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Abstract—A recent analytical solution of the three-dimen-
sional Stokes flow through a bumpy tube predicts that for a
given bump area, there exists an optimal circumferential
wavenumber which minimizes flow resistance. This study
uses measurements of microvessel endothelial cell morphol-
ogy to test whether this prediction holds in the microvascu-
lature. Endothelial cell (EC) morphology was measured in
blood perfused in situ microvessels in anesthetized mice using
confocal intravital microscopy. EC borders were identified by
immunofluorescently labeling the EC surface molecule
ICAM-1 which is expressed on the surface but not in the
EC border regions. Comparison of this theory with extensive
in situmeasurements of microvascular EC geometry in mouse
cremaster muscle using intravital microscopy reveals that the
spacing of EC nuclei in venules ranging from 27 to 106 lm in
diameter indeed lies quite close to this predicted optimal
configuration. Interestingly, arteriolar ECs are configured to
minimize flow resistance not in the resting state, but at the
dilated vessel diameter. These results raise the question of
whether less organized circulatory systems, such as that
found in newly formed solid tumors or in the developing
embryo, may deviate from the optimal bump spacing
predicted to minimize flow resistance.

Keywords—Arteriole, Flow resistance, Intravital microscopy,

Stokes flow, Venule.

INTRODUCTION

Within the circulation, the microvasculature is the
primary site of regulation of many functions that are
essential for homeostasis. For example, microvessels
provide efficient transport to/from tissue of nutrients
and metabolic products; exchange of respiratory gases;
fluid volume regulation; and temperature regulation.
As such, understanding the principles that underlie
microcirculatory network organization and develop-

ment has been a target of ongoing investigation over
many decades. A variety of explorations have defined
important functional aspects of the fluid dynamics8,22

and gross morphology of the microcirculatory net-
work. Thus key aspects of blood cell interactions7,22

and relationships between the overall network archi-
tecture and blood flow or energy minimization have
been established,15,17 and a considerable amount is
known about how local morphology at branches
impacts the nature of the flow through them, both for
large3,30 and small6,11 branches of the vascular tree. On
a micro scale, consequences for the local shear field of
small-scale irregularities in the surface of endothelial
cells (ECs) have been explored.2 On the scale of indi-
vidual microvessels, we29 and others1,10 have observed
that microvessels have characteristic endothelial mor-
phology, and, importantly, this morphology varies
with position in the microvascular network. Whether
this morphology has functional consequences is
unknown.

A recent closed form solution of the three-dimen-
sional Stokes flow through a bumpy tube25 allows an
analysis of whether the local geometry of skeletal
muscle arterioles and venules exists in an optimized
state to maximize blood flow through individual
microvessels for a given pressure drop. In this paper we
describe extensive new measurements of EC dimen-
sions within intact arterioles and venules in the cre-
master muscle of anesthetized mice using intravital
microscopy. We have compared this to the Stokes flow
solution of Wang25 to determine how well the theory of
bumpy tube flow predicts experimentally observed EC
morphology with consequent characteristic distribu-
tions for the location of nuclei and hence ‘‘bumps’’ on
the vessel wall. Indeed, we find that venular EC
dimensions are very well predicted by the Stokes flow
theory for a bumpy tube, and that arterial EC mor-
phology is consistent with minimized flow resistance at
maximally dilated, rather than resting diameter.
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METHODS AND MATERIALS

Three-Dimensional Stokes Flow in a Bumpy Tube

In a recent paper, Wang25 considered the three-
dimensional Stokes flow in a periodic bumpy-walled
tube. Previous analytical investigations considered
tubes with wall corrugations in one direction only,
either in the longitudinal19,21 or transverse4,18 direc-
tion. The model of Wang consists of a tube wall with
periodic bumps described by the non-dimensionalized
equation

r ¼ 1þ e sin nhð Þ sin azð Þ ð1Þ

where the radial (r) and longitudinal (z) spatial vari-
ables have been scaled by the mean tube radius a, the
bump amplitude is e ¼ b=a� 1; n is the circumferen-
tial wavenumber, a ¼ 2pa=l 6¼ 0; and l is the longitu-
dinal wavelength. By performing a regular
perturbation in the small parameter e, Wang was able
to obtain a closed form solution for the velocity dis-
tribution in terms of modified Bessel functions up to
the second order correction to the mean flow rate.
Interestingly, this solution predicts that for a given
dimensionless bump area A ¼ p2

�
na; there exists an

optimal circumferential wavenumber n for which the
flow resistance is minimized (or, equivalently, the flow
rate maximized for a given total pressure drop). In this
paper, we compare these predicted optimal bump size
and spacings to experimental measurements made in
intact mouse microvessels to determine how closely the
Stokes flow solution correctly anticipates the vessel
geometry, where the EC nuclei are taken to represent
the quasi-periodic ‘‘bumps’’. Note that there are no
adjustable parameters in comparing this theory to the
experimental measurements.

