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Abstract—Phantoms are common substitutes for soft tissues in
biomechanical research and are usually tuned to match tissue
properties using standard testing protocols at small strains.
However, the response due to complex tool-tissue interactions
can differ depending on the phantom and no comprehensive
comparative study has been published to date, which could aid
researchers to select suitable materials. In this work, gelatin, a
common phantom in literature, and a composite hydrogel
developed at Imperial College, were matched for mechanical
stiffness to porcine brain, and the interactions during needle
insertionswithin themwere analyzed. Specifically, we examined
insertion forces for brain and the phantoms; we also measured
displacements and strains within the phantoms via a laser-based
image correlation technique in combination with fluorescent
beads. It is shown that the insertion forces for gelatin and brain
agree closely, but that the composite hydrogel bettermimics the
viscous nature of soft tissue. Both materials match different
characteristics of brain, but neither of them is a perfect
substitute. Thus, when selecting a phantom material, both the
soft tissue properties and the complex tool-tissue interactions
arising during tissue manipulation should be taken into
consideration. These conclusions are presented in tabular form
to aid future selection.

Keywords—Minimally invasive surgery, Brain, Tool-tissue

interactions, Digital image correlation, Strain imaging, Soft

tissue biomechanics, Gelatin.

INTRODUCTION

Working with real specimens of soft tissue for
experimental studies in the biomechanical field pre-
sents a number of difficulties; in addition to ethical
regulations and scarce availability, the data obtained is

often unreliable or inconsistent due to complex tissue
properties and testing protocols. Brain, especially, has
properties that vary between in vivo and in vitro con-
ditions2 and is highly sensitive to factors such as post-
mortem time, sample preparation or mechanical his-
tory.6 Soft tissue specimens are also cumbersome to fix
and constrain, leading to complex experimental
designs7,12 and varying conditions between experi-
ments. These problems have led to large deviations
between experimental results in literature, which make
comparisons across different studies difficult.11

For these reasons, soft tissues are commonly replaced
by phantoms for experimental studies, as they are more
controllable, easier to handle, and eliminate the prob-
lem of sample-specific variations. These advantages are
exploited in fields ranging from surgical training to the
modelling of interactions between soft tissue and tools,
for instance in the context of percutaneous intervention
where phantoms are used to validate models of needle
insertions3,15 and to find and demonstrate new concepts
for insertion methods with reduced tissue motion20 and
for needle steering with enhanced accuracy.10

Phantom materials should mimic the relevant
properties of soft tissue closely in order to translate
findings to medical procedures. There is a large variety
of phantom materials within the literature, with a
broad range of material properties, depending on the
relevant application and objectives. Materials are
usually selected based on typical mechanical charac-
terization protocols, such as compression, tensile or
indentation tests3,18 or for best desired performance,
e.g., to maximize the curvature of a steering needle.25

During needle insertions, large strains and cutting
cause complex tool-tissue interactions, and phantoms
should mimic soft tissue sufficiently for all domains of
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interest during the insertion. One of the most common
soft tissue phantoms for modelling interactions, due to
its organic nature and ease of handling, is gelatin.5,22,24

Gelatin phantoms are primarily characterized by their
stiffness and are generally tuned by modifying the ge-
latin concentration, in order to match properties of
soft tissue. However, gelatin has a near linear elastic
behavior, with lower rate dependency compared to soft
tissue, which is generally highly viscous.14 Conversely,
a composite hydrogel (CH) developed at Imperial
College London4 to simulate brain in compression,
indentation, relaxation, shear and hysteresis, shows
very good agreement with brain tissue for stiffness-
and viscosity-related properties, which advocate its use
as a better synthetic phantom compared to gelatin.

