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Abstract—The direct infusion of macromolecules into defect
sites generally does not impart adequate physiological
responses. Without the protection of delivery systems,
inductive molecules may likely redistribute away from their
desired locale and are vulnerable to degradation. In order to
achieve efficacy, large doses supplied at interval time periods
are necessary, often at great expense and ensuing detrimental
side effects. The selection of a delivery system plays an
important role in the rate of re-growth and functionality of
regenerating tissue: not only do the release kinetics of
inductive molecules and their consequent bioactivities need
to be considered, but also how the delivery system interacts
and integrates with its surrounding host environment. In the
current review, we describe the means of release of macro-
molecules from hydrogels, polymeric microspheres, and
porous scaffolds along with the selection and utilization of
bioactive delivery systems in a variety of tissue-engineering
strategies.

Keywords—Recombinant proteins, Growth factors, Delivery
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INTRODUCTION

Strategies to promote the repair or regeneration
of diseased or absent tissue require an integrated
approach that provides the necessary multiple cues for
cells and tissues to develop adequate functionality. The
sustained presentation of bioactive macromolecules
such as growth factors and cytokines can stimulate
host cells to migrate, proliferate, and differentiate
toward a desired cell phenotype.11 Most proteins and
nucleotide sequences have short half-lives, and thus

need to be administered periodically if given as bolus
solution.6 Moreover, the systemic administration of
bioactive factors is costly, can induce an immunogenic
or other undesirable response by stimulating cells in a
distant site, and neglects the spatial organization of
drug gradients that are required by many tissues for
maximum regenerative potential. To address the limi-
tations of systemic delivery, biomacromolecules can be
associated with drug delivery devices, which enable
predictable control of the kinetics of therapeutic agent
release. Within this review, we highlight the predomi-
nant mechanisms of drug delivery in current devices
and provide recent examples of delivery strategies in
use for tissue regeneration.

DRUG DIFFUSION

Free Aqueous Diffusion

Diffusion governs the release of macromolecules
from the majority of controlled release systems. This
physical phenomenon refers to the random walk of
molecules resulting from thermal energy released from
molecular collisions. Despite the arbitrariness of the
molecular motion, a net transport of molecules from a
region of higher concentration to one of lower con-
centrations is observed macroscopically. Additionally,
transport ensuing from the bulk motion of fluids
within the release medium, or convection, can be of
importance at Péclet numbers (dimensionless group
representing the ratio of convective to diffusive trans-
port) greater than unity. At these instances where
system length is greater than diffusion length, addi-
tional kinetics will need to be considered. However,
this transport mechanism is beyond the scope of
this review and can be found described in detail
elsewhere.12,20,25
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Diffusion of solutes in an aqueous solution can be
described by the Stokes–Einstein equation. This cor-
relation often specifies macromolecule size in terms of
the hydrodynamic radius as an alternative to the
hypothetical hard sphere used in the initial assump-
tions of this equation. In practice, macromolecules
swell, solubilize, and demonstrate fluctuating confor-
mations.35 Thus, the hydrodynamic radius accurately
refers to the apparent size of the dynamic, hydrated
molecule.74 Equation (1) calculates the free bulk dif-
fusion coefficient as a function of the Boltzmann
constant (kB), absolute temperature (T), solvent
dynamic viscosity (l), and macromolecule hydrody-
namic radius (rH).

D ¼ kBTð Þ= 6plrHð Þ ð1Þ

This approach is not adequate for all proteins, specif-
ically proteins that significantly differ from a spherical
geometry. For particles such as rigid rods and ellip-
soids of revolution, equations relating hydrodynamic
radii to the actual molecular dimensions are described
by alternative relations.13,26,59,63

The free diffusion coefficient is predominantly
dependent upon solvent temperature, viscosity, and
solute size for particles diffusing in open solution. It is
ideal to directly measure the diffusion coefficient at the
same environmental conditions at which the majority
of the data is obtained. As an alternative to experi-
mental data, the Stokes–Einstein equation can be used
to relate unknown coefficients assessed at different
temperatures to known coefficients using Eq. (2).

D2 ¼ T2l1D1ð Þ= T1l2ð Þ ð2Þ

Table 1 lists free diffusion coefficients for several
proteins used as either models or inductive agents in
biomacromolecule delivery systems.

