
Learning to Translate Sequence and Structure to Function: Identifying

DNA Binding and Membrane Binding Proteins

ROBERT E. LANGLOIS, MATTHEW B. CARSON, NITIN BHARDWAJ, and HUI LU

Department of Bioengineering, University of Illinois at Chicago, 218 SEO MC 063, 851 S. Morgan, Chicago, IL 60607-7052,
USA

(Received 18 September 2006; accepted 2 April 2007; published online 13 April 2007)

Abstract—A protein�s function depends in a large part on
interactions with other molecules. With an increasing num-
ber of protein structures becoming available every year, a
corresponding structural annotation approach identifying
such interactions grows more expedient. At the same time,
machine learning has gained popularity in bioinformatics
providing robust annotation of genes and proteins without
sequence homology. Here we have developed a general
machine learning protocol to identify proteins that bind
DNA and membrane. In general, there is no theory or even
rule of thumb to pick the best machine learning algorithm.
Thus, a systematic comparison of several classification
algorithms known to perform well is investigated. Indeed,
the boosted tree classifier is found to give the best perfor-
mance, achieving 93% and 88% accuracy to discriminate
non-homologous proteins that bind membrane and DNA,
respectively, significantly outperforming all previously pub-
lished works. We also attempted to address the importance
of the attributes in function prediction and the relationships
between relevant attributes. A graphical model based on
boosted trees is applied to study the important features in
discriminating DNA-binding proteins. In summary, the
current protocol identified physical features important in
DNA and membrane binding, rather than annotating func-
tion through sequence similarity.

Keywords—AdaBoost, Support vector machines, C4.5,

Feature interactions.

INTRODUCTION

The interaction between proteins and biological
macromolecules comprises a pivotal role in almost
every cellular process, including gene regulation and
signal transduction. Such macromolecules include but
are not limited to proteins, metabolites, nucleic acids,
lipids, and carbohydrates. The ability to identify if a

protein binds one or more of these macromolecules
would elucidate any number of steps in cellular
activities of interest. Additionally, the potential of
high-throughput structural genomics11 to produce a
great number of protein structures lacking functional
annotation motivates a corresponding functional
annotation approach. Further, this approach should
not lean on homology, should be general enough to
identify every function, and should be fast. Machine
learning becomes a natural choice given these
requirements. Indeed, it has become quite popular in a
number of bioinformatics applications, including fold
recognition,29 subcelluar localization,31 and genom-
ics.38 However, no learning algorithm clearly domi-
nates the rest.33 It follows that a number of learning
algorithms must be tested in order to get maximum
performance. In this work, the focus is to compare the
ability of a number of learning algorithms to identify
both protein–DNA and protein–membrane interac-
tions as seen in Figs. 1 and 2, respectively.

There exist experimental and computational tech-
niques to annotate both DNA-binding and membrane-
binding proteins. Specifically, two conventional
experimental approaches to identify DNA-binding
proteins include gel mobility12 and filter binding
assays.34 While these approaches determine whether a
protein binds DNA, they do not reveal where the
DNA binds. Similarly, a high-throughput technique,
chromatin immunoprecipitation on a microarray
(ChIP-chip),9 incorporates microarray technology
and allows researchers to create a genome wide map
of protein–DNA interactions. More elaborate ap-
proaches (often used in conjunction) include genetic
analysis18 and X-ray crystallography.15 These tech-
niques provide high quality explicit binding data. In
addition, several experimental techniques exist to
identify membrane-binding proteins. Surface plasmon
resonance (SPR) analysis22 provides an effective
means to identify proteins that bind membrane. In

Address correspondence to Hui Lu, Department of Bioengi-

neering, University of Illinois at Chicago, 218 SEO MC 063, 851

S. Morgan, Chicago, IL 60607-7052, USA. Electronic mail: huilu@

uic.edu

Annals of Biomedical Engineering, Vol. 35, No. 6, June 2007 (� 2007) pp. 1043–1052

DOI: 10.1007/s10439-007-9312-z

0090-6964/07/0600-1043/0 � 2007 Biomedical Engineering Society

1043

addition, other techniques such as fluorescence reso-
nance energy transfer (FRET) analysis46 have also
uncovered important characteristics of protein–mem-
brane binding such as affinity toward specific lipids.
Nevertheless, such experimental methods prove costly
in both time and money.

In silico efforts have also been used to identify
DNA-binding proteins, the binding sites on such

proteins, and the location in the genome that these
proteins bind.26,42,43 In binding site prediction, a sup-
port vector machines (SVM) classifier was employed
using evolutionary and structural features to predict
the binding site of specific structural motifs with 78%
accuracy.28 Likewise, a Naı̈ve Bayes classifier and
amino acid sequence have been utilized to achieve an
accuracy of 78% with homology information.47 In our

FIGURE 1. An example DNA-binding protein with the relative orientation of binding. This figure depicts the SMAD MH1 domain
(1MHD) that mediates TGF-beta signaling from the cell membrane to the nucleus. The protein is shown in a yellow cartoon
representation. The first four largest cationic patches have also been mapped on the surface and are colored according to their
order on a blue–white–red scale: largest patch in blue, second largest in light blue and third and fourth largest in white and light
red, respectively.