Animal Preparation

All procedures were approved by the Institutional
Review Board of the University of Rochester. C57BL6J
mice (Jackson Laboratories) were initially anesthetized
with sodium pentobarbital (65 mg/kg ip) and main-
tained on supplemental anesthetic via a jugular catheter
throughout the experiment. To insure a patent airway
during the experiment, an endotracheal tube was in-
serted. Body temperature was maintained by placing
the animal on a warmer during the experiment. The
cremaster muscle was exposed using established meth-
ods.12,13 Briefly, the right cremaster muscle was exteri-
orized and laid flat on a quartz pedestal. During
preparation and observation the tissue was continu-
ously superfused with warmed physiological solution
with the following composition: (in mM) NaCl, 131.9;
KCl, 4.7; CaCl, 2.0; MgSO4, 1.2, NaHCO3, 18; pH 7.4
at 36 �C, and equilibrated with gas containing 0% O2,

5% CO2, and 95% N2 to maintain tissue PO2<15
torr. Upon completion of the protocols, animals were
euthanized by anesthetic overdose.

All animals received an intrascrotal injection of
mouse recombinant TNFa(0.5 lg TNFa in 0.20 mL
saline; Sigma-Aldrich) 3 h prior to the start of the
surgical preparation to induce inflammatory condi-
tions and to increase the expression of ICAM-1.12,23

Immunofluorescence Labeling

The approach to in vivo labeling and imaging of blood
perfusedmicrovessels has been described elsewhere12,23:
we have shown previously23 that as ICAM-1 is excluded
from EC junctional regions, immunofluorescent label-
ing of ICAM-1 on the EC surface will serve to identify
the morphology of individual ECs. Briefly, ICAM-1
expressed on the surface of the endothelium was labeled
by localized perfusion using micropipette cannulation.
Initially the vessel was perfused with rat anti-mouse
monoclonal antibody in saline (YN/1.7.4, eBioscience,
50 lg/mL) for 15 min; the first pipette was withdrawn
and blood perfusion briefly restored before the second
cannulation with the pipette containing goat anti-rat
secondary fluorescent polyclonal antibody in saline
(Alexa 488 anti-rat, Molecular Probes, 50 lg/mL),
which was perfused for another 15 min. Following
this perfusion, the micropipette was withdrawn and
blood flowwas reestablished in the target microvascular
region. During the cannulation the main arteriole was
occluded by another micropipette upstream of the can-
nulation site at the time of the antibody loading to allow
a complete perfusion of the downstream regions with
the antibody solution. Intravascular pressure during
perfusion with the antibody solutions is typically of
the order of 20 cm H2O in arterioles and 8 cm H2O in
venules20 which is in the physiological range. After
antibody labeling and re-establishment of blood perfu-
sion, microvessel diameters are typically not different
from diameters before the labeling protocol.

Intravital Microscopy and Image Analysis

All images were acquired on an Olympus BX50WI
microscope through an Olympus PlanF1 immersion
objective (20·, 0.65 NA), giving a spatial resolution in
our imaging system of 0.5 lm. Images were recorded
to half inch SVHS (SONY VO9500) for offline anal-
ysis. Fluorescence images were collected from tissue
that was illuminated with a 20 mW Argon laser and
were acquired through a Nipkow disk scanning con-
focal head (CSU 10, Yokogawa) connected to an
intensified CCD camera (XR Mega10, Stanford Pho-
tonics). Laser power and camera gain settings were
held constant throughout the whole set of experiments.
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EC morphometry was measured using ImageJ software
routines, and statistical analyses were completed using
Prism (v4.0) software (Graphpad).