Diffusion Controlled Delivery Systems: Hydrogels

Materials for tissue regeneration can confer addi-
tional structural hindrances to diffusing solutes, and in
turn, notably affect the rate of diffusive transport.
Vehicles for biomacromolecule delivery in tissue engi-
neering often take the physical forms of hydrogels,
microspheres, and porous scaffolds. Hydrogels are
polymeric networks that imbibe large amounts of
water while remaining insoluble. Simple design
parameters such as molecular weight of the polymer,
crosslinking density, polymer–protein interactions, and
gel degradation rate can control the hydrogel structure
which, in turn, can affect diffusion coefficients.49 Dif-
fusion-controlled hydrogel delivery systems can be
classified as either reservoir or matrix systems (Fig. 1).
In a reservoir system, a core of biomacromolecules is
surrounded by an inert polymeric membrane. The drug
diffuses through the membrane at a controllable rate.
If the concentration of biomacromolecules within the
membrane is static, then the concentration gradient
throughout the membrane will be constant and the
reservoir system will provide a steady release rate of
solute. This occurs when the initial solution encapsu-
lated in the membrane is saturated, leading to zero-
order release kinetics.69 The release of solutes from
such a reservoir system is governed by Fick’s first law
of diffusion

J ¼ �DrC ð3Þ

where J is the flux of the solute, D the diffusion coef-
ficient of the solute in the membrane, and �C the
spatial gradient of solute concentration. To simplify
modeling, it is generally assumed that the drug diffu-
sion coefficient is constant in reservoir systems.49 As
mentioned above, the magnitude of diffusive flux is
driven by the concentration gradient across the mem-
brane. Macromolecule release rate can be determined
by calculating the product of the flux and the surface
area. For example, the release rate for cylindrical res-
ervoir systems is represented by

dM=dt ¼ 2pLDKDCð Þ= ln ro=rið Þ ð4Þ

where dM/dt is the release rate, L the length of the
cylinder, D the diffusion coefficient, K the partition
coefficient between membrane and core, DC the dif-
ference in concentration between the inside and outside
of the membrane, ro and ri are the outer and inner
radius of the membrane, respectively.50,96

For such membrane reservoir systems, release
kinetics are independent of molecular size or weight of
the active molecule. This is a great advantage, as the
same membrane scheme can be used for similar bio-
macromolecules without repeating release character-
ization measurements. However, reservoir systems are

TABLE 1. Literature values of diffusion coefficients in water
at 25 �C.

Protein

Dw
a

(91026 cm2/s)

rH
b

(nm)

MW

(9103)

Bovine chymotrypsinogen72 0.71 3.5 24.0

BSA97 0.72 3.4 66.5

Bovine hemoglobin97 0.84 2.9 68.0

Brain-derived neurotrophic

factor89
0.37 6.6 27.3

Epidermal growth factor93 1.3 1.9 6.60

Human immunoglobulin G65 0.38 6.5 146

Human immunoglobulin M65 0.18 14 970

NGF90 1.0 2.4 130

Porcine insulin97 1.3 1.8 5.80

VEGF 16517 0.52 4.7 19.0

aValues adjusted for temperature using Eq. (2).
bCalculated using Eq. (1).

H. E. DAVIS AND J. K. LEACH2



often susceptible to bulk release of their contents if
membrane flaws are present. Hence, stringent manu-
facturing procedures are necessary to ensure appro-
priate drug diffusion.

In a matrix system, the biomacromolecule is initially
distributed homogeneously throughout the construct’s
volume. If a constant diffusion coefficient (D) is
assumed, one-dimensional diffusion can be modeled
using Fick’s second law of diffusion61

dC=dt ¼ D d2C=dx2
� �

ð5Þ

Several important assumptions are associated with
Eq. (5) including (1) the hydrogel is highly swollen
such that the solutes are significantly smaller than the
thickness of the system; (2) the diffusivity of the sol-
ute is constant throughout the construct’s volume;
(3) degradation of the matrix is negligible; (4) perfect
sink conditions are preserved; and (5) absence of solute–
carrier interactions.82 If the initial drug concentration in
the matrix is much higher than its solubility, steady-
state kinetics can be assumed for the initial portion of

the release curve. Diffusion coefficients can be deter-
mined experimentally (Table 2) and, with the appro-
priate boundary conditions, Eq. (5) can be solved. For
the simplest geometry of a matrix system, a slab with a
thickness, L, the following boundary conditions apply

t ¼ 0 �L=2<x<L=2 C ¼ C1

t>0 x� L=2 C ¼ C0

where C1 is the initial uniform drug concentration and
C0 is the concentration of drug present in the bulk
solution outside of the construct.71 Solving Fick’s
second law of diffusion using the separation of vari-
ables technique leads to the analytical solution

