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Abstract—Magnetic induction tomography (MIT) is a low-
resolution imaging modality for reconstructing the changes
of the complex conductivity in an object. MIT is based on
determining the perturbation of an alternating magnetic field,
which is coupled from several excitation coils to the object.
The conductivity distribution is reconstructed from the
corresponding voltage changes induced in several receiver
coils. Potential medical applications comprise the continu-
ous, non-invasive monitoring of tissue alterations which are
reflected in the change of the conductivity, e.g. edema,
ventilation disorders, wound healing and ischemic processes.
MIT requires the solution of an ill-posed inverse eddy current
problem. A linearized version of this problem was solved for
16 excitation coils and 32 receiver coils with a model of two
spherical perturbations within a cylindrical phantom. The
method was tested with simulated measurement data. Images
were reconstructed with a regularized single-step Gauss–
Newton approach. Theoretical limits for spatial resolution
and contrast/noise ratio were calculated and compared with
the empirical results from a Monte-Carlo study. The con-
ductivity perturbations inside a homogeneous cylinder were
localized for a SNR between 44 and 64 dB. The results prove
the feasibility of difference imaging with MIT and give some
quantitative data on the limitations of the method.

Keywords—Magnetic induction tomography, Passive electri-

cal properties, Conductivity imaging, Inverse problem, Reg-

ularization.

INTRODUCTION

Magnetic induction tomography (MIT) is a non-
invasive and contact-less imaging modality for recon-
structing the changes Dj of the complex conductivity
distribution j =r+ jx e0er in a target object.8,13–16,22

MIT requires an array of excitation (EXC) and receiving

coils. Each EXC couples an alternating magnetic field
B0 to the object under investigation (see Fig. 1).
Changes Dj of the complex conductivity cause a field
perturbation DB due to the induction of eddy currents.
The perturbation induces voltage changes DV in the
receiver coils. It is convenient to normalizeDV toV0, the
voltage which is induced by the unperturbed field B0.

Previous reviews of MIT have been given in8,22,32.
The method has been developed for industrial process
tomography already more than 10 years ago but is
comparatively new in medical imaging. Potential
medical applications usually aim at the characterization
of biological tissues by means of their complex
conductivity. The motivation for measuring the electri-
cal properties is their characteristic dependence on the
(patho-) physiological state of tissues, especially hydra-
tion and membrane disorders. Medical applications so
far suggested are: imaging of limbs,2 imaging of the
brain, e.g. for the monitoring of brain edema,14,16,24,26

measurement of human body composition,7 monitoring
of wound healing.23

In contrast to electrical impedance tomography
(EIT) MIT avoids the ill-defined electrode-skin inter-
face due to its inherently contact-less operation.

Figure 1 shows a schematic MIT coil configuration
with rectangular coils as receivers and a cylindrical
object space. The solenoid excitation coils are distrib-
uted on two different rings in order to obtain a true
3-D-arrangement.

The reconstruction of the absolute conductivity in a
target region X requires the solution of a complex
inverse eddy current problem. Let be

y ¼ WðjÞ ð1Þ

the discretized non-linear forward mapping of the
conductivity vector j to the vector of induced voltages
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y. y containsM = a � b entries, a being the number of
EXC and b that of receiving coils. The corresponding
inverse problem

j ¼ W�1ðyÞ ð2Þ

is ill-posed and usually underdetermined. Uniqueness
of the solution for this inverse boundary value problem
was established in21 provided the angular frequency x
of the AC field is not a resonant frequency. The generic
approach for the solution of this type of non-linear
problem is the application of an iterative scheme such
as the regularized Gauss–Newton approach, including
an appropriate regularization scheme.

To the knowledge of the authors the full inverse
problem of medical MIT in 3-D has not yet been solved
satisfactorily, although some approximate solutions,
especially for 2-D, have been presented.3,13,33 Some
authors9,15 proposed the use of weighted back-projec-
tion, similar to EIT. In all published cases the back-
projection is done along magnetic flux tubes between
excitation and receiving coils, the weights being calcu-
lated for the case of conducting perturbations in the
empty space. However, own observations17,27,29 suggest
that the basic requirements for the applicability of this
kind of back-projection are not fulfilled in realistic
anatomical structures, so that a more appropriate in-
verse approach is necessary. This paper is dedicated to
demonstrating the feasibility of the 3-D reconstruction
of a spherical perturbation within a cylindrical con-
ducting body bymeans of a regularized one-stepGauss–
Newton reconstructor. The conductivities were chosen
in the physiological range of human tissues.

METHODS

The solution of (2) requires the target region to be
discretized into N voxels. Within each voxel i the

assigned component ji of the vector of conductivity j

is assumed to be constant. A grid of tetrahedral finite
elements of second order was employed. In a general
setup j is then found with the iterative scheme:

1. Define the forward problem with an initial
parameter vector j.

y ¼ WðjÞ ð3Þ

2. Measure the data vector ym.
3. Solve iteratively for the estimated true

parameters j�

j� ¼ argmin
j
ðWðjÞ � ymÞ

TðWðjÞ � ymÞ þ kjTRTRj
� �

:

ð4Þ

whereby j� means the estimated ‘‘true’’ parameter
vector. R and k are a regularization matrix and a
regularization parameter, respectively, which are re-
quired to stabilize the iteration.