The goal of this work is to evaluate the performance
of transparent gelatin and a modified, transparent
version of the composite hydrogel (MCH), in the
context of needle insertions. In vitro needle insertions
are performed on these materials and compared to real
soft tissue, porcine brain, which is known to behave
similarly to human brain.6,16

The stiffness of the phantoms was first tuned to
match brain using a standard indentation test. Fracture
tests were conducted in order to characterize the
behavior at failure of all phantoms (gelatin, CH, MCH)
and real tissue. We then measured the required insertion
forces for brain, MCH and gelatin; due to the lack of
transparency of biological soft tissue, for the phantoms
only, we examined internal displacements and strains
close to the needle using a laser-based imaging tech-
nique, which allows a comprehensive measurement of
the interactions between the inserted needle and the
substrate.19 Based on these measurements during the
needle insertion process with both materials, conclu-
sions can be drawn on the suitability of either phantom
as a realistic alternative to real soft tissue.

The following section provides a detailed description
and characterization of the materials used and the
experimental setup devised for this study. This is followed
by the results of the insertion forces measured for the
synthetic materials, which are compared to porcine brain
samples. A closer comparison of resulting displacements
and strains for gelatin andMCH,due to fracture, friction,
and viscous effects, is then provided, followed by a dis-
cussion and conclusions, which address the different
characteristics of the materials and how they apply to
studies that may require a realistic tissue phantom.

MATERIALS

Materials

The composite hydrogel was composed of Phytagel
(PHY), polyvinyl alcohol (PVA, 146,000–186,000

molecular weight) and deionized water, all supplied by
Sigma-Aldrich Co., USA. The bovine gelatin powder
was provided by Sleaford Quality Foods Ltd., UK. All
concentrations of the phantom materials in the fol-
lowing sections are expressed as a percentage by mass
(wt%).

Two days post-mortem porcine brain samples (2
samples) were obtained from a local supplier.

Sample Preparation

To replicate the same boundary conditions across
experiments, all samples were filled into transparent
acrylic boxes, with an open top, an inner cross section
of 80 9 80 mm2 and a height of 50 mm.

The MCH was obtained by modifying the proce-
dure for CH described in Forte et al.4 to create a
transparent composite hydrogel that could be used for
non-invasive, highly resolved optical measurement
within the samples. Specifically, the freezing step was
removed from the procedure to avoid gelation of the
PVA. The resultant network is phase separated, with
the PHY forming the continuous polymer network
(dominant phase) and the PVA dissolved as the filler
network (included phase).

The MCH was produced by separately dissolving
PVA and PHY in deionized water for 1 h at 90 �C. The
two solutions were then mixed together in a 1:1 weight
ratio at 70 �C, under constant stirring for 30 min.
Particular care was used to avoid evaporation during
the process. The solution was seeded with fluorescent
melamine resin beads to enable imaging (size 10 lm,
rhodamine B-marked, Sigma Aldrich Co.), and poured
into the transparent boxes. The boxes were covered
with cling film to limit evaporation and slowly cooled
at room temperature for 7 h before testing.

Due to the modified procedure, the MCH exhibited
different mechanical characteristics from the original
CH, which had a coupled network structure due to the
presence of hydrogen bonds. Therefore, the concen-
trations of PVA and PHY needed to be tuned in order
to match the stiffness of brain tissue, as described in
‘‘Stiffness Matching’’ section. The result is a trans-
parent, highly viscous gel, which can also be used for
internal optical measurements.

Gelatin gels were produced by mixing deionized
water and gelatin powder. Deionized water was heated
to 90 �C, and gelatin powder was then added and
stirred into the water for 10 min. The solution was
seeded with the same particles as the MCH and left to
cool at room temperature. Cling film was also used and
samples were stored in a domestic refrigerator, kept at
14 �C for 12 h; samples were tested on the following
day, after the gel had reached room temperature
(22 ± 2 �C).
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The micrometer-sized beads used to seed the phan-
toms had a density of 1.51 g/cm3, which is sufficiently
close to the density of the phantoms, mainly consisting
of water. This allowed the added particles to distribute
evenly in the phantom before solidification. The con-
centration of the aqueous solution with the particles in
the phantoms was approximately 0.04 vol%, resulting
in a particle number density of 16 particles/mm3. This
resulted in a seeding density suitable for the imaging
process (see ‘‘Methods’’ section). Indentation tests
showed that the particles did not influence the material
behavior due to their small size, similar density, and
low number density.