Mt=M1 ¼ 1�
X1

n¼1
8= 2nþ 1ð Þ2p2
� �

� exp � 2nþ 1ð Þ2p2Dt=L2
h i

ð6Þ

where Mt is the mass of biomacromolecule released
at time t and M¥ is the final amount of molecule
released which approaches C1 as time goes to infinity.

FIGURE 1. The sustained release of macromolecules is achieved by incorporation in reservoir or matrix systems. (a) Delivery
from a reservoir system can be tailored by adjusting the properties of the rate-controlling membrane including thickness and
porosity. (b) Delivery from a matrix system representing uniform initial distribution throughout the polymer phase.
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Equation (6) can be recast in a more familiar form as
an error function series5,22,23

Mt=M1¼ 4 Dt=L2
� �0:5

� p�0:5þ2
X1

n¼1
�1ð Þnierfc nL

.
2 Dtð Þ0:5
� �� �

$ %

ð7Þ

For short times, the equation is reduced to the first
term in the brackets and Eq. (7) becomes

Mt=M1 ¼ 4 Dt
�

pL2
� �� �0:5 ð8Þ

It is important to note that this approximation is only
valid for the first 60% of drug released.71 Thus, at
short times, the fraction of protein released is directly
proportional to some constant multiplied by the square
root of time. If biomacromolecule delivery for a simple
slab matrix system was independent of time, zero-order
release kinetics would be observed.

Most matrix systems can be characterized by both
Fickian and non-Fickian diffusion schemes. A gener-
alization of these transport mechanisms is given by the
power law, first applied to matrix systems by Peppas60

Mt=M1 ¼ k� tn ð9Þ

where k is a constant that is determined by the structural
and geometrical characteristics of the release device and
n is the ‘release exponent,’ which represents the joint
contributions of both Fickian and zero-order diffusion
mechanisms involved in protein release. For slabs, the
system is purely diffusion-controlled for n = 0.5,
whereas for n = 1, the release mechanism is governed by
zero-order kinetics. Due to the initial assumptions
present in Eq. (9), the power law is only valid for the
initial 60% of the release profile. Additionally, k and
n are not independent of geometry and thus cylindrical
and spherical systems will have different interpretations
of these variables.82 However, Eq. (9) represents a sim-
ple and comprehensive method of describing the general
biomacromolecule release profile from matrix systems.

Although diffusion-controlled release kinetics are
the most widely applicable to drug delivery from

matrix systems, there are numerous other mechanisms
of biomacromolecule release from hydrogels present
in the literature. Swelling-controlled, chemically con-
trolled, temperature-, pH-, magnetic-, and electric-
sensitive hydrogel release systems have all been
extensively studied. Several thorough reviews are
available on these subjects.4,6,49

Diffusion-Controlled Delivery Systems: Microspheres

Polymeric microspheres are a common type of
controlled-release device and have received consider-
able interest from the pharmaceutical industry as a
vehicle for optimizing local drug concentrations and
increasing patient compliance.21 Microspheres com-
posed of poly(lactide-co-glycolide) (PLG) are com-
monly used due to their lack of toxicity,
biocompatibility, and biodegradability.8 PLG micro-
spheres are capable of entrapping both hydrophobic
and hydrophilic biomacromolecules as determined by
fabrication procedure: an oil-in-water (o/w) emulsion/
solvent evaporation technique encapsulates hydro-
phobic materials while hydrophilic solutes can be
entrapped by the water–oil-in-water (w/o/w) tech-
nique.41,100 The properties of synthetic polymer
microspheres including polymer molecular weight and
composition are highly tailorable, thus enabling
the tight regulation and control of protein delivery.57