EC morphometry: To visualize ICAM-1 labeling,
hence EC morphometry, images of intact blood per-
fused microvessels were captured and digitalized to 8
bit tiff images using a CG-7 frame grabber (Scion
Corporation). Measurement of the EC dimensions was
based on our previously published observation, where
we showed that ICAM-1 labels the EC surface area
while leaving the junctional areas unstained.23 In that
study we also confirmed that excluded EC borders
were indeed the junctional area by labeling the ECs for
VE cadherin, a protein that is expressed exclusively in
EC junctions, and confirming that both ICAM-1 and
VE-cadherin labeling gave identical measurements of
EC geometry. Briefly, to measure the area of ECs, the
borders of individual ECs that were in clear focus were
outlined using ImageJ software and the areas were
calculated. Length and width of ECs were measured by
projecting a line across the longest major and longest
minor axis of the cells as demonstrated in Fig 1. In
general, the major and minor cell axes corresponded to
the flow and circumferential directions, respectively, to
within 5� in orientation. In the nomenclature of the

Stokes flow theory, the major axis measured from
individual EC dimensions becomes the l parameter,
while the theoretical circumferential wavenumber n is
determined by taking the individual vessel circumfer-
ence (i.e., as calculated from the diameter) and dividing
by the minor axis of the EC.

Statistics

Statistical tests were performed using Graphpad
Prism (v4.0) to undertake t-tests and least squares
linear regression of Fig. 2. Statistical significance was
set at p<0.05.

RESULTS AND DISCUSSION

EC Dimensions

A major role of the microvascular network is to
increase the total surface area available for exchange,
which is essential for maintenance of proper tissue
homeostasis. Since microvessel diameters range from a
few micrometers in capillaries to hundreds of
micrometers in the arterioles and venules, we asked the
question of whether individual EC dimensions are
preserved within this range of vessel sizes and whether
this differs between arterioles and venules. To address
this question, we labeled the microvessels for ICAM-1
(see METHODS) outlining the borders of the ECs,
which allowed us to measure the length and width and
to calculate the area of individual ECs. As illustrated
in Fig. 1, EC shape is distinctively different in arteri-
oles, which are characteristically elongated (major axis
79.0 ± 1.4, n = 200; minor axis 14.3 ± 0.3 lm,
n = 200) compared to venules (major axis 47.3 ± 1.2,
n = 110; minor axis 23.1 ± 0.5 lm, n = 110). As
shown in Fig. 2(a, d), the area of ECs did not remain
constant throughout the microvasculature, but instead
significantly increased with increasing vessel diameter
in both arterioles (p<0.0001, correlation coefficient
r2 = 0.32) and venules (p<0.001, correlation coeffi-
cient r2 = 0.13). Interestingly, the increase in EC area
occurred differently in arterioles vs. venules. While
arteriolar ECs are elongated, significantly increasing
their major axis length across the range of diameters
that we studied (p<0.0001, r2 = 0.33, Fig. 2b), ven-
ular ECs were wider and more round in larger vessels
(p<0.0001, r2 = 0.28, Fig. 2f) leaving their major
axis unchanged across all measured diameters.

While it is very likely that the differences in cell
morphology in arterioles vs. venules is a direct result of
characteristically different shear environment14 or the
architecture of the vessel wall, it will most certainly
create a different environment for leukocyte-EC
interactions. For example it has been shown that in

Flow

Flow

FIGURE 1. Exclusion of ICAM-1 staining from the EC bor-
ders can be used as a tool for determination of EC size and
shape. Shown above are representative images of a venule
(upper panel) and arteriole (lower panel) labeled for ICAM-1.
Vessels were immunofluorescently labeled for ICAM-1 and
imaged using intravital confocal microscopy as described in
the METHODS AND MATERIALS section. Note the differences
in shapes between the arteriolar and venular ECs. The bar in
the upper panel is 20 lm and represents both panels. EC
length and width were measured by projecting a line across
the longest major and minor EC axis as illustrated in the
zoom-in image by red and yellow dotted lines respectively.
Flow direction is indicated by the arrow.
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smaller venules where the junctional area per unit
vessel length is significantly greater than in larger
vessels, the probability that leukocytes will firmly
adhere is significantly higher, resulting in a greater
number of transmigrating leukocytes.29 Moreover, we
have shown that expression levels and the distribution
of adhesion molecules greatly affect the way leukocytes
interact with the endothelium.23 For example in arte-
rioles, where the expression of ICAM-1 is significantly
lower than in venules following TNFa treatment, leu-
kocytes tend to roll but not to adhere as they do in
venules.23 The EC morphology that we describe in the
present study is likely an additional factor contributing
to the differences in leukocyte behavior, and could be
one of the reasons for the lack of leukocyte adhesion in

activated arterioles. This is because the ratios of
important adhesion molecules expressed on the surface
of ECs (such as ICAM-1) vs. molecules expressed on
EC junctional regions (such as VE-cadherin), and
which are known to have signaling functions,27,28 will
be different between narrow and long arteriolar ECs
vs. wide and short venular ECs. We have shown pre-
viously that surface density of adhesion molecules
directly correlate with leukocyte adhesion capability.24