FIGURE 2. An example membrane-binding protein with the relative orientation of binding. This figure shows the C2 domain of
PKC-a (1DSY) that is involved in Ca2+ dependent membrane signaling. The protein is shown in a yellow cartoon representation. The
first four largest cationic patches have also been mapped on the surface and are colored according to their order on a blue–white–
red scale: largest patch in blue, second largest in light blue and third and fourth largest in white and light red, respectively. The
membrane without hydrogens is shown in red.

LANGLOIS et al.1044

own effort, we achieved 70% accuracy using SVM on a
non-homologous, larger test set without the help of
evolutionary information.4,5

The following studies use a combination of sequence
and structure-based features in conjunction with a
variety of classifiers to predict if a protein binds DNA.
Descriptors such as structural motifs and electrostatic
potential have been used to achieve 78% accuracy over
a set of three specific DNA-binding structural motifs.40

Likewise, a hidden Markov model using structural
information has been employed to identify helix-turn-
helix DNA-binding motifs achieving about 71%
accuracy.35 A neural network combined with compo-
sition, sequence and structure was used to identify
general DNA-binding proteins achieving 79% accu-
racy;1,2 subsequently, these results were improved to
83% accuracy by adding charge, dipole moment, and
quadrupole moment.3

Likewise, we have published work investigating the
discrimination of DNA-binding,6 RNA-binding,6 and
membrane-binding proteins using a combination of
sequence and structural features.7 Specifically, in the
DNA-binding study, we achieved 86% accuracy using
SVM outperforming all previously published data. The
improvement in accuracy was achieved through a new
definition of positive electrostatic patch and the addi-
tion of surface amino acid composition. The main
drawback of that work was the ‘‘black box’’ nature of
SVM, which makes it difficult to evaluate the impor-
tance and correlation of the sequence and structure-
based features.

Membrane-binding proteins represent another
important class playing a significant role in many
biological processes including cell signaling and
membrane trafficking.44 The list of proteins known to
bind membrane has grown exponentially in the recent
past14,23 and is expected to grow in parallel to our
interest in these proteins. In spite of the growing
interest in these proteins, few attempts have been made
to identify such proteins in silico. Specifically, we have
built the only machine learning protocol for automatic
identification of membrane-binding proteins and have
achieved a balanced success with an accuracy greater
than 93%.7

In this work, we evaluate several state-of-the-art
classifiers in an attempt to improve the accuracy of
discriminating DNA- and membrane-binding proteins
while determining the best classifier suited to protein
binding prediction. Specifically, we compare a class of
tree-based algorithms (boosted decision trees,19 boos-
ted decision stumps,19 and the C4.537 decision tree) to
SVM, which provides a baseline connection to our
previous work. Moreover, we use a graphical model
built using a variation of the Adaptive Boosting
(AdaBoost)19 algorithm to analyze the interactions

between relevant characteristics that help determine
function. The contribution of this graphical model is
that it not only provides knowledge of the important
physical properties in binding DNA and membrane,
but also serves as a guide to future feature design.

METHODS

Dataset

We constructed several datasets; each dataset con-
tains examples from one of two classes referred to as
the positive class and the negative class. The positive
class consists of examples that bind to our target
molecule (DNA, RNA, membrane). The negative class
consists of examples known not to bind to the target of
the positive class. The first dataset comprises 75 DNA-
binding proteins and 214 proteins that do not bind
DNA. The second dataset comprises 37 RNA-binding
proteins and the previously mentioned 75 DNA-bind-
ing proteins. These are subsets of our original datasets6

culled using the PISCES server45 such that no two
proteins have more than 20% identity and each
structure has a resolution better than 3 Å. The third
dataset also comes from prior work7 and comprises a
positive set of 40 membrane-binding proteins that have
no more than 40% sequence identity amongst any pair
and a negative set of 230 proteins with a structural
resolution better than 3 Å and less than 35% identity
between each pair. We select a slightly higher threshold
of 40% to remove redundant structures in the positive
set as there is a smaller number of solved structures
related to membrane binding. The negative set in the
DNA-binding dataset is a subset of the negative
proteins found in the membrane-binding dataset; this
negative set was first constructed in Stawiski et al.41

An analysis of the distance between the proteins in the
negative and positive sets for DNA-binding and
membrane-binding is found in Bhardwaj et al.,6 and 7

respectively. The function of the proteins in the nega-
tive set cover a wide range from chaperoning protein
folding to removing hydrogen. The datasets used in
this work are available at http://proteomics.bio-
engr.uic.edu/pro-dna and http://proteomics.bio-
engr.uic.edu/pro-mem.

Feature Representation

A protein can be represented either as a sequence of
labels or a set of atom types and coordinates. This
representation is not favorable for machine learning
because most supervised learning algorithms require
the comparison of aligned features of the same length.
In order to solve this problem, a protein structure
is reduced to a fixed set of features encoding the

Learning to Translate Sequence and Structure to Function 1045

characteristics of a protein, which might be important
to its function. Here, to identify DNA-binding pro-
teins, the protein structure is translated to a set of 42
numerical features encoding both sequence and struc-
ture. The sequence-based features include the amino
acid composition (20 features), and the net charge cal-
culated using the CHARMM8 force field (1 feature).
Likewise, the structure-based features comprise surface
amino acid composition derived fromDSSP25 (again 20
features) and the size of the largest positively charged
patch6,7 (1 feature). To identify membrane-binding
proteins, we choose similar set of features including the
net charge and the two kinds of composition. However,
we use a slightly different cationic patch definition on
the surface of membrane-binding proteins7 (see Figs. 1
and 2). In addition, we also add the cumulative patch
sizes of the first two, three and four largest patches as
features to describe membrane-binding proteins.7