When applying Newton’s method starting from an
initial guess the parameter vector j is updated by an
increment pk in each iteration step k+1

jkþ1 ¼ jk þ pk

with the update step

pk ¼ ðGT
kGk þ kRTRÞ�1GT

k ek ð5Þ

with ek ¼ ðWðjkÞ � ymÞ. The Jacobian Gk ¼ dWk

djk
, also

called sensitivity matrix, must be recalculated in each
iteration step. This procedure is very time consum-
ing, hence a complete iterative identification run
requires significant computing power, the bottleneck
being the solution of the forward model. However,
in EIT it could be shown that in practice most
features of the image can already be recognized very
satisfactorily after the first iteration. This fact led to
the development of the so-called Newton-one-step
reconstructor (NOSER4). NOSER is especially app-
ropriate for so-called dynamical imaging where only
the change in the conductivity between two different
states of the object under investigation (e.g. lung
ventilation) are of interest. In this case the first
Newton step corresponds to the solution of the lin-
earized forward problem

Dym ¼ Gp ¼ dW
dj

p ð6Þ

p ¼ ðGTGþ kRTRÞ�1GTðDymÞ ð7Þ

whereby p ¼ Dj is the change of the conductivity
between two states of the observed object, and Dym is
the corresponding change of the measured data. In the

FIGURE 1. Schematic of a possible coil system for MIT with
16 excitation coils and 32 receiver coils.

Image Reconstruction in Magnetic Induction Tomography 1787



case of comparatively small changes the inversion
of (6) according to (7) yields a fairly correct localiza-
tion of the perturbed regions. We evaluated the feasi-
bility of this kind of reconstruction in MIT by
implementing a NOSER-approach according to (7)
under consideration of four different regularization
methods.

Calculation of the Forward Solution and the Sensitivity
Matrix

The forward mapping WðjÞ is given by Maxwell’s
equations for harmonic excitation:

curlH ¼ J

curlE ¼ �jxB in X
divB ¼ 0

B ¼ lH; J ¼ jE; j ¼ rþ jxe

ð8Þ

with H: magnetic field intensity, B magnetic flux den-
sity, E electric field strength, J: current density, e:
dielectric constant, l: magnetic permeability, r: real
conductivity, j: complex conductivity, x: angular fre-
quency. X denotes the interior of the object under
investigation.

This forward problem is solved with a previously
published finite element program,12,17 which employs
an Ar–V, Ar – formulation with edge elements of sec-
ond order for the reduced magnetic vector potential Ar

and nodal elements of second order for the electric
scalar potential V. Boundary conditions on the far
boundary (normal component of B vanishes) were
prescribed on a spherical surface with a radius suffi-
ciently large such that a change of this radius by 50%
resulted in a change of the induced voltages by less
than 1 %.

Special attention must be paid to the efficient cal-
culation of the Jacobian G ¼ dW

dj . A mathematically
rigorous treatment of this topic has been given in.31 In
our implementation we exploited the integral formu-
lation published by Mortarelli,20 which is based on a
physical mutual energy concept. With this approach
the absolute sensitivity dy/d j for a certain pair of coils
is calculated according to (9).

dy

dj
¼ I/

Z

X

L/LwdX ð9Þ

with

L/ ¼ �
jxA/ þrV/

I/
Lw ¼

jxAw þrVw

IW
ð10Þ

A/, A, V/ and Vw denote the total magnetic vector
potential and the electric scalar potential in the region
X due to currents I/ and Iw in the excitation and

receiver coils, respectively. The sensitivity matrix
dW=dj is then obtained by evaluating (9) for all
individual elements and all coil pairs. The exact
numerical implementation of (9) was described in
detail in11. The calculation of the sensitivity map for
one pair of coils requires only two forward solutions of
the eddy current problem for generating L/ and L in
(10).

Regularization

In EIT the regularization matrix RTR most fre-
quently used is either the identity matrix I or a discrete
spatial derivative operator of first or second order.
Such approaches have been discussed extensively in the
literature, for a good review see e.g.10 Several regu-
larization matrices can be regarded as simple
smoothness criteria for the solution but they have also
a more general statistical meaning in the framework of
Bayesian estimation theory (see e.g.1). In the case of
uncorrelated noise with equal variance for all mea-
surement data the estimator in (7) is a maximum a
posteriori (MAP) estimator with RTR being the inverse
of the expected covariance matrix of the image E[ppT].
In that sense e.g. the neighbouring matrix accounts for
the case that all image values are de-correlated at
borders between homogeneous regions with different
mean values.