Additionally, it has been demonstrated that when
ICAM-1 is ligated by either leukocytes in vivo or
antibodies in vitro26 it participates by mediating the
signaling necessary for cytoskeletal changes which
underlie the inflammatory response. Since ICAM-1
expression in arterioles is significantly lower than in
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FIGURE 2. To measure the area of ECs in both arterioles (left panel) and venules (right panel), the microvasculature was labeled
for ICAM-1 which is excluded from the junctional area, thus clearly outlining the cell borders. Individual cells were outlined using
ImageJ software and cell area was calculated. Both arteriolar and venular ECs increased in size with an increase in vessel diameter.
The increase in arterioles was much more pronounced. Importantly, with an increase in vessel size, arteriolar ECs elongated (b)
while venular ECs became wider (f).
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venules,23 elongated EC morphology that we described
here allows longer interaction time between each leu-
kocyte and EC enabling a higher degree of ICAM-1
engagement.

Vessel Geometry is Optimized for Maintaining Proper
Blood Flow

When the optimal circumferential wavenumber (i.e.,
that which minimizes flow resistance) is plotted as a
function of the dimensionless bump area A, a
remarkable level of agreement is observed between the
theoretically predicted optimal geometry and the
experimentally measured microvascular EC dimen-
sions (Fig. 3a). In Fig. 3, each symbol represents an
individual EC measurement. Note that the venular EC

periodicity in the circumferential and axial directions is
very well predicted from the Stokes flow theory, over a
wide range of vessel diameters (27–106 lm). The cor-
responding data measured from arterioles (red circles
in Fig. 3a) lie somewhat above the theoretical curve,
although follow the same trend over the observed
range of arteriole diameters from 30 to 89 lm. Thus, at
first it would appear that while venules exhibit EC
dimensions very similar to the optimal bump geometry
for minimization of flow resistance, arteriolar EC
dimensions differ from the optimal geometry such that
the circumferential wavenumber is somewhat higher
than predicted for a given dimensionless bump area.
However, it is well established that arterioles can dilate
to as much as twice their resting diameter in response
to metabolic or vasoactive stimuli.5,9,16 Thus, as the
arteriolar dimensions measured in our present study
are of vessels exhibiting resting tone rather than being
actively dilated, we replotted the collected arteriolar
data after scaling the vessel diameter by a factor of
two, to approximate the corresponding arteriolar
geometry after maximal vasodilation (Fig. 3b).
Remarkably, this simple rescaling collapses the arteri-
olar data onto the predicted optimal configuration for
minimization of flow resistance through a periodic
bumpy tube. Thus, after accounting for the physio-
logical regulation of microcirculatory blood flow via
dilation and constriction of the arterioles, we may
conclude from the present analysis that arterioles
exhibit an EC geometry that is optimized for minimal
flow resistance in the dilated, but not the resting state,
which is perhaps expected since dilation and remodel-
ing of arterioles towards their maximal diameter is
usually associated with both acute responses (such as
in exercise) or chronically (such as in hypertension or
chronic inflammation) where rapid and efficient supply
of oxygen or various inflammatory or stress-related
factors is required. In contrast, venules (which do not
exhibit active regulatory changes in diameter) exist in a
single static geometry and are observed from this
analysis to lie quite close to the optimal geometry
predicted from Stokes flow theory.

CONCLUSIONS

In this paper, we have compared the predictions of
the Stokes flow theory for three-dimensional bumpy
tubes to novel measurements of microvascular EC
dimensions in intact skeletal muscle of mouse. We find
that these microvessels exhibit nearly optimal geome-
try for minimizing the overall flow resistance. These
findings raise some intriguing questions which deserve
further study. For instance, it would be interesting
to characterize the microvascular EC geometry at

FIGURE 3. Comparison of the Stokes theory for three-
dimensional bumpy tube flow with experimentally measured
microvessel geometries. (a) Blue squares represent venular
EC dimensions while red circles represent arteriolar EC
dimensions. (b) Arteriolar EC dimensions have been replotted
(green circles) after increasing the vessel diameter by a factor
of two to simulate physiological dilation.
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different stages of embryonic development, to deter-
mine whether the microvasculature remodels from a
non-optimized to optimized geometry over the weeks
of gestation.
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