Classification Methods

A classifier is a supervised machine learning algo-
rithm that attempts to generate a function (set of rules
or model) from a set of training examples that best
generalizes the model to unseen examples. Each
example consists of an input pair, a feature vector and
class label. Given an unseen feature vector ðxiÞ, the
classifier attempts to identify the correct label (y). The
following classifiers comprise a popular subset of
available classifiers each of which has been imple-
mented in our open source machine learning work-
bench MALIBU.30

Decision Trees

A decision tree36 constructs from the training data a
tree model where every internal node represents a
decision and every leaf a classification. The learning
process starts by finding a split on a single attribute
that best classifies the training data; then the dataset is
recursively split into two parts repeating these steps on
each subset. There are a number of loss (or impurity)
functions that are used to find the best split or the split
with the minimum loss (or error). Specifically, the
C4.537 decision tree algorithm developed by Quinlan
uses a loss function known as the information gain,
which is motivated by information theory. The deci-
sion tree has several advantages. Firstly, it is fast to
train and evaluate. Secondly, the model (or function)
learned during the training process is usually compact
and easy to interpret. Finally, a decision tree does not
require much data preprocessing, natively handling
most attributes types. Note that most machine learning
algorithms have tunable parameters. In this work, the
results reported using the C4.5 decision tree algorithm

use the default values empirically found to work well
on a number of datasets.

AdaBoost

The AdaBoost algorithm originally proposed by
Freund and Schapire19 iteratively constructs an
ensemble of weak learning algorithms over a varying
distribution of the dataset. Specifically, a weak learn-
ing algorithm is trained over some distribution of the
dataset starting with the uniform distribution. After
each training cycle, the distribution of the dataset is
altered such that incorrectly predicted examples are
given a higher weight and correctly predicted examples
a lower weight. The AdaBoost algorithm has been
shown to minimize an exponential loss function.19

The AdaBoost algorithm possesses several advan-
tages. Firstly, it is relatively simple to implement and
works with many off-the-shelf classifiers. Secondly,
AdaBoost achieves competitive (if not better) results
when compared to other state-of-the-art classifiers.33

Thirdly, AdaBoost does not require special knowledge
or a significant amount of tuning when compared to
SVM and neural networks.

The current implementation of our confidence-rated
AdaBoost39 classifier uses both C4.5 and our own
implementation of the ID336 tree learning algorithm
using entropy to find the best split.20 From here on, we
will refer to AdaBoost on C4.5 as AdaC4.5 and Ada-
Boost on our custom ID3 implementation as AdaTree.
One final variant entails AdaBoost using one-level
decision trees, often referred to as a stump, as the weak
learning algorithm. Here, we will refer to this as
AdaStump. The boosted tree algorithms are run for
800 iterations (more than three times the number of
examples in the largest dataset). The decision trees
used as weak learners are grown to produce an error of
no less than 10%. Note that while we would like to
grow the trees to the maximum depth, the AdaBoost
algorithm requires a weak learner; this is left inten-
tionally vague. However, we know trees have a large
variance depending on the distribution of the dataset;
for this reason we constrain the trees to produce
an error of 10% to satisfy the requirements of the
AdaBoost algorithm yet still build a complex classifier.
One last point, the C4.5 algorithm does not take
weights directly (like our custom implementation) so
we use weighted sampling with replacement to change
the training set distribution accordingly.

Support Vector Machines

The SVM16 classifier uses the ‘‘kernel trick’’ to
perform linear classification on non-linear problems.
The linear classification is accomplished by finding the
hyperplane that maximizes the distance between the

LANGLOIS et al.1046

closest points, the maximum margin hyperplane. It is
equivalent to solving the quadratic optimization
problem:

min
w;b;ni

1

2
w � wþ C

X

i

ni subject to

yið/ðxiÞ � wþ bÞ � 1� ni; i ¼ 1; . . . ;m

ni � 0; i ¼ 1; . . . ;m

ð1Þ

The above problem summarizes the soft-margin
SVM where C is the cost parameter that helps tolerate
noise within the data and UðxiÞ is some non-linear
mapping. Applying the Lagrange transformation gives
the dual:

LD ¼
XN

i¼1
ai �

1

2

XN

i¼1
aiajyiyj/ðxiÞ/ðxjÞ ð2Þ

The ‘‘kernel trick’’ refers to the substitution of a
kernel function K(xi,xj) for UðxiÞUðxjÞ providing an
efficient approach to solve the quadratic programming
problem without explicit use of the non-linear trans-
form.10

In this work we use the LIBSVM13 implementation
of SVM with the full range of available kernels. This
implementation of SVM has a number of tunable
parameters. The kernel�s gamma parameter, c, selects
one among a family of Gaussian or sigmoid functions.
The soft-margin SVM�s cost parameter, C, trades
noise for error. Finally, the polynomial kernel has the
degree, d. Note that in order to use the charge and
patch size features, they must first be normalized; here
we used min–max normalization (the composition
features are already normalized).

Classifier Evaluation

The goal of the classifier is to find the function or
model that best generalizes the training data. In order to
determine how well a classifier generalizes the training
data, it is necessary to evaluate the model learned over
the training set on a held out test set. In order to provide
a robust benchmark, each classifier is evaluated over
several validation techniques and metrics.

