Skip to main content

Advertisement

Log in

Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Elective repair of abdominal aortic aneurysm (AAA) is warranted when the risk of rupture exceeds that of surgery, and is mostly based on the AAA size as a crude rupture predictor. A methodology based on biomechanical considerations for a reliable patient-specific prediction of AAA risk of rupture is presented. Fluid–structure interaction (FSI) simulations conducted in models reconstructed from CT scans of patients who had contained ruptured AAA (rAAA) predicted the rupture location based on mapping of the stresses developing within the aneurysmal wall, additionally showing that a smaller rAAA presented a higher rupture risk. By providing refined means to estimate the risk of rupture, the methodology may have a major impact on diagnostics and treatment of AAA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bengtsson, H., and D. Bergqvist. Ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 18:74–80, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Bettermann, K., J. F. Toole. Diagnostic evaluation and medical management of patients with ischemic cerebrovascular disease. In: Vascular Surgery, edited by R. Rutherford. Philadelphia: Elsevier, 2005, pp. 1904–1905.

  3. Bluestein, D., K. Dumont, M. De Beule, J. Ricotta, P. Impellizzeri, B. Verhegghe, and P. Verdonck. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling. Comput. Methods Biomech. Biomed. Eng. 12:73–81, 2008.

    Google Scholar 

  4. Bluestein, D., Y. Alemu, I. Avrahami, M. Gharib, K. Dumont, J. J. Ricotta, and S. Einav. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41:1111–1118, 2008.

    Article  PubMed  Google Scholar 

  5. Bonert, M., R. L. Leask, J. Butany, C. R. Ethier, J. G. Myers, K. W. Johnston, and M. Ojha. The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed. Eng. Online 2:18, 2003.

    Article  PubMed  Google Scholar 

  6. Boyce, M. C., and E. M. Arruda. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73:504–523, 2000.

    CAS  Google Scholar 

  7. Brown, L. C., and J. T. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann. Surg. 230:289–296, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J. Vasc. Surg. 37:118–123, 2003.

    Article  PubMed  Google Scholar 

  9. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Cronenwett, J. L., T. F. Murphy, G. B. Zelenock, W. M. Whitehouse, S. M. Lindenauer, L. M. Graham, L. E. Quint, T. M. Silver, and J. C. Stanley. Actuarial analysis of variables associated with rupture of small abdominal aortic-aneurysms. Surgery 98:472–483, 1985.

    PubMed  CAS  Google Scholar 

  11. de Putter, S., B. J. Wolters, M. C. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2006.

    PubMed  Google Scholar 

  12. Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31:804–809, 2003.

    Article  PubMed  Google Scholar 

  13. Di Martino, E., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Di Martino, E. S., G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, and A. Redaelli. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23:647–655, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.

    Article  PubMed  Google Scholar 

  16. Fillinger, M. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods). Ann. N. Y. Acad. Sci. 1085:22–28, 2006.

    Article  PubMed  Google Scholar 

  17. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.

    Article  PubMed  Google Scholar 

  18. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.

    Article  PubMed  Google Scholar 

  19. Finol, E. A., and C. H. Amon. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow. Acta Cient. Venez. 54:43–49, 2003.

    PubMed  Google Scholar 

  20. Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. He, C. M., and M. R. Roach. The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20:6–13, 1994.

    PubMed  CAS  Google Scholar 

  22. Holzapfel, G. A., and T. C. Gasser. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Method Appl. Mech. 190:4379–4403, 2001.

    Article  Google Scholar 

  23. Holzapfel, G. A., and T. C. Gasser. Computational stress-deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85, 2007.

    Article  PubMed  Google Scholar 

  24. Holzapfel, G. A., and H. W. Weizsacker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28:377–392, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  26. Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solid. 21:441–463, 2002.

    Article  Google Scholar 

  27. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J. Biomech. Eng. Trans. ASME 126:264–275, 2004.

    Article  Google Scholar 

  28. Holzapfel, G., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech. Eng. Trans. ASME 127:166–180, 2005.

    Article  Google Scholar 

  29. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  30. Hua, J., and W. R. Mower. Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses. J. Vasc. Surg. 34:308–315, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, C. W. Acher, D. J. Ballard, L. M. Messina, I. L. Gordon, E. P. Chute, W. C. Krupski, D. Bandyk, and A. D. M. Vet. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Eng. J. Med. 346:1437–1444, 2002.

    Article  Google Scholar 

  32. Limet, R., N. Sakalihassan, and A. Albert. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14:540–548, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 11:582–592, 1940.

    Article  Google Scholar 

  34. Moore, Jr., J. E., S. E. Maier, D. N. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl. Physiol. 76:1520–1527, 1994.

    PubMed  Google Scholar 

  35. Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Papaharilaou, Y., J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40:367–377, 2007.

    Article  PubMed  Google Scholar 

  37. Paszkowiak, J. J., and A. Dardik. Arterial wall shear stress: observations from the bench to the bedside. Vasc. Endovascular Surg. 37:47–57, 2003.