Although the importance of PLG-based controlled
release biomacromolecule systems is steadily increasing,
as evidenced by the number of PLG-based microparti-
cles available on the market, the transport mechanisms
of drug release have yet to be fully elucidated.45

Recent studies have suggested that the dominant
mechanism for protein release through a homogeneous
polymer phase is due to diffusion of the drug. Math-
ematical models using solutions to Fick’s second law
for a spherical geometry correlate well to experimen-
tally obtained release profiles.32,45 However, a purely
diffusion-based model fails to account for the initial
burst release of proteins. As an attempt to reconcile
this difference along with obtaining an even more
robust and versatile predictor of molecule release,

TABLE 2. Selected literature values of effective diffusion coefficients of proteins through hydrogels.

Protein De (91026 cm2/s) System

BSA 0.46 Low molecular weight calcium–alginate gel at 25 �C2

BSA 0.45 Glycidyl methacrylate modified hyaluronic acid gel at 37 �C47

BSA 0.014 Poly(ethylene glycol)-diacrylate gel at 25 �C62

BMP-2 2.9E24 Poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate gel at 37 �C58

Insulin-like growth

factor I

1.59 Fibrin gel at 25 �C55

Myoglobin 0.064 Poly(ethylene glycol) diacrylate gel at 37 �C24

NGF 0.78 Agarose gel at 25 �C15
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various models such as the Higuchi equation were
formed that accounted for diffusion, polymer degra-
dation, and microsphere size distribution.8,66 Although
these models yielded a more precise fit to experimental
data, they failed to adequately relate the initial burst
release of proteins to a transport mechanism.

Diffusion-Controlled Delivery Systems:
Porous Scaffolds

The accurate characterization and modeling of
protein release from and within porous scaffolds is
complex, as there are many variables that can affect
diffusion including polymer degradation, matrix crys-
tallinity, porosity, geometry, or other mass transport
or chemical phenomena.81 When the concentration of
drug molecules within a porous matrix exceeds drug
solubility in the aqueous solution, a moving boundary
between dissolved and dispersed drug may arise. A
pseudo-steady-state model of Higuchi has been modi-
fied to describe these systems77

Mt ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DeffCS 2CA � eCSð Þt

p
ð10Þ

where Deff is the effective diffusion coefficient, A the
surface area for release, CS the solubility of the macro-
molecule in the aqueous medium, CA the initial amount
of molecule present per unit volume of the matrix, e the
scaffold porosity, and t is time. Saltzman and Langer78

used percolation theory to describe effective diffusion
coefficients for protein transport through non-biode-
gradable, porous matrices in the context of Fick’s sec-
ond law. For biodegradable systems where porosity
increases with time, Monte Carlo methods have been
employed to achieve a more accurate, stochastic
description of biomacromolecule diffusion.80 Recently,
a model has been proposed that describes both surface
and bulk erosion as a means to determine effective dif-
fusion coefficients.73 Although no model has been
developed that accounts for all of the important pro-
cesses involved in diffusion from porous scaffolds, these
models save time and effort when characterizing bio-
macromolecule release from porous systems.

CONTROLLED DRUG DELIVERY SYSTEM

STRATEGIES

Particulate Systems

Particulate systems, which include microparticles
(1–1000 lm) and nanoparticles (1–1000 nm), do not
require major surgical procedures for implantation.84

These systems have been developed as an alternative to
scaffolds and hydrogels to deliver biomacromolecules
in a minimally invasive manner. Advantages of these

systems are numerous: they can be evenly dispersed
into a target tissue avoiding drug gradients, size dis-
tribution of the particles is easily controlled, the par-
ticles may have pores allowing for variable release
kinetics, and each particle has a high mass ratio of
biomacromolecule to polymer.34,86 However, particu-
late systems are not desirable for all tissue engineering
applications, as the particles will not remain in the
proximal locales for tissues subjected to high fluid
shear stresses. Still, particulate systems have found
numerous applications in tissue-engineering drug
delivery schemes.7,39,79,99

Particulate systems can be prepared from naturally
occurring polymers such as cellulose, alginate, chitin,
and chitosan or with synthetic polymers such as PLA
and PLG.9,28,36 Alginate beads were among the first
particulate systems and can be fabricated by extruding
alginate solutions into a solvent containing divalent
cations, with calcium being the most widespread.51