According to our own observations good results can
be achieved with variance uniformization5 which
imposes a special assumption of the prior distribution.
The objective here is to uniformize the expected vari-
ance of the reconstructed conductivity changes over
the region X, thus providing approximately equal
image noise in the center as in the periphery. The
algorithm has been described in detail in5 and requires
singular value decomposition of G according to G =
USVT. Then the regularization term is expressed as k
RTR = VDVT, with D a diagonal matrix with the
entries di

di ¼
riffiffiffi
c
p � r2

i ð11Þ

whereby ri is the Ith singular value. c is a free scalar
tuning parameter.

Alternatively truncated singular value decomposi-
tion (TSVD) has been applied in EIT-reconstruction,19

hence this approach was also implemented for MIT. In
this case the inverse solution becomes

p ¼ VtR
�1
t UtDym ð12Þ

whereby t denotes the truncation level of the original
matrices V, S and U, thus removing the contributions
of singular values with index > t.
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In this paper the results obtained with four different
regularization schemes were compared:

(1) RTR = I. Using the identity matrix is the
most simple Tikhonov-regularization method,
penalizing high values of the reconstructed
conductivity changes. In the following this
method will be abbreviated as ‘IM’.

(2) RTR = N with N the neighbouring matrix
defined as:

Nij ¼
nn i ¼ j
�1 i,j neighbours
0 otherwise

8<
:

nn is the number of neighbouring elements for element
i, whereby only elements with common facets are
considered as neighbours. N is an approximation of the
spatial derivative operator of second order. Due to the
irregular structure of the grid this filter is not spatially
invariant, nevertheless it gives good results and is
common practice for this type of inverse problem. In
the following this method will be abbreviated as ‘NM’.

(3) k RTR = VDVT according to the variance
uniformization approach. In the following
this method will be abbreviated as ‘VU’.

(4) TSVD while choosing the truncation level t
such as to remove all singular values below an
appropriately chosen threshold.

Methods 1 and 2 require the regularization param-
eter to be chosen optimally while method 3 in addition
implies the choice of the tuning parameter c. In prac-
tice it turns out that the value of c is not critical over a
very wide range of values because the optimal k
depends on c. That means that c can be fixed at a more
or less arbitrary value if a method for the automatic
determination of k is applied. In our case c was set to
0.1.

The regularization parameter k accounts for the
degree of smoothness of the reconstructed image and
determines the condition number of the term (GTG +
kRTR) in (6). Several methods for the optimal choice
of this parameter have been published in the past, the
most well-known ones being L-curves, Generalized
Cross-Validation and the Morozov-criterion.10 Be-
cause of its clear physical interpretation we choose
the latter method. In this case the optimal k is the one
where the estimated residuals Gp) Dym have the
same variance as the measurement noise. The moti-
vation for this criterion is that it is obviously mean-
ingless to make the residuals lower than expected from
the statistics of the data. This method provided always
stable images independently of the regularization ma-
trix and was considered as a good basis for a fair
comparison between the different regularization
methods.

Modeling Setup

The inverse solver was tested with the simple 3-D
model comprising a cylindrical conductor with
two spherical inhomogeneities placed with their cen-
ters at (x = ) 60, y = 0, z = 0) (mm) and (x = ) 30,
y = 52 and z = 0) (mm) and the array of 16 excita-
tion coils and 32 receiving coils shown in Fig. 1. The
exact geometry is illustrated in Fig. 2. The cylinder had
a radius and a height of 100 mm, the perturbing sphere
had a radius of 20 mm. The solenoid excitation coils
were modeled by cylindrical rings with an inner
diameter of 60 mm, a thickness of 1 mm and a width
of 21 mm. The exciters were placed in groups of 8 with
their centers on two rings with radii of 125 mm in
two transversal planes of the cylinder. The lower ring
is rotated by 22.5 degrees versus the upper one in
order to achieve a lower degree of symmetry. The
square receiver coils with an edge length of 40 mm
were placed with their centers on two symmetrically

FIGURE 2. Schematic of the simulation model. 16 excitation coils and 32 receiver coils are placed on two concentric rings around
the tank, respectively. Two spherical perturbations are placed at the shown locations with (x = ) 60, y = 0, z = 0) and (x = ) 30,
y = 52, z = 0). All measures are given in (mm).
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arranged parallel rings with a radius of 120 mm, each
comprising 16 evenly spaced coils. The orientation of
the windings were opposite in both rings so that the 16
vertical pairs can be combined to planar gradiometers
as published previously26. The measured data were
simulated in terms of induced voltage changes when
changing the conductivity of the spherical perturbation
from 0.2 S/m (= background conductivity, homoge-
neous cylinder) to 0.3 S/m. The relative permittivity
was kept constant at 80 in all compartments. The
excitation frequency was 100 kHz.

This arrangement was chosen as the model system
for our analysis because of two reasons:

(1) It represents a true 3-D-arrangement which
delivers theoretically 512 independent mea-
suring combinations, i.e. 512 data points for
one image reconstruction.

(2) It is similar to our experimental system which
employs 16 excitation sites in one plane and
14 planar gradiometers which are formed by
connecting in counter-phase the coils in the
upper and in the lower receiver plane.

