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The authors wish to replace Tables 2—4 and Fig. 1 in
the original publication with those shown below.

Table 2 shows corrected ecigenvalue results for
Jacobian matrices computed with ADiMat' or Mat-
lab’s symbolic toolkit and cross-checked against Mat-
lab’s symbolic toolkit or its numjac function. The
units have been standardized to ms~'. Figure 1 shows
the corrected plot for the model of Pandit et al.
(2003).> The model of Winslow ez al. (1999) used in
this paper is a reduced model of 31 variables,” obtained
by removing the variables for the intracellular sodium
concentration and one of the calcium concentration
handling mechanisms from the full model.* These
corrections do not materially affect the original anal-
ysis of the results.

Table 3 shows updated and corrected step-size and
timing results for the forward Euler (FE), Rush—Larsen
(RL), and second-order generalized Rush-Larsen
(GRL2) methods. The timings reflect execution in
Matlab Version 7.10.0.499 (R2010a) on an HP Z400
with an Intel Xeon W3520 2.66 GHz quad-core pro-
cessor with 16 GB DDR3 RAM running 64-bit
Ubuntu 9.04. Timings represent the minimum CPU
time of 100 runs for all models. Reference solutions
were computed using Matlab’s odel5s with a
decreasing set of tolerances; convergence to 7-10 sig-
nificant digits was observed for all models at 100
equally spaced points in the interval of integration. The
code JSim was able to verify 17 of the 37 models.
Relative root mean square (RRMS) errors were com-
puted at 100 equally spaced points, using appropriate
interpolation when necessary. The results indicate that
at 5% RRMS error, the RL method wins on 25 of the
37 cell models, while GRL2 wins 11 times, and FE
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wins once. This represents an increase of 7 wins for the
RL method (and a corresponding decrease of 3 wins
for the FE method and 4 wins for the GRL2 method,
respectively) from the original report. At 1% RRMS
error, the RL method wins 31 times, GRL2 wins 5
times, and FE wins once. This is an increase of 15 wins
for the RL method (and a corresponding decrease of 6
wins for the FE method and 9 wins for the GRL2
method, respectively). The conclusion remains that
GRL2 is most effective in only the stiffest situations,
i.e., when the eigenvalues of the Jacobian and the
accuracy required combine to restrict the time step size
on the basis of stability. Otherwise, the RL method is
the method of choice because it exhibits the best
combination of stability and computational expense
per step for moderately stiff situations, into which
most cell models fall for typical accuracy requirements.
The FE method is the most inexpensive per step;
however its stability properties are so poor that it is
only effective in the least stiff (and usually least realistic)
situations, in this case, only the FitzHugh—Nagumo
model.

The corrected results from the use of the backward
Euler (BE) method are as follows. We find that the BE
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FIGURE 1. Extreme eigenvalues of the model of Pandit et al.
(2003).
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TABLE 2. Extreme values of the eigenvalues for each model (in ms™).
Model min(Re(1)) max(Re(1)) min(/m(2)) max(/m(4)) % Complex
Beeler—Reuter (1977) —8.20E+1 1.55E-2 —1.97E+0 1.97E+0 45
Bondarenko et al. (2004) —8.49E+3 4.51E+0 —2.80E+0 2.80E+0 53
Courtemanche et al. (1998) —1.29E+2 1.87E-1 —4.50E+0 4.50E+0 82
Demir et al. (1994) —3.80E+1 4.79E-1 —7.95E-2 7.95E-2 74
Demir et al. (1999) —3.82E+1 4.81E-1 —7.95E-2 7.95E-2 72
DiFrancesco—Noble (1985) —2.63E+1 1.88E+0 —6.14E—-1 6.14E—1 56
Dokos et al. (1996) —2.99E+1 5.06E—1 —1.19E—1 1.19E-1 97
Faber—Rudy (2000) —1.84E+2 1.37E-2 —5.61E-1 5.61E-1 58
FitzHugh—-Nagumo (1961) —4.39E—1 1.78E-1 —4.59E-2 4.59E-2 28
Fox et al. (2002) —4.39E+2 4.44E-2 —4.19E—1 4.19E-1 65
Hilgemann—Noble (1987) —3.25E+1 1.58E-1 —2.25E—1 2.25E-1 25
Hund-Rudy (2004) —1.95E+2 9.22E-1 —3.74E+0 3.74E+0 62
Jafri et al. (1998) —4.42E+3 4.82E+0 —2.35E—1 2.35E-1 47
Luo—Rudy (1991) —1.51E+2 7.01E-2 —4.11E-2 411E-2 73
Maleckar et al. (2008) —4.16E+1 2.42E-1 —3.43E—1 3.43E-1 28
McAllister et al. (1975) —1.83E+2 1.49E+0 —3.02E+0 3.02E+0 68
Noble (1962) —9.80E+0 1.74E+0 —1.28E—1 1.28E-1 24
Noble—Noble (1984) —1.25E+1 4.77E-1 —1.03E—1 1.03E-1 92
Noble et al. (1991) —3.89E+1 4.35E+0 —1.72E—1 1.72E-1 20
Noble et al. (1998) —3.60E+1 5.71E+0 —2.35E—1 2.35E-1 47
Nygren et al. (1998) —4.03E+1 2.05E+0 —3.88E—1 3.88E—1 24
Pandit et al. (2001) —6.92E+3 4.30E+0 —1.43E+0 1.43E+0 12
Pandit et al. (2003) —7.54E+4 3.87E+0 —-9.11E—1 9.11E—1 35
Puglisi-Bers (2001) -1.91E+2 2.22E+0 —1.07E—1 1.07E-1 41
Sakmann et al. (2000)—Endocardial —2.97E+1 7.21E-1 —7.48E-2 7.48E-2 84
Sakmann et al. (2000)—Epicardial —2.96E+1 6.98E—1 —7.47E-2 7.47E-2 75
Sakmann et al. (2000)—M-cell —2.98E+1 1.98E+0 —7.58E-2 7.58E-2 72
Stewart et al. (2009) —1.38E—1 3.34E-3 —1.57E-3 1.57E-3 92
Ten Tusscher et al. (2004)—Endocardial —1.17E+3 1.01E-1 —4.64E+0 4.64E+0 17
Ten Tusscher et al. (2004)—Epicardial —1.17E+3 9.74E-2 —4.70E+0 4.70E+0 18
Ten Tusscher et al. (2004)—M-cell —1.17E+3 9.75E-2 —4.70E+0 4.70E+0 21
Ten Tusscher et al. (2006)—Endocardial —1.26E+3 4.00E+0 —4.77E+0 —4.77E+0 50
Ten Tusscher et al. (2006)—Epicardial —9.44E+2 2.84E+0 —5.01E+0 5.01E+0 51
Ten Tusscher et al. (2006)—M-cell —9.81E+2 4.36E+0 —4.64E+0 4.64E+0 34
Wang-Sobie (2008) —1.23E+2 1.23E+0 —1.24E+0 1.24E+0 46
Winslow et al. (1999) (31 variables) —1.84E+4 1.53E+0 —4.22E—1 4.22E-1 63
Zhang et al. (2000) —2.22E+1 1.29E-1 —1.00E—1 1.00E-1 89