However, Jay and Saltzman40 recently demonstrated
that varying the type and concentration of ionic
crosslinker allowed for additional control over VEGF
release from small alginate microparticles. Using
spherical release assumptions, they fit VEGF release
profiles obtained by ELISA to Eq. (9) and demon-
strated that release from 700 mM CaCl2-crosslinked
particles was anomalous (non-Fickian diffusion),
whereas release from 700 mM ZnCl2-crosslinked par-
ticles was governed by super case II transport (poly-
meric erosion). The conventional model for diffusion
of macromolecules through Ca–alginate beads is the
spherical variant of Eq. (3), which accurately predicts
release rates for small proteins not severely influenced
by charge and pH of the alginate matrix, such as
insulin.67 Larger proteins require the addition of con-
vective terms to Eq. (3) to reflect initial bead shrinkage
during curing and subsequent swelling once placed in a
physiological-buffered solution in order to avoid
under-estimating diffusion coefficients. Thus, alginate
beads may be ideal for dual delivery systems, as two
proteins of varying size will demonstrate vastly dif-
ferent release kinetics. Alginate’s relatively mild gela-
tion process has enabled both proteins and cells to be
incorporated into particles with retention of full bio-
logical activity. Moreover, pore size and degradation
rate can be controlled by varying the purity and type of
alginate and surface coating agent.44,68 Elcin et al.29

delivered vascular endothelial growth factor (VEGF)
via alginate microspheres to a rat subcutaneously. The
defect site had increased neovascularization over the
control at 3 weeks, demonstrating that biological
activity of the growth factor was preserved.

An especially exciting application for PLG micro-
spheres may be for the controlled delivery of growth
factors in the central nervous system to combat

Designing Bioactive Delivery Systems for Tissue Regeneration 5



neurodegenerative diseases such as Alzheimer’s or
Parkinson’s using direct brain implantation.30,104

Recently, PLG microparticles were functionalized by
incorporating palmitic acid on the surface to facilitate
the attachment of biotinylated ligands.31 Thus, tar-
geting ligands such as antibodies can potentially be
attached to microparticles and direct growth factors to
diseased brain tissue sites.

Hydrogel Matrices

The simplest technique to add proteins to hydrogel
systems is through direct loading into the polymeric
matrices (Fig. 2a). Since protein release is generally
diffusion-controlled through aqueous pores within the
hydrogel, these systems only allow for drug release
over short periods of time. Typical release profiles
demonstrate a rapid burst while the hydrogel imbibes
water, followed by the continued discharge of the
remaining protein as the gel network relaxes.38,52

Varying cross-linking densities can easily lead to
modified release profiles.49 Other methods of tailoring
release kinetics in direct loading systems include
altering the hydrogel microenvironment by controlling
factors such as temperature, pH, or ionic strength. For
example, Yamamoto et al.102 demonstrated that gela-
tin hydrogels with a lower isoelectric point better
retained basic fibroblast growth factor (bFGF) and
transforming growth factor-b1 (TGF-b1) compared to
basic gelatin hydrogels.

An interesting variation on direct loading of pro-
teins within a hydrogel is to deliver cells and multiple

growth factors concurrently. Simmons et al.85 loaded
growth factors for bone generation directly into RGD-
modified alginate matrices at physiological concentra-
tions along with rat bone marrow stromal cells. When
a single growth factor was delivered alone, either bone
morphogenetic protein-2 (BMP-2) or transforming
growth factor-b3 (TGF-b3), little bone formation was
observed. Such results were not unusual, as prior
studies demonstrated that bone regeneration with
delivery of a single growth factor required supraphys-
iological protein concentrations.75 However, the
simultaneous delivery of BMP-2 and TGF-b3 resulted
in enhanced bone formation. Perhaps less growth
factor was necessary since the diffusion path length to
bone progenitor cells was shorter, or delivering multi-
ple growth factors has synergistic effects on cell
differentiation. Altogether, this study describes a
powerful tool for overcoming the shortcomings of
directly loaded gels and can be employed in other
polymeric delivery devices to improve cell response.