Two different meshes A and B were used for the
generation of an artificial dataset and for the recon-
struction. Mesh A comprised 11000 elements within the
cylinder and approximately 1200 in the spheres while
mesh B comprised 17000 elements for the homogeneous
cylinder without perturbation. In both cases the diam-
eter of the surrounding spherical surface which
approximated the far boundary was chosen as 1m,
requiring approximately 30000 elements (mesh A) and
50000 elements (mesh B), respectively. Uncorrelated
Gaussian noise was added to the voltage data in order to
simulate the noise of the receiver channels. This type of
noise, although common practice in simulations of this
kind,, is not entirely valid for real situations. In addition
the noise of the excitation coils is propagated to all re-
ceiver coils, thus resulting in a certain amount of cor-
related noise in all receiver channels. This phenomenon
has been studied in detail for EIT,6 but should be dis-
regarded here for simplicity.

The calculation of the complete sensitivity matrix
required 48 forward solutions according to the Mor-
tarelli-approach.

Theoretical Limits of Resolution and Contrast/Noise
Ratio

For EIT the theoretical limits of image quality in
terms of contrast/noise ratio (CNR) and resolution
have been studied carefully in30 while no such study
exists for MIT. A similarly rigorous discussion for
MIT is certainly beyond the scope of this paper.
However, a simplified analysis on resolution and CNR

was carried out for our linear reconstruction scheme so
as to have a certain theoretical basis for interpreting
our empirical results.

There is a fundamental limit for the resolution
which depends on the amount of available informa-
tion in the data. This information depends on the
number of data points, i.e. the number of possible
sensor–detector-combinations and on the degree of
independence between these data points. In the case
of EIT and MIT the number of independent data
points is usually much lower than the number of
voxels, so that the system is under-determined.
Moreover the different data are correlated to a certain
degree, so that the effective rank is comparatively
low. In EIT, e.g. 16 electrodes provide 104 indepen-
dent data points so that the information is no more
than 104 ‘effective pixels’. Including some a priori-
information in the form of the regularization terms
leads to a defined ‘smearing’ of this information over
the imaging plane and provides the typical diffuse
images known from EIT.

We characterized the resolution of MIT with the
Raleigh criterion. Accordingly two point-shaped per-
turbations are still separable if their point spread
functions (PSF) overlap in such a way that the peak of
the first one coincides with the first zero crossing of the
second one. In the case of a sinc-shaped PSF the lowest
separable distance is equivalent to the 64%-width of
the PSF. In contrast to e.g. X-ray CT in MIT the PSF
depends on the location of the perturbation and on the
geometry of the object under investigation. In this
paper the object is the model cylinder which is also
used for the numerical reconstruction examples and for
the phantoms. The PSF is calculated by mapping the
true parameter values p* to the reconstructed ones p

via the reconstruction equation

ym ¼ Gp�

p ¼ Aym ¼ AGp� ¼Mp�
ð13Þ

A means the expression
A = (GTG + k RTR))1GT for regularized methods

1–3 or A = Vt St
)1Ut for TSVD.

The ith column of M in Eq. 13 is then the shifted
PSF for the ith voxel. The theoretical limit was
approximated by applying TSVD with the full set of
non-zero singular values, i.e.

M ¼ VtR
�1
t UtG with t ¼ rankðGTGÞ ð14Þ

We chose TSVD for the estimation of the theoretical
limit because it requires the least explicit assumptions
about the a-priori distribution of p. In MIT an additional
difficulty is that, in general, the 64%-boundary of the
three-dimensional PSF is not spherical and thus the
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resolution is anisotropic. In our simplified analysis we
define as Raleigh-width the largest axis of the ellipsoid
which best approximates the 64%-boundary.

As CNR at the point x we defined

CNRðxÞ ¼ DpðxÞ
stdðnpðxÞÞ ð15Þ

whereby Dp is the reconstructed difference between
perturbation and background and std(np) is the
standard deviation of the image noise. We recognize
that Dp is not a contrast in the classical sense. Usually
contrast is the difference between p in the perturbation
and background divided by the background value.
However, as our method is a differential one, the
background value of the image is always zero and the
classical contrast definition is meaningless. Moreover
the determinant for the detectability of a perturbation
is the difference Dp rather than the contrast. The CNR
depends on the size and location of the perturbation as
well as on the noise level of the measured data. In
contrast to resolution there is no theoretical lower limit
in the case of noise-free data and a perfect recon-
struction method.

We estimated std(np(x)) by calculating the Cramer-
Rao lower bound of the covariance of the parameters.
Given the covariance matrix X of the voltage changes
Dym the Cramer-Rao lower bound of the covariance
matrix of the image noise vector np is

CovðnpÞ ¼ AXAT ð16Þ

From the diagonal elements of this matrix the ex-
pected lower bound of the coefficient of variation (CV)
of the reconstructed conductivity in the perturbation
can be calculated for any voxel. For the evaluation of
Eq. 15 the reconstructed value Dp in voxel i follows
from Eq. 13:

Dpi ¼
X
j2P

Mijp
�
j ð17Þ

whereby P is the set of the indices of all voxels inside
the true perturbation. This equation clearly shows
that the CNR must decrease when the size of the
perturbation shrinks. Assuming a small perturbation
and an approximately constant PSF inside this region
the CNR is approximately inversely proportional to
the volume of the perturbation. The detectability
limit can then be defined as the one where the CNR
equals 1.