Cross-Validation

In n-fold cross-validation (n-CV), the dataset is
partitioned into n subsets. The classifier is trained n
times leaving one subset out on each round of training.
The omitted subset is used for testing to calculate
the metric of interest and every value in the dataset
contributes to the average of this metric. The cross-
validation technique is demonstrably superior on
smaller datasets21 to the more common hold-out
technique (where just one portion of the dataset is held

out for testing). Leave-one-out cross-validation (LOO)
refers to cross-validation when n equals the number of
examples in the dataset. It has several known defi-
ciencies;27 however, we use it here to compare with
previous work. Moreover, these deficiencies are
migrated by the use of other validation schemes.

In the following results, we use 2-, 5-fold, and LOO
cross-validation. The 2-fold cross-validation is more
likely a pessimistic estimate of the following results and
could vary wildly depending on the splits. For this
reason, every metric reported using 2-fold cross-vali-
dation is averaged over 100 runs of randomly select
splits. For a similar reason, the metrics reported for
5-fold cross-validation are averaged over 40 runs. Note
that averaging leave-one-out will not have any effect
on the reported metrics; so, the results reported
correspond to a single run.

Metrics

The performance of the classifiers is measured using
four metrics. Specifically, the following threshold
metrics include accuracy, sensitivity, and specificity.

Accuracy (Acc.), Eq. (3), is the ratio of correct
predictions to the total number of predictions.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð3Þ

Sensitivity (Sen.), Eq. (4), also known as recall or
true positive rate, TPR, is defined as the probability
that a prediction is predicted positive given the exam-
ple is positive. It is approximated by the fraction of
true positives predicted as positive.

Sensitivity ¼ TP

TPþ FN
ð4Þ

Specificity (Spe.), Eq. (5), is the probability that a
prediction is predicted negative given the example is
negative; it is approximated by the fraction of true
negatives predicted as negative.

Specificity ¼ TN

TNþ FP
ð5Þ

These metrics are referred to as threshold metrics
because they depend on the threshold used in classifi-
cation. In other words, a classifier generally produces a
real valued prediction; the prediction is assigned to the
positive or negative class by determining whether it is
greater or less than some threshold (usually 0 or 0.5).
Thus, if the threshold is changed the above metrics also
change. In contrast, the fourth metric, area under the
receiving operating characteristic curve (AUC), is an
order metric. That is, it measures the ordering of the
predictions relative to the true values of the examples.
The receiving operating characteristic curve (ROC) is

Learning to Translate Sequence and Structure to Function 1047

generated by sweeping a threshold from the most
negative confidence-rated prediction to the most posi-
tive, calculating the true positive rate (sensitivity, y-
axis) and false positive rate (1-specificity, x-axis). This
metric is analogous to sorting every prediction by its
confidence then swapping examples until they are
segregated by their true class label. In fact, the AUC
has an attractive property; it is insensitive to changes in
the class distribution.17

RESULTS

DNA-Binding Protein Classification

The first problem of interest concerns the ability
to discover proteins that bind DNA given a structure.
Here, we compare several learning algorithms (Ta-
ble 1) over varying sizes of the training set. The
learning algorithms comprise four tree-based algo-
rithms and SVM. Specifically, the C4.5 decision tree
algorithm forms the weak learning algorithm for the
AdaBoost procedure; its results demonstrate the
effectiveness of boosting. Next, the boosted C4.5
algorithm (AdaC4.5) serves as a baseline to compare
our custom decision tree implementation, which forms
the weak learners in AdaTree and AdaStump. Finally,
the odd man out, SVM, provides a connection to our
previous study;6 however, in this study we choose
to maximize the accuracy rather than find a more
balanced prediction.

The results in Table 1 demonstrate that our method
is effective in discriminating DNA-binding proteins.
That is, given a large random set of proteins (with the
same distribution as our dataset) the best classifier,
AdaTree, should correctly assign on average about 88
of 100 proteins to the appropriate category. Likewise,
given a protein that binds DNA, this classifier will
assign 66 of 100 correctly to that category. Finally,

given a protein that does not bind DNA, about 96 of
100 will be correctly assigned to this category. Indeed,
this is an unbalanced result originating from both an
unbalanced dataset and a set of classifiers that mini-
mize the overall error. In other words, each of these
metrics depends on the distribution of the dataset. The
area under the ROC curve (AUC) furnishes a metric
independent of the dataset distribution. It also gives
some indication of the tradeoff between sensitivity and
specificity when varying the threshold. Specifically, the
AdaC4.5 learning algorithm achieves almost a 90%
AUC; that is, about 90% of the predictions are or-
dered correctly. This ordering is important both for
achieving good results on other distributions of the
dataset and allowing the learning algorithm to produce
a meaningful confidence in its prediction.