Porcine brain samples were collected from the
butcher immediately after being removed from the
dura, then stored in a physiological solution at 4 �C
during transportation. Specimens were not frozen at
any time during the procedure.

Stiffness Matching

The stiffness of the CH, MCH and gelatin was
tuned to match the stiffness of the porcine brain tissue
by varying the concentration of the powders dissolved
in deionized water. An indentation test protocol,
carried out with a mechanical testing system (Mach-1,
Biomomentum Inc., CA) with a 150 g load cell
(7.5 mg load resolution) and a spherical indenter
(3.175 mm radius), was performed to compare sam-
ples that filled the same boxes as used for the needle
insertions. Gefen et al.7 suggested that the indenter tip
radius should be no more than 25% the thickness of
the tested sample and they used an indentation depth
equal to the diameter of the indenter. Therefore, the
indentation depth was set to 6 mm. The test was
performed at a displacement rate of 1 mm/s. After
reaching the maximum depth, the indenter was kept
in position for 500 s to record the relaxation behavior
of each material. Five repetitions were carried out for
each material. Figure 1a shows the indentation curves
for the brain samples and the tuned phantom mate-
rials of gelatin (3.4%), MCH (3% PVA + 0.75%
PHY), CH (PVA 5% + PHY 0.59%), respectively.
The indentation curves for porcine brain tissue and
the phantoms show very good agreement and were
considered sufficiently close to each other to assume
similar stiffness properties. Because of their viscous
nature, the relaxation behavior of the composite
hydrogels (CH and MCH) is closer to that of brain
tissue, whereas gelatin, as expected, behaved as a
nearly elastic material (Fig. 1b). The MCH relaxes
more quickly than the original CH due to its weakly
bonded network (‘‘Sample Preparation’’ section).
Knowledge of the difference in viscous properties of
the phantom materials will allow us to draw certain

conclusions from the measured interactions with the
inserted needle.

Fracture Behavior

Fracture tests were performed on brain and the
phantom materials. Cylindrical samples (diameter
14 ± 1 mm, height 9 ± 1 mm) were tested in com-
pression, using the same mechanical testing system and
with the same displacement rate as for the needle
insertions. Each sample was compressed between two
plates until failure was detected. Silicon oil was applied
at the interface between the sample and the compres-
sion plates in order to minimize friction effects.5 Uni-
form expansion of the sample in the radial direction
was monitored. True strains and stresses were com-
puted from recorded forces and displacements.

In Fig. 2, the true stresses and strains are shown for
the point of material failure during compression test-
ing, for each material tested. Fracture becomes typi-
cally visible by a sudden drop in the stress–strain
curve. Typically, the brain and the CH samples did not
break during testing and the values presented in Fig. 2
represent the point when the two compression plates
came almost into contact, compressing to 95% of the
sample’s height.

All four materials show a similar response at the
small strains for which they were matched, but a
diverging behavior at the point of failure. The brain
tissue and CH show true stresses at failure in the same
range of approximately 3–4.5 kPa. The CH shows a
ductile and stretchable behavior, which is very similar
to brain tissue. MCH shows the lowest final stresses
and strains, as it fails early on in the tests. Compared
to brain, gelatin shows more brittle fracture behavior,
with high stresses and low strains, whereas the
behavior of brain and CH can be described as ductile,
with larger deformations.

METHODS

The needle insertions were performed using the
same mechanical testing system. A straight needle,
with a conical tip with a 40� included tip angle and an
outer diameter (OD) of 4 mm, was manufactured out
of a rigid rapid prototyped material (Elastic Modulus
1.7–2.1 GPa, Endur, Stratasys Ltd., USA), connected
directly to the load cell.