The shown approach is simple and allows the cal-
culation of detectability limits for perturbations with
different radii and locations but it is only valid in the
linear case. Alternatively Monte-Carlo studies can be
carried out for different perturbations varying in size
and contrast. Such a study has been published previ-

ously for a spherical perturbation in the center of a
brain model.18

For simplicity we assumed the noise to be Gaussian
with zero mean, although in the general non-linear case
this may not be entirely valid. For characterizing the
noise level we defined as SNR the ratio max(|DV|)/
std(V) whereby std(V) is the standard deviation of the
noise voltage. DV is the vector of voltage changes in all
excitation/sensor combinations when a test object is
placed into the empty measurement system. In order to
be independent on size and location of the perturba-
tion we chose as the test object the homogeneous
background cylinder of our model.

RESULTS

The PSF was evaluated at 20 equally spaced points
along the x-axis between the center and the border of
the cylinder. This set includes also the point (0.6R0,0,
0), i.e. the center of one of the two perturbations in our
simulation model. To mitigate discretization errors the
PSF was calculated by rotating the coordinate system
8 times about 45� and averaging the data assuming
radial symmetry of the true model. Then the normal-
ized resolution was calculated from the PSF as the
inverse of the ratio between the Raleigh-width and the
cylinder radius. This normalized resolution can be
interpreted as the number of points which can be
resolved per cylinder radius. The resulting data were
plotted in Fig. 3 as a function of the normalized
x-coordinate in the xy-plane. Curves are depicted for
noise-free data (TSVD with truncation level 512) and

FIGURE 3. Dependence of the theoretical normalized reso-
lution on the noise level. Curves are depicted for noise-free
data (TSVD with truncation level 512) and TSVD with trunca-
tion levels corresponding to a SNR of 44, 50 and 64 dB,
respectively.
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TSVD with truncation levels corresponding to a SNR
of 44, 50 and 64 dB, respectively. The truncation levels
were chosen according to the Morozov-criterion and
are listed in table 1. The above three SNR levels were
chosen because they correspond to the range in which
our current measurement system operates.25

A clear increase of the resolution with the distance
from the center is observable. The theoretical limit for
a point-shaped perturbation in the xy-plane is 3.5
(corresponding to 2.9 cm separation) in the center and
a maximum resolution of more than 6 (corresponding
to 1.7 cm separation) at the periphery. At the locations
of the test spheres the resolution is in the range of 4, i.e.
2.5 cm separation. The relative loss of resolution with
the noise level is stronger in the center than in the
periphery. At a SNR of 44 dB the resolution does not
increase any more continuously but levels off above a
normalized x position of about 0.6.

In analogy to EIT the PSF depends strongly on the
location, showing the broadest distribution in the
center of the cylinder. This is reflected by increasing
resolution when moving from the center towards the
periphery. Increasing the amount of regularization or
decreasing the truncation level according to increasing
measurement noise the PSF broadens and its center of
gravity is shifted towards the borders of the cylinder.
Moreover increasingly strong ringing in form of star-
like patterns becomes observable close to the border
(not shown explicitly in this paper).

In Fig. 4 the four regularization methods are com-
pared at a SNR of 50 dB. Except for few points TSVD,
performs poorest which is in accordance with the
assumption of least explicit a-priori information.

Figure 5a shows the CNR for TSVD as a function
of the normalized x-coordinate and in dependence on
the noise level while Fig. 5b compares the four meth-
ods at a SNR of 50 dB. As expected the theoretical
CNR depends strongly on the location of the pertur-
bation increasing from values around 2 in the center up
to about 60 at the cylinder border. At the location of
the perturbing spheres the CNR drops from about 26
to 13 when decreasing the SNR from 64 dB to 44 dB.
In the simulated images the CNR drops from 24 to 9,
i.e. remains fairly in the same range. Figure 5b reveals

TABLE 1. Tuning parameters for the regularization, chosen
according to the Morozov-criterion.

Regularization

method

TSVD

Truncation

level IM k NM k VU k

SNR = 64 dB 182 2.40E ) 20 2.40E ) 20 2.35E ) 11

SNR = 50 dB 100 8.40E ) 19 8.80E ) 19 3.20E ) 10

SNR = 44 dB 68 1.25E ) 17 1.19E ) 17 7.40E ) 10

The parameter c for VU was always kept at 0.1.

FIGURE 4. Theoretical normalized resolution for the four
regularization methods at a SNR of 50 dB.