Likewise, there are several more important trends in
Table 1. For example, one interesting result stems
from the comparison of sensitivities for each classifier.
That is, none of the observed sensitivities vary much
from the C4.5 algorithm. In fact, in each superior
learning algorithm (to C4.5), the increase in accuracy
corresponds to a proportional increase in specificity.
However, the better learning algorithms also have a
larger AUC. Indeed, a larger AUC indicates that
trading sensitivity for specificity will most likely have
less effect on the overall accuracy over a larger range.
Another interesting result in Table 1 originates from
the relative independence of each classifier over each
metric for different sizes of the training set. That is, for
the first four algorithms, accuracy and sensitivity show
the greatest change with training set size, yet this
change is limited to only a few percent. If 2-fold cross-
validation is a pessimistic estimate and leave-one-out
an optimistic estimate, then the results of 5-fold cross-
validation can be considered reliable and probably will
not change much on a larger dataset. Note that only
the AUC for the C4.5 algorithm improves dramatically
with the increase in training examples. Finally, it is
interesting to note that the results of the slowest
algorithm (SVM) and the second fastest (AdaStump)
match relatively well, i.e. on this dataset the speed ratio
between AdaStump and SVM was on average about
1:25, respectively.

Membrane-Binding Protein Classification

The second problem of interest concerns the ability
to discover proteins that bind membrane given a
structure. In this study, we employ the same set of
classifiers (Table 2) as the previous study with the same
parameters and validation techniques. One noticeable
difference between Tables 1 and 2 stands the relatively
better accuracy in discriminating membrane-binding
proteins. However, one might argue that this increased

TABLE 1. Comparing classification and evaluation methods
over the protein–DNA dataset.

AdaTree AdaC4.5 AdaStump SVM C4.5

2-CV ACC 86.5 86.3 83.6 84.5 79.4

SEN 61.4 61.5 60.5 57.5 59.8

SPE 95.3 95.0 91.7 94.0 86.3

AUC 88.0 88.8 81.6 84.4 61.3

5-CV ACC 87.2 86.6 84.1 85.7 79.4

SEN 63.8 61.4 61.2 59.1 59.9

SPE 95.4 95.4 92.2 95.0 86.3

AUC 88.4 89.6 82.7 85.9 54.1

LOO ACC 88.5 86.5 85.1 86.3 80.0

SEN 66.7 61.3 62.7 62.7 65.3

SPE 96.3 95.3 93.0 93.9 85.0

AUC 88.7 89.8 84.6 86.3 74.0

LANGLOIS et al.1048

accuracy results from an even larger class skew high-
lighted by the larger imbalance between sensitivity and
specificity. Nevertheless, the AUC is also higher and
remains robust to such changes in class distribution.17

Also, the decision tree consistently performs better
achieving 88% accuracy.

Looking at the accuracy metric alone, the boosted
decision stumps perform very well over this dataset
even outperforming SVM. However, the AUC cap-
tures the true performance of these learning algorithms
showing SVM is much better than boosted stumps
while boosted trees outperform all the algorithms. In
fact, these results are consistent with another large-
scale benchmarking experiment33 in which it was
observed empirically that when AdaBoost on Trees
does well, it performs much better than any other
learning algorithm (personal communication with Rich
Caruana). However, it has the potential to perform
quite badly on datasets with significant class noise
(mislabeled data).32

RNA from DNA-Binding Discrimination

Knowing that RNA- and DNA-binding proteins
share many similar characteristics, we next investigate
how well our current descriptor can discriminate these
two protein classes. Table 3 compares the ability of
the AdaTree algorithm to discriminate DNA- and
RNA-binding proteins over various training set sizes.
Specifically, the results in terms of accuracy and AUC
are not very encouraging compared to our previous
experiments. This is probably a defect in our feature
representation. The rest of the metrics on Table 3 are
less discouraging though. That is, we can say with 45%
probability that a given RNA-binding protein will be
predicted as RNA-binding. However, we can say with
82% probability that a given DNA-binding protein
will be predicted correctly as DNA-binding.

The features that best discriminate RNA- and
DNA-binding proteins based on an AdaStump model
(data not shown) correspond to the content of argi-
nine, histidine, tryptophan, and tyrosine. From bio-
physical point of view, arginine and histidine make
favorable hydrogen bond contacts with double stran-
ded DNA.24 Likewise, histidine makes favorable
hydrogen bond contacts with single stranded DNA24

and tryptophan has favorable van der Waals interac-
tions.24 Finally, tyrosine makes favorable hydrogen
bond contacts with the sugar groups on RNA.24 Thus,
the features captured in AdaStump model can be ex-
plained from biophysical interactions.

Using the model built to discriminate DNA-binding
proteins from proteins that do not bind DNA
(excluding RNA-binding proteins), 14 RNA-binding
are predicted as DNA-binding and 23 as non-binding.
This is a slight improvement over previous work6,
which predicted 16 and 21, respectively. However, the
final accuracy value of 70% is still much worse than
the 91% accuracy6 reported previously. This could be
the result of AdaBoost overfitting on the nosier data-
set.

Interactions Depicted in the Boosted Stump Model

Figures 3 and 4 illustrate the models learned by
boosting one-level decision trees (decision stumps)
over the protein–DNA and protein–membrane data-
sets, respectively. The root of each decision stump
contains a decision: if true the left leaf is used otherwise
the right leaf is used. Every leaf gives a confidence in its
prediction and serves as a weight for the AdaBoost
algorithm. The final decision is reached by summing
over all the chosen leaves: if the total is greater than
zero the protein is predicted as binding DNA (Fig. 3)
or membrane (Fig. 4) otherwise not. The models in
Figs. 3 and 4 were stopped after 13 iterations to give a
more interpretable model. The LOO accuracy of the
model stopped at 13 iterations reaches 83% (compared
to 85% for the full model) over the protein–DNA
dataset and 90% (91.6%) over the protein–membrane
dataset. Thus, these models contain a majority of the
information used in the final models of the AdaStump
algorithm.