The early release burst effect can be mitigated by
fabricating hydrogels with biomacromolecules bonded
to the polymeric architecture (Fig. 2b). Andrades
et al.3 produced recombinant fusion proteins of TGF-
b1 that possessed an auxiliary von Willebrand fac-
tor-derived collagen binding domain that allowed non-
covalent immobilization within collagen type I-based
materials. Compared to native TGF-b1, the incorpo-
ration of this fusion protein resulted in higher levels of
migration, growth, and differentiation of murine bone
marrow mesenchymal cells in collagen gels. In a similar
approach, Sakiyama and Hubbell76 developed a fibrin-
based heparin-containing delivery system to modulate
the release of beta-nerve growth factor (b-NGF).
Heparin binding sites were covalently bonded to the
fibrin hydrogel using the transglutaminase activity of
factor XIIIa resulting in the immobilization of heparin.
The growth factor bound non-covalently to the hepa-
rin, allowing for the slow diffusion-based release of
b-NGF. These systems showed enhanced neurite
extension over free neurotrophins (NTs) directly loa-
ded into fibrin matrices. However, since this study was
conducted in vitro, the biological activity of the
immobilized proteins in the physiological environment
remains undefined. Enzymatic cleavage of both hepa-
rin and growth factors may result in varying release
and inactivation rates. Tethering of growth factors to
the polymer backbone (Fig. 2c) has been successfully
employed for other macromolecules including BMP-2,
VEGF, TGF-b1, and platelet-derived growth factor
(PDGF).1,33,64

For long-term applications, it may be necessary to
maintain control over protein activity and stability in
order to maximize their inductive potential and
resulting regenerative benefits. To achieve these goals,

FIGURE 2. Schematic representation of common methods
of macromolecule incorporation into hydrogel systems for
controlled release and presentation. (a) Direct loading.
(b) Immobilization through bonding to the polymer backbone.
(c) Tethering of proteins to the polymer chains by linking with
bi-domain peptides. (d) Encapsulation of macromolecules
within particulate systems for subsequent mixture within the
hydrogel.
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separate release systems can be incorporated into
hydrogels (Figs. 2d and 3). Often these secondary
release systems take the form of micro- or nanoparti-
cles and can be directly loaded into the pre-gelled
solution. This strategy also enables the sustained
delivery of multiple proteins with distinct temporal
sequences. Burdick et al.14 encapsulated NT-3 in
degradable microspheres of PLGA which were then
directly loaded into the poly(ethylene glycol) (PEG)
hydrogel phase containing ciliary-neurotrophic factor
(CNTF). Release profiles demonstrated rapid release
of CNTF in the hydrogel phase and a slower, contin-
uous release of NT-3 from the degradable micro-
spheres. It is easily envisioned that these release
kinetics can be tailored by altering the polymer
chemistry, molecular weight, and size of the micro-
spheres or the cross-linking density or molecular
weight of the hydrogel. Healthy tissue formation is
regulated by multiple soluble cues that are presented
over varying temporal durations. By employing further
hydrogel modification techniques, such as covalently
bonding factors to the hydrogel polymer, more signals
can be delivered at different time sequences. These
composite systems possess the potential to more

accurately mimic the biological cues that occur natu-
rally in vivo.

Porous Polymer Scaffolds

Formation of growth factor-loaded porous solid
scaffolds can be attained through several approaches.
The main strategies involve either one step direct for-
mation of growth factor-loaded scaffolds or formation
of microspheres with encapsulated protein which can
then be compression molded and fused to form scaf-
folds. Degradation time and mechanical properties of
these tissues should match the speed of regeneration
for its appropriate tissue. Complete reviews of mate-
rials and scaffold processing techniques can be found
elsewhere.46,87