The minimum real part of the set of eigenvalues is denoted min(Re(4)), and the maximum real part of the set of eigenvalues is denoted
max(Re(1)). Similarly, the minimum and maximum imaginary parts are denoted min(/m(4)) and max(/m(%)). The percentage of the solution
interval in which there is at least one pair of complex eigenvalues is also reported.

method takes about 4.16 s to solve the model of Pandit
et al. (2003). The fastest method, GRL2, is approxi-
mately 28 times faster than the BE method, at both 5%
and 1% RRMS error. This is a significant departure
from the speed of the BE method relative to the GRL2
method. As previously reported, the BE method also
did not win on any of the remaining models attempted.

Table 4 shows updated results of various type-
insensitive methods on four different models. A change
was made in the intervals of stiffness and non-stiffness
for the model of Bondarenko et al. (2004) to reflect the
stimulus start time. The results show that the type-
insensitive method that combines the GRL2 and FE
methods (GRL2-FE) is always the best performing,
with improvements ranging from 40% to over 6 times

faster than the most efficient single method. Similar
results hold at 1% RRMS error.

The data presented here continue to suggest that
most of the cell models considered are moderately stiff
for the typical accuracies required. A fully implicit stiff
solver such as the BE method offers no efficiency
improvement, even for the model of Pandit ef al.
(2003). As previously indicated, the RL method gen-
erally seems to strike the best balance between method
stability and ease of implementation. Although its
implementation is not entirely trivial, the GRL2
method strikes a similarly good balance for the stiffest
cell models. The utility of the recently proposed GRL2
method can also be seen from its performance as part

of a type-insensitive solver.
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TABLE 3. Step size, in milliseconds, and execution time, in seconds, of the three numerical methods using the largest step size
with less than 5% RRMS error.