TABLE 2. Comparing classification and evaluation methods
over the protein–membrane dataset.

AdaTree AdaC4.5 AdaStump SVM C4.5

2-CV ACC 91.2 91.3 90.5 86.7 87.5

SEN 48.1 50.9 56.6 57.4 53.3

SPE 98.6 98.2 96.3 91.7 93.4

AUC 91.1 92.8 80.2 83.4 73.6

5-CV ACC 93.1 92.1 91.3 91.6 88.5

SEN 63.3 56.1 60.7 67.5 55.6

SPE 98.3 98.3 96.6 95.7 94.2

AUC 93.6 94.2 83.1 90.4 74.2

LOO ACC 93.4 92.3 91.6 86. 8 88.6

SEN 67.5 57.5 65.0 65.0 55.0

SPE 97.9 98.7 96.1 90.6 94.4

AUC 93.4 93.6 84.6 88.1 65.5

TABLE 3. Comparing the ability of classification methods to
discriminate DNA from RNA-binding proteins over different

evaluation methods.

2-CV 5-CV LOO

AdaTree ACC 65.6 69.0 70.5

SEN 38.0 42.1 45.9

SPE 79.3 82.2 82.7

AUC 63.9 69.4 73.6

Learning to Translate Sequence and Structure to Function 1049

One observation that can be made over both models
is the predominance of sequence-based features over
the structure-based. That is, in Fig. 4, none of the
surface patches play a significant role in discriminating
membrane-binding proteins. Further, the surface patch
is not used in the DNA-binding model until much later
and it is not as confident as some other features. An-
other observation entails the duplication of features. In
both models charge appears twice. This serves to

illustrate one method the AdaBoost algorithm employs
to achieve good generalization; specifically, it widens
the l2 margin19 by refining and expanding the rules
learned.

Several interesting rules can be extracted from
Fig. 4 (membrane-binding). For example, if a protein
has more than 5.3% surface valine or more than 15%
surface serine, it is more likely to bind membrane. Both
of these are smalls, neutral amino acids and may be

Charge < 1.8

-0.774 0.607

GLY < 8.01

0.113 -0.799

ARG < 4.25

-0.604 0.203

Charge < 7.7

-0.134 0.839

ALA < 6.18

0.371 -0.252

ASP < 4.83

0.322 -0.255

CYS < 0.969

0.322 -0.336

sVAL < 1.74

0.295 -0.250

Patch < 69.5

-0.358 0.255

TRP < 0.846

-0.448 0.206

ILE < 7.64

-0.158 0.505

sASN < 10.1

 0.119 -0.716

sARG < 4.86

-0.496 0.155

FIGURE 3. A graphical representation of the AdaStump model built on the protein–DNA dataset. At the root of each node, a single
decision is made testing whether the feature in question is less than a learned threshold; if so, the value on the left leaf is used,
otherwise the right leaf is used. The final decision is made by summing up these values; if the final value is greater than zero, the
protein is predicted to bind DNA otherwise it is predicted not to bind DNA. The s in sASN stands for surface amino acid com-
position of asparagine.

GLY < 5.7

-0.08 -0.93

CH < -3.9

-0.80 0.17

ALA < 6.1

0.37 -0.61

sMET < 2.68

-0.35 0.56

GLY < 6.3

0.37 -0.56

TRP < 6.9

-0.82 0.22

CH < -10.6

-1.0 0.17

sLEU < 1.3

-0.87 0.1

LYS < 6.3

-0.74 0.17

sSER < 15.11

-0.17 0.80

sARG < 3.3

-0.71 0.23

sVAL < 5.3

-0.19 0.65

THR < 7.1

0.17 -0.75

FIGURE 4. A graphical representation of the AdaStump model built on the protein–membrane dataset. At the root of each node, a
single decision is made testing whether the feature in question is less than a learned threshold; if so, the value on the left leaf is
used, otherwise the right leaf is used. The final decision is made by summing up these values; if the final value is greater than zero,
the protein is predicted to bind membrane otherwise it is predicted not to bind membrane. The s in sASN stands for surface amino
acid composition of asparagine.

LANGLOIS et al.1050

important to binding. Since the protein does not
immerse itself in the membrane, we do not expect a
significant number of surface hydrophobic residues
and in the model we do not find any. Likewise, in both
models we see a number of exclusionary rules. Such
rules do not directly give us any information about the
DNA- or membrane-binding proteins but do perform
a useful function by weeding out proteins that are far
away in some characteristic. Specifically, both models
exclude proteins with a larger proportion of glycine,
i.e., proteins that are overly flexible in some way.

DISCUSSION

This current work improves on previous work
focused on discriminating DNA- and membrane-bind-
ing proteins in a number of ways. First, we have dem-
onstrated that the boosted decision tree algorithm
outperforms the other classifiers, achieving 93%
and 88% accuracy for membrane-binding and
DNA-binding, respectively. This study also provided a
rigorous benchmark comparing each classifier over a set
of important metrics and varying the training set size.
Second, we were able to take advantage of the non-
linear nature and simplicity of the boosted model to
graphically illustrate which features are actually
important in the learned models. Specifically, we have
found that proteins with larger proportions of valine
and serine on the surface are more likely to bind mem-
brane. Likewise, we found that sequence-based features
dominate the AdaStumpmodel. This seems to motivate
a corresponding sequence-based approach except that
here we are dealing with known structural domains. In
order to develop a truly sequence-based approach, we
would have to find a way to deal with larger sequences
that contain an unknown number of domains, only one
of which may contain the function of interest.

