDHor,0.74mm in ROI1 2.92 (0.06)2 2.92 (0.08)2 2.87 (0.08) 0.013

FDHor,0.74mm in ROI2 2.97 (0.08)2 2.98 (0.14)2 2.91 (0.14) 0.040

FDHor,0.74mm in ROI3 2.98 (0.07)2 2.97 (0.11)2 2.91 (0.11) 0.004a

FDHor,0.74mm in ROI7 2.77 (0.08)2 2.75 (0.11)2 2.70 (0.11) 0.012a

Bone density and texture variables were measured from X-ray images with minimal post-processing.

SB subchondral bone, ROI region of interest, GVmmAl mean grayscale value calibrated with aluminum step wedge, FD fractal dimension of

vertical (Ver) or horizontal (Hor) structures, adifferences tested using Kruskal–Wallis test. Numbers in superscript means significant

differences between groups without correction of p-values. Bolded numbers means significant differences between groups using Bonferroni

post hoc test.
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too. These results show that the bone structure was
different between groups. In our earlier study, we
showed that FDVer was associated with 3-dimensional
connection and separation of the bone trabeculae.9

The finding that bone density and texture differs
between controls and OA subjects is in line with pre-
vious studies using plain knee radiographs with clinical
PP algorithm.3,8,19,22,23,25 The finding for the bone
density, however, contradicts for one study in which no
association between KL grade and radiography-based
bone density in knee was found.15 Our previous study
revealed that bone texture assessed from radiographs
differs between subjects with and without bone mar-
row lesions (BMLs), but bone density was not assessed
in that study.7 In general, our present results demon-
strate that bone density and texture can be assessed
from X-ray images with minimal PP to detect differ-

ences between controls, subjects with OA, and subjects
with BMLs.

To our knowledge, this is the first study that
assessed bone density and texture from X-ray images
with minimal PP among subjects with OA or BMLs.

FIGURE 3. Receiver operating characteristics curves and respective area under the curve (AUC) values for discriminating (a)
subjects without and with radiographic knee osteoarthritis as well as (b) subjects without and with medial tibial bone marrow
lesions using models that included bone characteristics (bone density and texture) from X-ray images with minimal post-
processing and bone characteristics combined with covariates (age, gender, body mass index).

TABLE 3. Bone density and texture variables from X-ray
images with minimal post-processing in the elastic net model
to discriminate healthy (n = 56) and subjects with

radiographic knee osteoarthritis (n = 50).

Variable Coefficient

Intercept 2 0.111

GVmmAl in ROI7 0.470

FDVer,0.59mm in medial SB 0.003

FDVer,0.44mm in ROI7 0.174

SB subchondral bone, ROI region of interest, GVmmAl mean

grayscale value calibrated with aluminum step wedge, FDVer fractal

dimension of vertical structures.

TABLE 4. Bone density and texture variables from X-ray
images with minimal post-processing in the elastic net model
to discriminate subjects without (n = 82) and with medial tibial

bone marrow lesion (n = 23).

Variable Coefficient

Intercept 2 1.752

GVmmAl in ROI7 0.220

FDVer,0.44mm in medial SB 0.396

FDVer,0.74mm in medial SB 0.004

FDVer,0.30mm in ROI7 0.260

FDVer,0.30mm in ROI12 0.127

FDVer,0.30mm in ROI15 0.393

FDVer,0.59mm in ROI7 0.197

FDVer,0.74mm in ROI4 2 0.092

FDVer,0.74mm in ROI6 2 0.126

FDHor,0.59mm in ROI2 2 0.012

FDHor,0.59mm in ROI3 2 0.644

FDHor,0.59mm in ROI13 2 0.091

FDHor,0.74mm in ROI1 2 0.351

FDHor,0.74mm in ROI2 2 0.012

FDHor,0.74mm in ROI5 2 0.313

FDHor,0.74mm in ROI7 2 0.213

FDHor,0.74mm in ROI8 2 0.443

FDHor,0.74mm in ROI12 2 0.243

SB subchondral bone, ROI region of interest, GVmmAl mean

grayscale value calibrated with aluminum step wedge, FD fractal

dimension of vertical (Ver) or horizontal (Hor) structures.
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Because the direct evaluation of grayscale values of a
radiograph is problematic, calibration of the grayscale
values using an aluminum step wedge has been pro-
posed.9,14,22,34 In an earlier study, bone density in
human cadaver tibia was assessed from X-ray image
with minimal PP and a strong correlation to actual
bone mineral density assessed with dual X-ray
absorptiometry was reported.14 Another study with
human cadaver tibias showed that radiography-based
tibial bone density and texture are related with the
actual 3-dimensional structure and amount of bone.9