    Article  PubMed  Google Scholar 

  38. Powell, J. T., A. R. Brady, L. C. Brown, J. F. Forbes, F. G. R. Fowkes, R. M. Greenhalgh, C. V. Ruckley, S. G. Thompson, and U. S. A. T. Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352:1649–1655, 1998.

    Article  Google Scholar 

  39. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Raghavan, M. L., J. Kratzberg, E. M. C. de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.

    Article  PubMed  Google Scholar 

  42. Reneman, R. S., T. Arts, and A. P. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Discrepancies with theory. J. Vasc. Res. 43:251–269, 2006.

    Article  PubMed  Google Scholar 

  43. Ricotta, J. J., J. Pagan, M. Xenos, Y. Alemu, S. Einav, and D. Bluestein. Cardiovascular disease management: the need for better diagnostics. Med. Biol. Eng. Comput. 46:1059–1068, 2008.

    Article  PubMed  Google Scholar 

  44. Rissland, P., Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein. Abdominal aortic aneurysm risk of rupture—patient specific FSI simulations using anisotropic model. J. Biomech. Eng. 13:031001–031010, 2009.

    Article  Google Scholar 

  45. Rivlin, R. S. Large elastic deformations of isotropic materials. 1. Fundamental concepts. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 240:459–508, 1948.

    Article  Google Scholar 

  46. Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.

    PubMed  CAS  Google Scholar 

  47. Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.

    Article  PubMed  Google Scholar 

  48. Scotti, C., A. Shkolnik, S. Muluk, and E. Finol. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4:64, 2005.

    Article  PubMed  Google Scholar 

  49. Sussman, T., and K. J. Bathe. A finite-element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26:357–409, 1987.

    Article  Google Scholar 

  50. Swillens, A., L. Lanoye, J. De Backer, N. Stergiopulos, P. R. Verdonck, F. Vermassen, and P. Segers. Effect of an abdominal aortic aneurysm on wave reflection in the aorta. IEEE Trans. Biomed. Eng. 55:1602–1611, 2008.

    Article  PubMed  Google Scholar 

  51. Thubrikar, M. Vascular Mechanics and Pathology. New York: Springer, 436 pp., 2007.

  52. Truijers, M., J. A. Pol, L. J. Schultzekool, S. M. van Sterkenburg, M. F. Fillinger, and J. D. Blankensteijn. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33:401–407, 2007.

    Article  PubMed  CAS  Google Scholar 

  53. Valencia, A., H. Morales, R. Rivera, E. Bravo, and M. Galvez. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med. Eng. Phys. 30:329–340, 2008.

    Article  PubMed  Google Scholar 

  54. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126:815–822, 2004.

    Article  Google Scholar 

  55. Vande Geest, J. P., D. H. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.

    Article  Google Scholar 

  56. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.

    Article  Google Scholar 

  57. Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.

    Article  Google Scholar 

  58. Vardulaki, K. A., N. M. Walker, N. E. Day, S. W. Duffy, H. A. Ashton, and R. A. Scott. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br. J. Surg. 87:195–200, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. Vengrenyuk, Y., L. Cardoso, and S. Weinbaum. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol. Cell. Biomech. 5:37–47, 2008.

    PubMed  Google Scholar 

  60. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.

    PubMed  CAS  Google Scholar 

  61. Vito, R. P., and J. Hickey. The mechanical properties of soft tissues-II: the elastic response of arterial segments. J. Biomech. 13:951–957, 1980.

    Article  PubMed  CAS  Google Scholar 

  62. Vorp, D. A., M. L. Raghavan, S. C. Muluk, M. S. Makaroun, D. L. Steed, R. Shapiro, and M. W. Webster. Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N. Y. Acad. Sci. 800:274–276, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. Wang, D. H., M. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123:536–539, 2001.

    Article  PubMed  CAS  Google Scholar 

  64. Wilmink, A. B., C. S. Hubbard, N. E. Day, and C. R. Quick. The incidence of small abdominal aortic aneurysms and the change in normal infrarenal aortic diameter: implications for screening. Eur. J. Vasc. Endovasc. Surg. 21:165–170, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Wolters, B. J., M. C. Rutten, G. W. Schurink, U. Kose, J. de Hart, and F. N. van de Vosse. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27:871–883, 2005.

    Article  PubMed  CAS  Google Scholar 

  66. Yang, C., R. G. Bach, J. Zheng, I. E. Naqa, P. K. Woodard, Z. Teng, K. Billiar, and D. Tang. In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans. Biomed. Eng. 56:2420–2428, 2009.

    Article  PubMed  Google Scholar 

  67. Zankl, A. R., H. Schumacher, U. Krumsdorf, H. A. Katus, L. Jahn, and C. P. Tiefenbacher. Pathology, natural history and treatment of abdominal aortic aneurysms. Clin. Res. Cardiol. 96:140–151, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xenos, M., Rambhia, S.H., Alemu, Y. et al. Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling. Ann Biomed Eng 38, 3323–3337 (2010). https://doi.org/10.1007/s10439-010-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0094-3

Keywords

Navigation