The needle was inserted from the top and exited
through a hole in the bottom of the box (Fig. 3). Eight
insertions were performed for each phantom material,
and four insertions were performed on porcine brain.
In order to produce equivalent boundary conditions
between materials, the brains were placed in (and fully
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filled) the same boxes as those used with the phan-
toms. The sample height was 43 ± 2 mm for all
insertions. The needle was inserted with a speed of
1 mm/s, travelled through the sample for an addi-
tional 20 mm after exiting the box, and was held in
position for 30 s before being retracted. This insertion
speed is within a range commonly used in brain.13

After each insertion, the needle was directly inserted a
second time in the pre-existing crack (reinsertion) to
evaluate the contribution of cutting to the measured
interactions.

Throughout the insertion and retraction, full field
displacements and strains around the needle inside the
transparent phantoms were measured using a laser-
based image correlation technique,9 which has been
used for the detailed investigation of tool-tissue inter-
actions.17,20 The light emitted by the embedded fluo-
rescent microbeads in the phantoms was captured by a

charge-coupled device (CCD) camera (Guppy Pro,
Allied Vision Technologies GmbH, Germany) at 7.5
frames per second, in a measurement plane aligned to
the needle axis. This frame rate was used to ensure that
enough particles stayed within the light sheet between
captured frames for successful image correlation. The
field of view ended 15 mm above the bottom of the
box, had a size of approximately 20 9 15 mm2 and
was calibrated for each experiment. Laser optics and
two 532 nm diode laser sources (4.5 mW collimated
DPSS laser, Thorlabs Inc., USA) on opposite sides of
the needle created two coinciding light sheets, with a
thickness of 4 mm, which ensured that both sides of
the needle were illuminated at all times.

For improved imaging, experiments were carried
out in a dark room, and fluorescent rhodamine
B-marked particles were used, with an excitation
wavelength around 540 nm and an emission peak at
584 nm. Using a notch filter placed in front of the
camera optics, the laser light was blocked out spec-
trally and only the fluorescent particle emission was
captured by the camera (Fig. 4). With the filter, PVA
pieces ‘‘floating’’ in the MCH are no longer visible in
the recorded images, leaving only the particles in clear
view (see Fig. 3, right). This greatly improves the signal
to noise ratio of particle images, when compared to
recordings using Mie-scattered light from non-fluo-
rescent particles in our previous work.9 This allowed
for better measurements of displacements and strains
within the phantoms.

The recorded particle images were processed using a
freely available particle image velocimetry cross cor-
relation algorithm (PIVlab23) and particle paths were
spatially integrated over time.17 The image correlation
of subsequent frames was performed in two passes,
with subsets of 64 and 32 pixels and with an overlap of
50%. This resulted in a spatial resolution of 0.33 mm.
The two-dimensional displacements were smoothed by

FIGURE 1. Compression and relaxation tests on porcine brain, gelatin, CH and MCH. The overlapping curves in the compression
step (a) demonstrate very similar elastic properties for all phantom materials to porcine brain; however, gelatin exhibits a different
relaxation behavior, characterized by a very small decay in the relaxation plot (b). For this reason, porcine brain tissue, CH and
MCH are considered viscoelastic materials, while gelatin is considered nearly elastic.

FIGURE 2. Compression to failure test results for brain tis-
sue and the phantom materials. Despite having the same
response at small strain (tuned via indentation tests), the
three phantom materials show a diverging behavior when
approaching failure. CH shows good agreement to brain at all
stages.
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linear local regression, with a subset size of 10 9 10
material points, prior to the strain computation in
order to reduce noise in the strain tensors.21 Spatially
smoothing displacements in this way, instead of a
previously used median filter,17 resulted in reduced
noise from the spatially highly-resolved gradient-de-
pendent strains. This led to more continuous and
consistent strain contours of the measurements across
experiments. Green-Lagrangian strains were computed
by forming bilinear finite elements such that the ele-
ment nodes coincide with the subset centroids of the
correlation grid, using a Matlab-based digital image
correlation toolbox.8 Strains were computed using the
displacement gradients derived from the finite ele-
ments. From the axial, radial and shear strains, the
effective strain eeff was computed as:

eeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
e21 þ e22
� �

r

: ð1Þ

Here, e1,2 are the maximum and minimum principal
strains. eeff was used to evaluate the resulting state of
strain around the needle, a measurement that has been
previously associated to damage in tissue.1 For all
displacements and strain results, data in the area
delimited by a 3 mm radius in the neighborhood of the
needle was considered.

RESULTS

Insertion Force Profiles

As internal optical measurements could only be
obtained for the transparent phantoms, only MCH
and gelatin were analyzed in this way, allowing the
observed differences in forces to be correlated with
measured internal displacements and strains.

The rigid needle was inserted at a speed of 1 mm/s
into MCH, gelatin and porcine brain. All samples were
contained in identically sized boxes. The mean inser-
tion forces for the first and the second insertion into
the existing crack are shown in Fig. 5. In gelatin, the
first peak and the following drop corresponds to the
instant of puncture and subsequent relaxation of the
substrate. Whereas puncture for the gelatin samples
always occurred at the surface, punctures in brain took
place at varying depths, likely due to its heterogeneous
inner structure. Therefore, unlike for gelatin, the mean
force profile in the brain does not show a clear punc-
ture, and is less smooth in general throughout the
insertion profile. For MCH, no peak in force prior to
cutting was observable, implying immediate puncture
by the needle.

After puncture, forces increase steadily with inser-
tion depth to overcome friction between the progress-
ing needle and the inner crack surface. After exiting the
sample, towards the end of the insertion (Fig. 5a),
there is no more cutting resistance and forces drop and
become more stable in overcoming only the frictional
resistance (sliding force). Gelatin shows both the
highest peak force and sliding force. The increasing
slope during cutting is similar between brain and ge-
latin, but the force after exiting the sample for brain is
below that of gelatin. MCH shows a much lower cut-
ting slope and sliding force compared to both brain

FIGURE 3. Schematic of the experimental setup (top) and
picture during testing (bottom) showing the needle and the
soft tissue phantom. Forces are recorded by the load cell and
the imaging optics are arranged around the mechanical test-
ing system.

FIGURE 4. The wavelength filter blocks the laser at its
specific frequency of 532 nm, while transmitting the emitted
particle light at a shifted wavelength, with a peak at 584 nm.
Recorded frames at the bottom show how scatter objects that
are not particles (left) ‘‘disappear’’ by using the filter (right).
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and gelatin. Overall, the insertion force profiles of
brain and gelatin are well matched and closer than
those of brain and MCH.

Expectedly, the reinsertion forces (Fig. 5b) are gen-
erally lower than for the first insertions, because the
needle does not need to cut as it travels through the pre-
formed crack. This makes the force profiles insensitive
to cutting-related variations, such as those caused by
inner membranes in the brain, and reduces the spread
between trials. Measured forces for gelatin and brain
agree even more closely than for first insertions in both

slope and sliding force, although the forces for gelatin
are slightly higher throughout the reinsertion. As be-
fore, the profile for MCH is much lower overall and the
difference between first insertion and reinsertion is
smaller than for the other two materials.

Interactions During Needle Cutting

Additionally to the measured insertion forces,
optical measurements of displacements and strains
within the transparent phantoms provides a compre-

FIGURE 6. Contour plots of the imaging results during a needle insertion for both phantom materials, gelatin (left) and MCH
(right). The first row shows displacement magnitude calculated from axial and radial displacements. The second row shows the
effective strain obtained from the Green-Lagrangian strains (see Eq. 1).