FIGURE 5. Panel A: CNR for TSVD as a function of the nor-
malized x-coordinate (relative to the cylinder radius) and in
dependence on the noise level. Panel B: comparison of the
four methods at a SNR of 50 dB.
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that IM and NM yield the highest CNR, followed by
TSVD and VU, whereby VU is characterized by dra-
matically lower values. In the center VU yields a CNR
around 2 which is already very close to the limit of
detectability. When comparing the theoretical values
with the reconstructed ones (see table 2) the recon-
structions always produce a lower CNR than expected,
the discrepancy being stronger at high noise levels.

Figures 6 and 7 show the reconstructed mean ima-
ges from a Monte-Carlo study with 50 runs for each of
the four methods and an SNR of 64 and 50 dB,
respectively. Representative cross-sections in the xy-
plane and in the xz-plane were selected. The respective
regularization parameters are listed in Table 1.

In all cases the two perturbations can be recognized
as diffuse bright disks. The dotted circles in the figures
delineate the original position of the perturbing
spheres.

A number of performance indices were calculated in
order to quantitatively assess the results in Figs. 6 and
7. They are summarized in Table 2 and comprise:

– Mean and CNR of the pixel values in the center of
gravity of each reconstructed perturbation. These
parameters quantify the correctness of the recon-
structed values as well as their uncertainty. The
theoretically expected values are listed for compar-

ison. The center of gravity was chosen as evaluation
point because the reconstructed perturbations devi-
ate more or less from the spherical shape and show
significant outward shift with increasing noise level.

– Radial outward shift of the spheres in the recon-
structed image (fidelity of the location). This shift
was determined by localizing the center of gravity
for each spot within a wedge-shaped search region
with a height of 2.6 times the sphere’s radius and
excluding the outermost 2 mm as well as the
innermost 40 mm in radial direction from the center.
The restriction of the search region to this volume
prevented spurious contributions from outliers and
negative image values far away from the real
perturbing regions. Also for this parameter we
present theoretical values as expected from the PSF.

In addition Table 2 lists the theoretical resolution
limits for all methods and noise levels at the position of
the perturbations.

With 64 dB SNR noise the two spheres can be
resolved comparatively easily with all four methods.
With 50 dB SNR noise the resolution is theoretically
still possible for all methods. In the reconstruction the
resolution is already somewhat below the limit for IM
and VU, the image values in the notch between the two
peaks being around 71% of the peak values. TSVD and

FIGURE 6. Mean images of the Monte-Carlo study. Reconstructed D r (transversal and saggittal section through the origin) for
the spherical perturbations with four different regularization matrices and a SNR of 64 dB.
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NM appear to separate the perturbations even worse
although theoretically this should not be the case. At
higher noise all algorithms tend to shift the objects
towards the borders of the cylinder when looking at

the parameter ‘normalized outward shift’ in Table 2.
Here again the VU performs best by producing the
lowest shift. At 64 dB SNR the mean images (not
shown here) are in general comparatively poor. IM and

FIGURE 7. Mean images of the Monte-Carlo study. Reconstructed D r (transversal and saggittal section through the origin) for
the spherical perturbations with four different regularization matrices and a SNR of 50 dB.

TABLE 2. Summary of the performance indices defined in the text.

Method Performance index

SNR = 64 dB SNR = 50 dB SNR = 44 dB

Sphere

real

Sphere

theoret

Background Sphere real Sphere

theoret

Background Sphere

real

Sphere

theoret

Background

IM Mean central 0.021 0.016 0.00054 0.006 0.0043 0.0035 0.001

NM 0.022 0.016 0.00056 0.006 0.004 0.00051 0.0032 0.001 0.00035

VU 0.024 0.024 0.00055 0.01 0.0065 0.00043 0.0060 0.0036 0.00035

TSVD 0.033 0.025 0.00054 0.01 0.0074 0.00050 0.0110 0.002 0.00055

IM CNR 42.3 45.0 16.1 23.0 12 20.1

NM 41.1 44.0 16.5 22.5 10.7 19.3

VU 7.9 8.2 5.6 5.2 3.4 3.3

TSVD 23.9 25.8 13.7 18.4 9.1 13

IM Resolution 2.84 2.60 2.53

NM 2.81 2.58 2.50

VU 2.94 2.46 2.58

TSVD 2.58 2.42 2.24

IM Normalized

outward shift*

0.10 0.10 0.21 0.25 0.33 0.35

NM 0.10 0.10 0.21 0.25 0.33 0.35

VU 0.10 0.06 0.11 0.15 0.21 0.15

TSVD 0.10 0.10 0.18 0.21 0.35 0.33

Performance measures for the comparison of the reconstruction methods.

*Normalized to the cylinder radius.
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NM interestingly still allow a clear separation of two
objects, but their localization is very poor, the outward
shift being extremely large (see Table 2). VU still
provides a much better localization but only at the cost
of CNR. TSVD failed to produce a clear image, an
observation which was not expected from theory.

Depending on the regularization method the central
voxel value of the perturbation at () 0.6R0,0,0)
decreases from 0.02–0.03 S/m to 0.002–0.006 S/m,
compared to the true value of 0.1 S/m. This means that
even under nearly ideal conditions (64 dB SNR) the
conductivity changes are strongly underestimated. NM
and TSVD yield nearly the same central voxel values as
TSVD while VU produces much lower values.