Among the classifiers, the boosted decision trees
performed the best on nearly every metric and for each
training set size. We also discussed how the area under
the ROC serves as a better metric for unbalanced
datasets in that it is unaffected by the underlying class
distribution. This is important for future work since
there is most likely a larger skew between DNA-
binding (or membrane-binding) proteins and other
proteins. Also, a larger AUC indicates that the learn-
ing algorithm will produce better confidence values
and make more robust predictions because it measures
the relative ordering of predictions.

Finally, we tackled the issue of how RNA-binding
proteins are handled by our classifier. Without
including them in the training, we found a majority
would be predicted as not DNA-binding. Further-
more, we showed that a classifier trained on DNA- vs.

RNA-binding could correctly predict a given DNA-
binding protein with 80% probability.

ACKNOWLEDGMENTS

This work is partially supported by NIH grant P01
AI060915 to H. L. (PI. Mike Johnson). R.E.L. is
supported by NIH training grant T32 HL 07692:
Cellular Signaling in Cardiovascular System (PI, John
Solaro). N.B. gratefully acknowledges the kind sup-
port from FMC Technologies Inc., Fellowship.

REFERENCES

1Ahmad, S., M. M. Gromiha, and A. Sarai. Prediction of
DNA binding in proteins from composition, sequence and
structure. Genome Inf. 13:308–309, 2002.
2Ahmad, S., M. M. Gromiha, and A. Sarai. Analysis and
prediction of DNA-binding proteins and their binding
residues based on composition, sequence and structural
information. Bioinformatics 20:477–486, 2004.
3Ahmad, S., and A. Sarai. Moment-based prediction of
DNA-binding proteins. J. Mol. Biol. 341:65–71, 2004.
4Bhardwaj, N., and H. Lu. Residue-level prediction of
DNA-binding sites and its application on DNA-binding
protein predictions. FEBS Lett. 581:1058–1066, 2007.
5Bhardwaj, N., R. Langlois, G. Zhao, and H. Lu. Structure
based prediction of binding residues on DNA-binding
proteins. In: Proceedings of 27th Annual Conference of the
IEEE Engineering in Medicine and Biology Society,
Shanghai, China.
6Bhardwaj, N., R. E. Langlois, G. Zhao, and H. Lu.
Kernel-based machine learning protocol for predicting
DNA-binding proteins. Nucleic Acids Res. 33:6486–6493,
2005.
7Bhardwaj, N., R. V. Stahelin, R. E. Langlois, W. Cho, and
H. Lu. Structural bioinformatics prediction of membrane-
binding proteins. J. Mol. Biol. 359:486–495, 2006.
8Brooks, B., R. E. Bruccoleri, B. Olafson, D. States,
S. Swaminathan, and M. Karplus. Charmm: a program
for macromolecular energy, minimization, and dynamics
calculations. J. Comput. Chem. 4:187–217, 1983.
9Buck, M. J., and J. D. Lieb. Chip-chip: considerations for
the design, analysis, and application of genome-wide
chromatin immunoprecipitation experiments. Genomics
83:349–360, 2004.

10Burges, C. J. C. A tutorial on support vector machines.
Data Min. Knowl. Disc. 2:121–167, 1998.

11Burley, S. K., S. C. Almo, J. B. Bonanno, M. Capel, M. R.
Chance, T. Gaasterland, D. Lin, A. Sali, F. W. Studier, and
S. Swaminathan. Structural genomics: beyond the human
genome project. Nat. Genet. 23:151–157, 1999.

12Cajone, F., M. Salina, and A. Benelli-Zazzera. 4-Hy-
droxynonenal induces a DNA-binding protein similar to
the heat-shock factor. Biochem. J. 262:977–979, 1989.

13Chang, C.-C., and C.-J. Lin. Libsvm: a library for support
vector machines, 2003. Available from: http://www.csie.n-
tu.edu.tw/�cjlin/papers/libsvm.pdf.

Learning to Translate Sequence and Structure to Function 1051

14Cho, W., and R. V. Stahelin. Membrane–protein interac-
tions in cell signaling and membrane trafficking. Annu. Rev.
Biophys. Biomol. Struct. 34:119–151, 2005.

15Chou, C.-C., T.-W. Lin, C.-Y. Chen, and A. H. J. Wang.
Crystal structure of the hyperthermophilic archaeal DNA-
binding protein sso10b2 at a resolution of 1.85 angstroms.
J. Bacteriol. 185:4066–4073, 2003.

16Cortes, C., and V. Vapnik. Support-vector networks.
Mach. Learn. 20:273–297, 1995.

17Fawcett, T. Roc graphs: notes and practical considerations
for data mining researchers, 2003. Available from: http://
www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf.

18Freeman, K., M. Gwadz, and D. Shore. Molecular and
genetic analysis of the toxic effect of rap1 overexpression in
yeast. Genetics 141:1253–1262, 1995.

19Freund, Y., and R. E. Schapire. Experiments with a new
boosting algorithm. In: Proceedings of 13th Annual Inter-
national Conference on Machine Learning, Bari, Italy, 1996.