Mooney et al.53 were the first to produce porous
polymeric matrices by means of saturating disks of
PLG with carbon dioxide gas at high pressure. By
combining this process with particulate leaching tech-
niques, matrices with a well-controlled porosity and
interconnectivity were fabricated, avoiding the con-
cerns of using high temperatures and organic solvents
that were necessary for conventional strategies for
forming porous matrices.37 The improved fabrication
conditions enabled the sustained release of inductive
growth factors from these matrices. The potent
angiogenic factor, VEGF, was incorporated into gas-
foamed scaffolds using two schemes: (1) covalent
association of the protein through lyophilization with
the polymer prior to scaffold formation; and (2)
encapsulating the growth factor in microparticles and
then fabricating the scaffold from drug-loaded micro-
spheres. Richardson et al.70 capitalized on this
increased functionality by delivering multiple angio-
genic factors with distinct release profiles. PDGF was
encapsulated within the microspheres, whereas VEGF
was incorporated into the bulk phase of the scaffold.
Figure 4 illustrates schematically the dual growth fac-
tor delivery system reported by Richardson et al. These
dual-release scaffolds led to an enhanced amount of
vessel formation and maturation in vivo. This study
demonstrated that regulating local delivery of multiple
growth factors led to a more fully developed capillary
network. This concept has wide applicability to other
inductive factors and tissues and represents a strategy
that should be applied to future tissue-engineering
technologies.

The formation of scaffolds using electrospinning
techniques enables the encapsulation and embedding
of proteins into fibers using coaxial and emulsion
fabrication procedures.83 These matrices possess a high
surface area, which allows for high drug loadings.
Chew et al.19 mixed human NGF in a copolymer of
e-caprolactone and ethyl ethylene phosphate in

FIGURE 3. Protein release can be modulated by fabricating
particulate/hydrogel composite systems or varying the
hydrogel composition. (a) Alginate gels containing 0, 2.5, 5,
and 10 mg PLG microspheres/mL of gel (from left to right). (b)
The release of microsphere-encapsulated protein entrapped
in alginate gels is controlled by varying the alginate concen-
tration.
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dichloromethane, yielding a protein–polymer suspen-
sion prior to electrospinning. The resulting fibers
demonstrated randomly distributed proteins through-
out their volumes. After a moderate burst of approx-
imately 20% of the total incorporated NGF, the
protein was released in a controlled fashion via diffu-
sion. Zhang et al.103 reported a dramatic reduction in
the burst effect, coupled with an extended duration of
sustained release, by loading proteins into the cores of
coaxial fibers. Although the release kinetics were still
primarily governed by diffusion as in the embedded
systems, the core-loaded fibers behaved more similarly
to reservoir devices. This technique also avoids
extended protein exposure to harsh organic solvents
necessary for blend-electrospinning processes, repre-
senting another advantage for this method. The utility
of scaffolds fabricated with this technique is limited to
certain tissues due to the mechanical properties of the
resulting matrices. However, this process has emerged
as a valuable tool to tailor protein release kinetics.

In addition to incorporating biomacromolecules
directly into the structure of a scaffold, alternative
methods have been used to gain further control over
localized delivery. Surface coatings can be used to not
only increase the incorporation efficiency of the protein
at the scaffold’s exterior, but also to encourage

increased cell interaction with the scaffold.27,101 Col-
lagen-coated scaffolds have been fabricated as a means
for encouraging cell attachment as well as delivering
growth factors rapidly after implantation (Fig. 5).48

However, the submersion of substrates into protein
solutions yields only small amounts of adsorbed pro-
tein. As an alternative, biomacromolecules can be
conjugated to the surface of a scaffold, hence pro-
longing the release kinetics. Jeon et al.42 covalently
bound heparin to the surface of PLG scaffolds using
carbodiimide chemistry which, in turn, enabled the
linkage of BMP-2. These surface-functionalized scaf-
folds induced bone formation to a much greater degree
than directly loaded BMP-2 scaffolds, likely due to
factor retention at the cell surface and continued
stimulation, suggesting surface tethering as another
important strategy for tissue regeneration.

As an alternative to stiffer biodegradable polyesters,
elastomers such as poly(glycerol-co-sebacate) and tri-
methylene carbonate have gained popularity because
they can provide stability and structural integrity
within a mechanically dynamic environment without
irritation to host tissues while exhibiting mechanical
properties similar to those of soft tissues.56,98

These biomaterials have potential applications in
tissue engineering and drug delivery toward the