Figure 8 shows single reconstructions for IM and
VU at all three noise levels. Both methods allow a
separation of the perturbations in all cases, but the
poor CNR of VU implicates a very noisy image at
44 dB. The pronounced difference in outward shift is
clearly visible at 44 dB, where VU still allows a fair
localization while IM fails completely to reconstruct
the perturbations at the right positions.

IM and NM perform nearly identically, also their
optimal regularization parameters are almost identical.
VU yields, in general, larger values in the perturbed
regions but also a larger STD.

DISCUSSION

The results demonstrate the feasibility of image
reconstruction from MIT-data with the same methods
as suggested for EIT. This finding is not self-evident, as
the sensitivity distribution is significantly different in
EIT and MIT.27,29 In EIT the region of maximum sen-
sitivity is located between the equipotential surfaces
which meet the surface at the detection electrodes, i.e.
within a tube-shaped region which connects injection
and detection sites. As shown in27,29 in MIT the sensi-
tivity is not concentrated within a field tube between
excitation and receiver coil but increases with the dis-
tance from the tube axis, according to the increase of the
eddy current density. This may be the main reason why
the reconstructed solution tends to be displaced towards
the nearest border of the cylindrical tank, especially at
higher noise levels. An extreme case for this effect can be
observed if the perturbation is placed exactly in the
origin and if the senders and receivers are all in the same
plane (image not shown due to space restrictions).
Instead of the expected spot in the origin two widely
separated spots appear on the cylinder axis close to the
top and bottom of the cylinder, respectively. In fact such
a coil arrangement cannot distinguish between an object
in the center and two objects on the cylinder axis placed

FIGURE 8. Comparison of single-shot images for VU and IM at the three different noise levels.
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symmetrically with respect to the origin, because it is
always possible to find two corresponding conductivitiy
changes so that the field perturbations in the median
plane are the same. Obviously, in this ambiguous
situation, the algorithm favors the splitted solution
according to the sensitivity distribution. A similar
ambiguity occurs when using differential sensors, such
as the gradiometers employed in our setup. For getting
rid of such artifacts it is very important to use a less
symmetric transceiver setup which provides enough
spatial information in 3-D.

The theoretical resolution limit was calculated from
the PSF as derived from the TSVD method. This limit
depends on the chosen regularization method, the
geometry of the object and on the location within the
object. The respective dependences are shown in Fig. 3
and Table 2 for some selected positions inside a cyl-
inder. TSVD was chosen for the calculation of the
theoretical limits because it requires no explicit
assumptions about any prior distribution of p. In this
sense it contains less a-priori information than the
other methods and thus describes the worst case, as
confirmed by Fig. 3 and Table 2. The calculated PSF
shows all basic features of the reconstructed images.

The PSF is a 3-D-distribution similar to a 3-D
analog of the sinc function. This means that most of its
energy is concentrated in a diffuse cloud around the
considered point but that there exist three-dimensional
‘side lobes’ which decay with the distance and show
some kind of ‘periodicity’. The ‘bean’-shaped artifacts
which are visible in most top views of Figs. 6 and 7 are
typical features of the PSF as well as the ‘star-artifact’
in the TSVD-images. Therefore these ringing artifacts
do not stem from inaccuracies of the reconstruction
method or measurement errors, but, instead, are
inherent in the PSF.

The resolution clearly also depends on the contrast
in the presence of noise, because the contrast deter-
mines the SNR. Increased noise requires more
regularization and hence leads to a broadening of the
PSF-distributions. Figure 3 shows the dependence of
the resolution on the noise in the case of TSVD at one
single contrast of 0.5 only. A more complete analysis
similar to that given for EIT in30 should also show the
dependence of the resolution on contrast, size and
location of the perturbation at a given noise level.
However, such a comprehensive analysis requires a
separate paper and should not be given here.

The CNR depends strongly on the radius and, to a
less extent, on the noise level. Obviously IM and NM
produce very similar values, followed by TSVD. VU in
general yields comparatively small CNR but higher
central voxel values. For centrally placed spheres with
4 cm diameter VU yields CNRs close to the detection
limit. When comparing the theoretical values with the

reconstructed ones (see Table 2) the reconstruction
always produces a lower CNR than expected, the dis-
crepancy being stronger at high noise levels. One sur-
prising detail of Fig. 5a is that at higher noise levels the
CNR-curves cross the curve for 64 dB. This means
that very close to the periphery noisier data yield
higher CNR values than less noisy data. The reason for
this counter-intuitive effect is not yet entirely clear but
may be related to the strong outward shift of the PSF
at higher noise. In those cases the evaluation of the
CNR at the original position of the perturbation may
not be appropriate any more and should be interpreted
with caution.

In the case of weak perturbation we can assume that
the CNR depends approximately linearly on the con-
ductivity difference Dr. The dependence on the volume
of the perturbation is, in general, more complicated
because the PSF depends on the location and is
therefore not constant throughout the whole pertur-
bation. Only in the case of small spatial extension of
the perturbation an approximately linear dependence
on the volume can be assumed.