20Friedman, J., T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting, 1998. Available
from: http://www-stat.stanford.edu/�jhf/ftp/boost.ps.

21Goutte, C. Note on free lunches and cross-validation.
Neural. Comp. 9:1211–1215, 1997.

22Henriette Mozsolits, M.-I. A. Surface plasmon resonance
spectroscopy: an emerging tool for the study of peptide–
membrane interactions. Peptide. Sci. 66:3–18, 2002.

23Hurley, J. H., and T. Meyer. Subcellular targeting by
membrane lipids. Curr. Opin. Cell. Biol 13:146–52, 2001.

24Jones, S., D. T. A. Daley, N. M. Luscombe, H. M. Berman,
and J. M. Thornton. Protein–RNA interactions: a struc-
tural analysis. Nucleic Acids Res. 29:943–954, 2001.

25Kabsch, W., and C. Sander. Dictionary of protein sec-
ondary structure: pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers 22:2577–2637, 1983.

26Kaplan, T., N. Friedman, and H. Margalit. Ab initio
prediction of transcription factor targets using structural
knowledge. PLoS. Comp. Biol. 1:e1, 2005.

27Kearns, M., and D. Ron. Algorithmic stability and sanity-
check bounds for leave-one-out cross-validation. Neural.
Comp. 11:1427–1453, 1999.

28Kuznetsov, I. B., Z. Gou, R. Li, and S. Hwang. Using
evolutionary and structural information to predict DNA-
binding sites on DNA-binding proteins. Proteins Struct.
Funct. Bioinform. 64:19–27, 2006.

29Langlois, R. E., A. Diec, O. Perisic, Y. Dai, and H. Lu.
Improved protein fold assignment using support vector
machines. Int. J. Bioinform. Res. Appl. 1:319–334, 2006.

30Langlois, R. E., and H. Lu. User manual of malibu: ma-
chine learning workbench for bioinformatics applications,
2007. Available from: http://proteomics.bioengr.uic.edu/
malibu/.

31Lei, Z., and Y. Dai. A novel approach for prediction of
protein subcellular localization from sequence using fourier

analysis and support vector machines. In: Proceedings of
4th ACM SIGKDD Workshop on Data Mining in Bioin-
formatics, Seattle, 2004.

32McDonald, R. A., D. J. Hand, and I. A. Eckley. An
empirical comparison of three boosting algorithms on real
data sets with artificial class noise. In: Lecture Notes in
Computer Science, edited by T. Windeatt and F. Roli.
Berlin: Springer-Verlag, 2003, pp. 35–44.

33Niculescu-Mizil, A., and R. Caruana. An empirical com-
parison of supervised learning algorithms In: Proceedings
of 23rd Annual International Conference on Machine
Learning, Pittsburgh, Pennsylvania, 2006.

34Oehler, S., R. Alex, and A. Barker. Is nitrocellulose filter
binding really a universal assay for protein–DNA interac-
tions? Anal. Biochem. 268:330–336, 1998.

35Pellegrini-Calace, M., and J. M. Thornton. Detecting
DNA-binding helix-turn-helix structural motifs using se-
quence and structure information. Nucleic. Acids Res.
33:2129–2140, 2005.

36Quinlan, J. R. Induction of decision trees. Mach. Learn.
1:81–106, 1986.

37Quinlan, J. R. Improved use of continuous attributes in
c4.5. J. Artif. Intell. Res. 4:77–90, 1996.

38Saetrom, P., R. Sneve, K. I. Kristiansen, O. Snove Jr,
T. Grunfeld, T. Rognes, and E. Seeberg. Predicting non-
coding rna genes in escherichia coli with boosted genetic
programming. Nucleic. Acids. Res. 33:3263–3270, 2005.

39Schapire, R. E., and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. Mach. Learn.
37:297–336, 1999.

40Shanahan, H. P., M. A. Garcia, S. Jones, and J. M.
Thornton. Identifying DNA-binding proteins using
structural motifs and the electrostatic potential. Nucleic
Acids Res. 32:4732–4741, 2004.

41Stawiski, E. W., L. M. Gregoret, and Y. Mandel-Gutfre-
und. Annotating nucleic acid-binding function based on
protein structure. J. Mol. Biol. 326:1065–1079, 2003.

42Stormo, G. DNA binding sites: representation and dis-
covery. Bioinformatics 16:16–23, 2000.

43Stormo, G. D. Computer methods for analyzing sequence
recognition of nucleic acids. Annu. Rev. Biophys. Biophys.
Chem. 17:241–263, 1988.

44Teruel, M. N., and T. Meyer. Translocation and reversible
localization of signaling proteins: a dynamic future for
signal transduction. Cell 103:181–184, 2000.

45Wang, G., and R. L. Dunbrack Jr. Pisces: a protein se-
quence culling server. Bioinformatics 19:1589–1591, 2003.

46Wu, P. G., and L. Brand. Resonance energy transfer:
methods and applications. Anal. Biochem. 218:1–13, 1994.

47Yan, C., M. Terribilini, F. Wu, R. L. Jernigan, D. Dobbs,
and V. Honavar. Predicting DNA-binding sites of proteins
from amino acid sequence. BMC Bioinform. 7:262–272,
2006.

LANGLOIS et al.1052

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