FIGURE 5. Mean forces of the needle for insertions (a) and reinsertions (b) into MCH, gelatin and porcine brain. Left are the forces
of the first insertions and right are the reinsertions into the existing crack, which were performed directly after the first one.
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hensive understanding of interactions between the nee-
dle and the substrates. Figure 6 shows the displacement
magnitude and effective strain that develop around the
needle, in both gelatin and MCH, during cutting, at an
insertion depth of 20 ± 2 mm. Displacements and
strains become higher towards the needle, as the sur-
rounding material is deformed during crack formation.
Strains in front of the needle are highest, as this is the
area where material is closest to failure. Figure 6 also
illustrates how, in gelatin, the top interface of the
material is dragged further in the direction of the needle
motion, resulting in the overall displacements and
strains being distinctly higher than for MCH. Regions
further away from the needle surface are more affected
in gelatin. Whereas displacements in MCH become
negligible (smaller than 0.5 mm) at a distance of
approximately 3 mm from to the needle surface, the
same region in gelatin shows much higher values, of
around 1.5 mm. Strain in MCH is also more concen-
trated, with local peaks ahead of the needle and at the
tip-to-shaft transition, but with strain values of only
about 5% on the bevel tip edges. Conversely, strains in
gelatin are above 25% around the entire needle tip.

For a more detailed analysis of interactions during
cutting, Fig. 7 shows the mean axial displacements and
strains along the needle axis during cutting, at a depth
of 20 ± 2 mm. The needle tip is indicated at x = 0,
with negative x-values being positions along the shaft
and positive ones being ahead of the needle. This fig-
ure shows that the material is dragged along and pu-
shed ahead of the needle, leading to a peak in
compressive strain in front of the needle. Displace-
ments and strains are significantly higher in gelatin
along the needle shaft and ahead of the tip.

Displacements and Strains in Needle Surroundings

The large difference in displacement and strain
patterns observed near the needle is also seen in the

material surrounding the needle shaft, when it is at its
deepest point after puncturing and travelling through
the sample for an additional 20 mm. Table 1 shows
the measured mean displacements for gelatin and
MCH axially and radially to the needle, and the
effective strain. For gelatin, the axial displacement is
nearly four times higher than MCH, indicating that
the material is dragged further with the needle. Radial
displacements are almost half of the axial displace-
ments. Conversely, MCH shows a reversed pattern of
displacements, with significantly higher radial dis-
placements than axial ones. The effective strain in the
needle surroundings during sliding is lower for MCH
than for gelatin.

Transient Response

During the experiments, the needle was held in place
for 30 s, after having travelled through the samples for
20 mm. Figure 8 shows the averaged transient
response of brain, MCH and gelatin relative to the
initial state, during the period for which the needle
remained stationary. Measured forces and responses of
the mean axial displacements and effective strains in
the needle surroundings are shown, with displacement
and strain data only being available for the two
transparent phantom materials. The approximate
slope at 10 and 30 s was computed for forces, dis-
placements and strains (Table 2).

Forces for brain and gelatin initially drop at similar
rates, but, whereas gelatin forces reach a stable level
around 50% after approximately 10 s, the forces for
brain continue to decrease throughout the 30 s dura-
tion. While for MCH the initial drop of forces is more
pronounced than that for brain and gelatin, MCH
shows an on-going decrease and a negative slope after
10 s, which is 75% of the slope observed for brain.
Gelatin shows a slope of only 23% compared to brain
for the same period.

FIGURE 7. Mean axial displacements (a) and strains (b) in the needle surroundings for all experiments, with standard deviations,
along the needle axis whilst cutting. The x-coordinate represents the position along the needle axis and the needle tip is marked at
x 5 0.
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The different transient responses between MCH and
gelatin are also observed in the surrounding displace-
ments of the needle, which are still decreasing at more
than twice the rate for MCH than for gelatin. In
contrast to forces and displacements, for MCH, strains
remain fairly stable during the entire period. Strains in
gelatin drop initially by less than 20% and then remain
virtually unchanged.