FE RL GRL2

Model At Time At Time At Time

Beeler—Reuter (1977) 2.53E-2 4.39E-2 1.00E+0T 1.02E-3 1.00E+0f 5.90E-3
Bondarenko et al. (2004) 2.13E—-4 2.64E+0 2.13E-4 2.30E+0 2.85E-2 4.44E—1
Courtemanche et al. (1998) 1.94E-2 2.35E-1 2.00E+0f 2.25E-3 2.00E+0f 2.64E-2
Demir et al. (1994) 5.95E-2 1.82E-2 1.53E-1 6.19E-3 7.30E+0 3.30E-3
Demir et al. (1999) 5.98E-2 1.93E-2 1.53E-1 8.69E-3 7.30E+0 3.79E-3
DiFrancesco—Noble (1985) 7.92E-2 9.57E-2 2.65E+1 3.33E—4 1.50E+3 1.92E—-4
Dokos et al. (1996) 7.02E-2 3.33E-2 3.33E+0 6.80E—4 1.48E+1 3.74E-3
Faber—Rudy (2000) 1.12E-2 2.45E—-1 5.00E—1f 4.79E-3 5.00E—1f 1.09E-1
FitzHugh—-Nagumo (1961) 5.00E—1f 3.73E-4 N/A N/A 5.00E—1% 1.26E-3
Fox et al. (2002) 4.62E-3 3.53E-1 1.00E+0f 1.49E-3 1.00E+0f 2.12E-2
Hilgemann—Noble (1987) 6.25E-2 2.49E-2 8.06E-2 1.51E-2 7.31E+0 4.49E-3
Hund—-Rudy (2004) 1.11E-2 2.50E-1 1.90E—1 1.37E-2 3.89E-1 1.40E-1
Jafri et al. (1998) 5.76E—4 4.17E+0 5.33E—4 3.88E+0 1.03E-2 4.71E+0
Luo—Rudy (1991) 1.35E-2 1.50E-1 4.37E-1 4.13E-3 1.00E+0f 1.36E-2
Maleckar et al. (2008) 5.02E-2 9.49E-2 8.87E-2 4.60E-2 6.00E+07 1.85E—2
McAllister et al. (1975) 2.76E-2 8.33E-2 4.50E+0 5.23E—-4 2.19E+1 1.16E-3
Noble (1962) 2.12E—1 3.93E-3 2.05E+0 3.23E—-4 3.93E+0 1.01E-3
Noble—Noble (1984) 2.04E-1 6.66E—3 9.72E+0 2.02E-4 3.23E+1 8.96E—4
Noble et al. (1991) 5.15E-2 2.57E-2 1.53E-1 7.46E-3 1.84E+0 1.37E-2
Noble et al. (1998) 5.58E-2 6.03E-2 1.57E-1 1.97E-2 2.76E+0 2.32E-2
Nygren et al. (1998) 5.36E-2 1.11E-1 8.88E-2 5.87E-2 5.00E+07 2.45E-2
Pandit et al. (2001) 2.91E-4 5.90E+0 2.91E-4 5.13E+0 9.58E-2 3.02E—-1
Pandit et al. (2003) 2.65E-5 6.34E+1 2.65E-5 5.68E+1 1.96E-1 1.49E-1
Puglisi-Bers (2001) 1.08E-1 1.00E+0 4.99E-1 2.23E-2 7.14E-1 9.86E-2
Sakmann et al. (2000)—Endocardial 6.90E—-2 5.84E-2 2.36E—1 1.48E-2 3.00E+0f 2.58E-2
Sakmann et al. (2000)—Epicardial 6.90E-2 5.89E-2 2.36E—-1 1.48E-2 3.00E+0f 2.58E-2
Sakmann et al. (2000)—M-cell 6.86E—2 5.87E-2 2.36E—1 1.48E-2 3.00E+0f 2.61E-2
Stewart et al. (2009) 1.54E+1 5.05E—1 1.18E+3 6.13E-3 1.49E+3 8.59E-2
Ten Tusscher et al. (2004)—Endocardial 1.78E-3 2.10E+0 1.00E+0f 3.40E-3 1.00E+0f 5.81E-2
Ten Tusscher et al. (2004)—Epicardial 1.78E-3 2.14E+0 1.00E+0" 3.42E-3 1.00E+0f 5.87E-2
Ten Tusscher et al. (2004)—M-cell 1.76E-3 1.58E+0 1.00E+0f 2.54E-3 1.00E+0f 4.35E-2
Ten Tusscher et al. (2006)—Endocardial 1.62E-3 1.54E+0 9.45E—-1 2.42E-3 1.00E+0f 4.29E-2
Ten Tusscher et al. (2006)—Epicardial 2.14E-3 1.17E+0 1.00E+0' 2.31E-3 1.00E+0" 4.38E-2
Ten Tusscher et al. (2006)—M-cell 2.06E-3 1.22E+0 1.00E+0" 2.25E-3 1.00E+0f 4.20E-2
Wang-Sobie (2008) 1.66E-2 6.91E-2 5.27E-2 1.89E-2 6.14E-1 3.63E-2
Winslow et al. (1999) (31 variables) 1.07E-4 1.65E+1 1.07E-4 1.81E+1 5.27E-3 7.68E+0
Zhang et al. (2000) 9.97E-2 5.78E-2 3.77E+1 2.13E-4 1.00E+3 1.85E—4

Maximum allowable step sizes that were determined by the stimulus duration are indicated with a dagger.

TABLE 4. Stiffness intervals and execution time, in seconds, of type-insensitive methods using the largest step size with less
than 5% RRMS error.

Time
Model Stiff Interval Non-stiff Interval RL-FE GRL2-FE BE-FE
Bondarenko et al. (2004) [20,30] [0,20], [30,75] 7.10E—1 6.86E—2 1.01E+0
Jafri et al. (1998) [0,50] [50,300] 1.06E+0 1.04E+0 2.67E+0
Pandit et al. (2001) [105,125] [0,105], [125,250] 9.16E+0 9.94E-2 2.88E—1
Winslow et al. (1999) (31 variables) [0,50] [50,300] 3.02E+0 1.54E+0 4.38E+0
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