Elastic net models were used to assess how well
subjects with and without OA or BMLs can be dis-
criminated based on their bone density and texture.
Leave-one-out cross-validation was used in order to
find optimal hyperparameters for the models. The
elastic net also reduces the dimensionality of the fea-
ture vector, which was necessary because initially all
bone density and texture variables from all ROIs were
fed into the model. The ROC AUC values to dis-
criminate subjects without and with OA (0.77) as well
as without and with medial tibial BMLs (0.85) using
bone density and texture variables were relatively high.
When covariates were included in the model, the
classification performance was slightly improved in
discriminating subjects without and with OA (ROC
AUC: 0.81, body mass index and age in the model),
but not for discriminating subjects without and with
BMLs (ROC AUC: 0.85, body mass index in the
model). The results are in line with previous studies,
although they used plain knee radiographs with clinical
PP algorithm.31,33 One study reported an accuracy of
85.4% (87.0% sensitivity, 83.8% specificity) for dis-
criminating healthy and OA subjects using bone tex-
ture from plain knee radiographs.33 They used
signature dissimilarity method to obtain bone texture.
Another study reported a ROC AUC of 0.74 for dis-
criminating healthy and OA subjects using directional
fractal signature method.31

It should be noted that a perfect classification was
not expected in this study. This is because bone texture
does not actually directly affect the KL grading, yet
marginal osteophytes, bone sclerosis, cysts, deforma-
tion of bone, and narrowing of the joint space are
considered in it. It should also be mentioned that
sensitivities and specificities of 54–66 and 64–78%,
respectively, for OA classification have been reported,
when comparing clinical OA (by assessing subject’s
medical history, symptoms, and physical examination)
and radiographic OA (controls: KL < 2, OA: KL ‡
2) assessments and using clinical OA as a reference.5,24

Furthermore, BMLs were assessed from MRI data.
Thus, it can be that some subjects with OA do not

actually have changes in their subchondral or trabec-
ular bone. The use of KL grade as ground truth was
justified because it is the gold standard when assessing
the level of radiographic OA. When aiming to auto-
matically assess the KL grade, the entire joint area
should be fed in the model.1,2,29,32 However, in this
study we wanted to specifically evaluate the changes in
bone density and texture.

This study has some limitations. First, bone density
and texture variables are quantitative and continuous,
whereas KL grading and BML evaluation are semi-
quantitative, subjective, and discrete. Furthermore,
bone texture is not directly evaluated in KL grading.
Second, due to restrictions of our sample size, KL0 and
KL1 grades were considered as controls, although KL1
subjects can also be considered as doubtful OA and
they might have some OA-related changes. Further-
more, because of the limited sample size, we did not
assess the performance of elastic net models to classify
OA subjects with and without BMLs. Third, our data
was cross-sectional and, thus, we were unable to assess
how well bone density and texture predict the devel-
opment or progression of OA. Fourth, in future,
studies with higher number of X-rays from different X-
ray imaging systems with minimal PP are desired.

In conclusion, PP algorithm did have effect on the
grayscale values and texture variables, especially on
fractal dimensions with larger scales. Differences in
bone density and texture, assessed from X-ray images
with minimal PP, were found between controls, sub-
jects with OA but without BMLs, and subjects with
medial tibial BMLs. Finally, relatively good classifi-
cation between controls and OA subjects as well as
controls and subjects with medial tibial BML using
only bone density and texture variables was obtained.
Our results indicate that calibration of grayscale values
are required when assessing bone density from plain
radiographs, and the effect of PP should be considered
when assessing bone texture at larger scales.
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