DISCUSSION

Gelatin and composite hydrogels, which are used to
mimic soft tissue, were stiffness-matched to porcine
brain. The material behaviors that correspond to tool-
tissue interactions of the two transparent phantoms,
gelatin and MCH, were analyzed during needle inser-
tions. A laser-based image correlation technique
allowed measuring internal displacements and strains
at high resolution. The use of fluorescent particles
improved the imaging contrast and led to optical
measurements of internal displacements and strains
with reduced noise compared to previous work, using
non-fluorescent particles. Insertion forces, displace-
ments, and strains built a comprehensive set of data
that could be used to assess the phantom materials’
behavior compared to real brain for fracture, friction
and time-dependency.

The transparency of gelatin and MCH makes the
materials suitable for the detailed investigation of tool-
tissue interactions close to the needle interface with
high resolution, which would not be possible with
typical material testing systems. This has allowed us to
better understand and model the complex mechanisms
during needle insertions that arise from frictional
interaction, large deformations and cutting. The results
demonstrate how differently phantom materials be-
have when tool-tissue interactions are investigated.
Since the elastic responses of gelatin and MCH were
initially matched to porcine brain, the observed dif-

ferences in forces, displacements and strains between
materials must stem from tool-tissue interactions,
crack formation, and the inner friction between the
needle and the developing crack.

The measured insertion forces are dependent on
fracture and frictional properties. The difference
between forces required for insertion and reinsertion
highlights the contribution of cutting to the insertion
force profile. The close match between brain and ge-
latin for insertion and reinsertion indicate similar inner
friction between needle shaft and the material and a
similar resistance to cutting. Despite the observation
that both materials have contrasting fracture behavior,
the force required for the needle to cut proves to be
similar due to similar fracture toughness. The forces
observed for MCH are overall significantly lower. At
insertion, the low fracture toughness causes low resis-
tance and immediate puncture. The significantly re-
duced frictional resistance, as can be observed after
through puncture, is partly due to the separate phase
network of MCH; PVA dissolved as a filler phase
produces a thin wet film between the needle and the
material.

The higher friction of gelatin causes the material to
be dragged further, with the needle and its higher
toughness causing significantly higher strains at the
needle tip than in MCH (Fig. 7). Due to such inter-
actions, regions further into the substrate and away
from the needle are affected and boundary conditions
become more important.

Thus, with the same needle, and with the elastic
behavior of phantoms matched at small strains, final
configurations around the needle can be divergent at
the end of the insertion. This is demonstrated by the
higher axial displacements in gelatin due to higher
friction, but lower radial displacements than for MCH.
The higher level of effective strain in gelatin is pri-
marily caused by the axial motion of the material to-
wards the bottom wall of the sample box, leading to
compressive axial strains.

TABLE 2. Values for the slopes of the transient responses between 10 and 30 s during which the needle was held stationary.

Transient slope (91022 s21) MCH Gelatin Brain

Force 20.392 20.116 20.516

Displacement 20.303 20.130 n/a

Strain 0.003 20.011 n/a

TABLE 1. Averaged final displacements and strains in both phantoms around the needle, at the deepest location after through
puncture.

Axial displacement (mm) Radial displacement (mm) Effective strain (%)

Gelatin 1.76 (0.45) 0.87 (0.30) 14.31 (3.04)

MCH 0.48 (0.22) 1.14 (0.10) 10.42 (0.65)
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Although gelatin matches brain well for interactions
due to friction and fracture, it does not capture tran-
sient responses of soft tissue due to its low viscous
nature. These results agree with the material charac-
terization discussed in ‘‘Materials’’ section. In com-

parison, MCH, with its composite structure, matches
the decrease in force of brain over time better because
of its close agreement in viscous properties to brain
(Fig. 1b). The same relationship between the two
phantoms can be observed in the displacements
(Fig. 8), which show a continuous drop in displace-
ments around the stationary needle when the substrate
is viscous. Over time, strains in the MCH around the
needle remain stable. This indicates little deformation
of the substrate along the shaft, as soon as the needle
comes to a stop.