FIGURE 4. Biomacromolecule release kinetics can be controlled by the incorporation method and location within the substrate.
(a) Growth factors and cytokines are encapsulated within polymeric microspheres and subsequently used to fabricate porous
scaffolds. The protein is embedded more deeply within the biomaterial, and release is dependent upon polymer degradation and/or
diffusion through the polymer layer and transport through the porous structure. (b) The covalent association of the protein with the
biomaterial results in the macromolecule residing on or near the pores of the substrate and yields more rapid release.
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development of small-diameter vascular grafts,54,88

cardiac patches,18 nerve conduits,91 and urological
applications.94 Reservoir-based elastomeric devices
were fabricated from poly(glycerol-co-sebacate) for
sustained antibiotic release over 10 days.94 Orifices of
varying diameters were drilled into the polymer using
an excimer laser microablation technique to facilitate
ciprofloxacin release. The release rate was dependent
on orifice size, with orifice diameters of 100–150 lm
achieving zero-order release kinetics. Poly(trimethyl-
ene carbonate) was used to release two common
inductive proteins, VEGF and hepatocyte growth
factor, over 10 days.16 The highly bioactive proteins
could be delivered simultaneously with similar, con-
trolled release kinetics, or sequentially when entrapped
separately within a dual-layered cylinder. The release
kinetics were controlled by varying elastomer cross-
linking density, achieved by modulating prepolymer
molecular weight and resulting mechanical properties
of the elastomer. Importantly, the great majority of
protein is released from these surface-eroding materials
prior to substantial mass loss and mechanical failure,
potentially providing advantages to other materials
such as PLGA for use in tissue repair.

METHODS TO INCREASE PROTEIN STABILITY

The production of biodegradable drug delivery
devices containing stable, therapeutic proteins remains
a major challenge. For example, encapsulation of fac-
tors in PLG devices using a double emulsion method
leads to denaturing of secondary and tertiary structures
due to protein–organic solvent and protein–polymer
hydrophobic interactions.92 Additionally, when the
polymer degrades over time, acidic degradation prod-
ucts result in further protein destabilization.43,95

Schwendeman and colleagues105 addressed this limita-
tion by co-incorporating magnesium hydroxide; a
strategy that maintained structure and function of

encapsulated bovine serum albumin (BSA), bFGF, and
BMP-2. For protein incorporation into hydrogels,
bioactive factors risk denaturing while unprotected in
the pre-gelled solution, and the addition of chemical
initiators and free radicals can affect the biological
activity of the proteins. Approaches to overcoming
protein instability include chemically modifying the
protein (e.g., PEGylation) or using additives such as
sugars, salts, or other molecules to preferentially
hydrate the native protein back to its native conforma-
tion.10 Although this technique is protein and polymer
dependent, as varying protein isoelectric points will
affect outcomes, it emphasizes a need for investigators to
consider environmental variables before blindly adding
proteins to polymer devices for delivery.

OUTLOOK AND CONCLUSION

Controlled delivery of biomacromolecules is
emerging as an important component of the field of
tissue engineering and regenerative medicine, as deliv-
ering matrices and cells alone may not be sufficient to
recapitulate all aspects of healthy tissue. In particular,
aspects of tissue formation (e.g., cell differentiation)
that have been shown during normal development to
depend on specifically timed delivery of soluble
inductive factors may especially benefit from such
controlled delivery approaches. Designing systems for
macromolecule delivery is not a simple task, as differ-
ent tissues require the presentation of various factors
at specific times, thereby necessitating distinct release
profiles. Although drug delivery devices now possess
the potential to deliver multiple growth factors, addi-
tional research is merited to generate a sufficient
understanding of the necessary temporal patterns of
presentation to neighboring cells. Additionally, further
studies must be conducted on delivery systems that can
target intracellular compartments of tissues, as this
would avoid biomacromolecule waste and increase the

FIGURE 5. Biomacromolecule release rate can be tailored by depositing a coating on the delivery vehicle as observed with
scanning electron microscopy. (a) Macroporous scaffold composed of PLG exhibits a range of pore sizes to enable drug release,
cellular invasion, and nutrient transport. (b) Many smaller pores are occluded upon coating the scaffold with a collagen solution.
8003 magnification; scale bar represents 50 lm.
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system efficacy. The development of new approaches to
combat the ‘‘burst release’’ phenomenon is necessary,
as well as techniques to bridge the disconnect between
theoretical and experimental studies of drug delivery.
Controlled biomacromolecule devices have signifi-
cantly advanced the field of tissue engineering during
their brief existence, and an increased understanding of
the needs of each tissue will only enhance their impact.
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