The low number of significant singular values even
at comparatively low noise (64 dB SNR) suggests that,
similar as in EIT, a significant amount of sensor
combinations does not provide enough independent
information. Intuitively one would expect this finding
because there exist pairs of excitation/receiving coils
which nearly fulfill the reciprocity condition and hence
reduce the amount of useful combinations to about
half of the number of possible combinations, i.e. to 256
in our case.

Further investigations should determine the maxi-
mum ‘useful’ number of sensors in one plane, i.e. that
number beyond which additional sensors do not
increase the resolution significantly. Adding more
sensors off-plane may add more 3-D-information and
hence still provide improvement. This possibility
should be studied in further research.

When comparing the regularization schemes after
application of the Morozov-criterion, the IM and the
NM approach yield the smoothest visual appearance
and the highest CNR. However, they also tend to
displace the perturbations towards the border of the
tank. The best localization is obtained with VU,
probably because the imposed variance counteracts
somewhat the lower sensitivity in the center of the
object. However, VU yields also the lowest CNR, i.e.
the less homogeneous images and more pronounced
ghosts. The failure of TSVD at a SNR of 44 dB was
not expected theoretically, although, in general, it
produces the poorest theoretical resolution. In terms of
separability of the two perturbations VU performs
best, especially when also taking into account the
correct localization.
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In neither case, however, the single-step solution
provides the correct values for Dr. Even at a SNR of
64 dB the reconstructed differences are too low by a
factor of at least 5, thus demonstrating that the method
yields the correct search direction but not the correct
step size.

The highest mean voxel values are provided by VU
and TSVD, the drop with the noise levels being lowest.
However, on the other hand VU yields the highest
standard deviations. Moreover VU tends to produce
more pronounced ‘ghost objects’ in the homogeneous
region than IM and NM. As expected from the PSF
TSVD tends to produce ‘star-artifacts’ at the cylinder
border, i.e. a periodic pattern with 16 peaks close to
the centers of the receiving coils. This artifact gets
worse at increasing noise level.

First experiments with smaller models and at least
10 iterations with an iterative solver show that the
solution converges towards the correct voxel values.
Nevertheless the single-step method may be completely
justified in cases where only qualitative changes
are sought for or where proportions are to be recon-
structed, e.g. in frequency differential spectroscopic
imaging. Therefore the area of applicability of a single-
step approach has to be analyzed carefully in future
work.

At least for the shown examples MIT appears rel-
atively robust against Gaussian measurement noise. A
SNR of 64 dB allows for a stable and distinct solution.
Even 44 dB allow the recognition of the two spheres
when applying the correct regularization. This result is
very important for the practical implementation be-
cause, due to technical reasons, MIT is expected to
yield low SNR (around 50 dB) at frequencies as low as
100 kHz, which are interesting for the imaging of
pathophysiological processes.28,26 However, our results
have only been achieved with two single focal pertur-
bations with a relatively large diameter of 20% of the
background object. In a more advanced study the
stability and the resolution of the images should be
investigated for a series of perturbations with different
diameter and spacing. For the monitoring of brain
edema which usually do not split up in separate sub-
regions our approach may be sufficiently stable. This
hypothesis has to be tested both theoretically and
empirically for centrally placed perturbations (worst
case).

As to the detectability of spherical perturbations in
a human brain simulation results in18 have shown that
a sphere with a diameter of about 40 mm, a back-
ground conductivity of 0.1 S/m a contrast of 2 yields a
SNR of 24 dB at 100 kHz when applying 1 A to an
excitation coil with 45 turns and a receiver coil with 1
turn. The assumed acquisition time was 200 ms, With
our present technology single shot images are gener-

ated with an acquisition time of 20 ms, an excitation
coil with five turns and a current up to 20 A. The
receiver coils have 40 turns with otherwise unchanged
geometry. This means an overall increase in SNR by
28 dB. Extrapolating the analysis given in28, an
improvement of the SNR by a factor of 5–10 is still
technically possible, thus reaching 50–60 dB, which is
obviously sufficient for producing fairly acceptable
difference images.

Another open question is the influence of the mesh
quality on the reconstruction results. We used a com-
paratively coarse non-uniform grid for the recon-
struction. Therefore non-negligible numerical errors
are to be expected which may explain the discrepancies
between theoretically expected and the reconstructed
values for CNR and radial displacement. Also the
apparently somewhat worse spatial resolution in the
reconstructed images than theoretically expected may
be due to such numerical problems. The influence of
the mesh and the optimization of mesh quality should
be a major issue for further developments.

The results were obtained at a single frequency only.
Future work should concentrate on the exploitation of
the frequency dependence of the tissue conductivity
and measurements at frequencies up to several MHz. A
multi-frequency approach is expected to increase sig-
nificantly the available information and thus the
quality of the images. Possible applications may then
in fact be the same as for EIT (lung function moni-
toring, lung edema monitoring) and hydration moni-
toring in the brain.
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