Frictional properties of brain were best matched by
gelatin. However, gelatin showed a more brittle frac-
ture behavior than brain, which could lead to different
strains distributions close to the needle, than within
soft tissue. This would need to be taken into account
when selecting a phantom for investigations where
these phenomena are important, e.g., flexible needles
used to steer within tissue, since these rely on strains at
their tip to flex and cut.

The transient response of brain in the needle sur-
roundings is best matched by MCH. Since medical
interventions involve some form of delivery (e.g., deep
brain stimulation, brachytherapy) or removal (e.g.,
biopsy), the changing state around a stationary needle
may be pertinent. This may be of particular impor-
tance if the procedure relies on pre-operative imaging
or if the frequency of image acquisition is low. Thus,
for studies that investigate medical procedures
involving time-dependent interactions, consideration
must be made as to whether viscous effects are negli-
gible or not. The modified preparation procedure of
MCH showed much lower stresses and strains at the
point of failure than for CH, leading to low resistance
to cutting by the needle.

All of these findings are succinctly summarized in
Table 3, which provides a straightforward guide to
material selection, given the intended application,
required phantom characteristics, and experimental
scenario. Indeed, while none of the materials analyzed
match the behavior of biological soft tissue in full, each
type presents valuable attributes (stiffness, viscosity,
transparency, etc.) which, if suitably paired to a given

TABLE 3. Summary table for the comparison of the investigated phantom materials with brain tissue.

Matching criterion Gelatin CH MCH

Stiffness 4 4 4

Relaxation 4 4

Inner friction 4 n/a

Fracture resistance 4

Transparency Yes No Yes

Example application Quasi-static scenarios e.g.,

surgical needle steering

Highest fidelity e.g., brain

shift simulation4
Dynamic scenarios e.g., tool-tissue

interaction experiments

The tick mark indicates the satisfactory mimicking of the respective material behavior of real tissue.

FIGURE 8. Means of the normalized time responses whilst
the needle was held in position after travelling through the
samples. For insertions into porcine brain, only force data
exists.
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problem, should provide the degree of fidelity required
to reduce our reliance on ex vivo testing.

CONCLUSIONS AND OUTLOOK

Gelatin and composite hydrogels are often used in a
variety of experiments, which aim to assess the per-
formance of instruments within biological soft tissue.
However, works in the literature capture a wide spread
in the results based on these synthetic media, likely
because of the necessity to tune their performance to
match tissue characteristics. In this work, we have
strived to evaluate the performance of composite
hydrogels and gelatin against a number of material
properties, with the aim to provide the reader with a
key to the selection process, based on their intended
experimental setup and end goal.

The investigated materials were shown to perform
differently in terms of several material parameters that
influence tool-tissue interactions. Gelatin, which is the
most commonly used phantom material in the litera-
ture, showed similar behavior to brain during cutting,
but low viscoelasticity. The composition of CH can
potentially be tuned to match any of the tissue char-
acteristics, but is opaque and thus of limited value in
experimental scenarios where line of site is important.
MCH, with its transparency and better viscous prop-
erties compared to gelatin, can be used for detailed
interaction studies, but showed low cutting resistance.

In summary, gelatin and composite hydrogels match
different characteristics of brain during needle insertions,
but neither is a perfect substitute for mimicking its
complete behavior. Thus, the selection of phantom
materials should be informedby both the specialmaterial
properties of the soft tissue reference and the complex
needle-tissue interactions needing to be replicated. This
ensures that findings generated with these substitute
materials better reflect real life conditions. New devel-
opments, such as those in the areas of tool design or
needle control, must be extensively investigated using
methodologies that are independent of tissue-specific
variations. A better understanding of brain-mimicking
phantoms can potentially accelerate this process.
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