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Abstract
We study the consequences and optimal design of bank deposit insurance and rein-
surance in a general equilibrium setting. The model involves two production sectors,
financed by bonds and bank loans, respectively. Financial intermediation by banks is
required in the model as we assume that one of the production sectors is risky and
requires monitoring by banks. Households fund banks through deposits and equity.
Deposits are explicitly insured and banks pay a premium per unit of deposits. Any
remaining shortfall is implicitly guaranteed by the government. Two types of equi-
libria emerge: One type of equilibria supports the Pareto optimal allocation. In the
other type, bank lending and the default risk are excessively large. The intuition is
as follows: the combination of financial intermediation by banks, limited liability of
bank shareholders, and deposit insurance makes deposits risk-free from the individ-
ual households’ perspective, although they involve risk from the societal point of
view. This distorts investment choices and the resulting input allocation to production
sectors. We show, however, that a judicious combination of deposit insurance and
reinsurance eliminates all non-optimal equilibrium allocations. Our paper thus may
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provide a benchmark result for policy proposals advocating deposit insurance cum
reinsurance.

Keywords Financial intermediation · Deposit insurance · Capital structure · General
equilibrium · Reinsurance

JEL Classification D53 · E44 · G2

1 Introduction

1.1 Motivation

Many countries have some form of deposit insurance for demand deposits, up to
some fixed amount per account or per individual. Such deposit insurance may be
either implicit or explicit. During the financial crisis of 2007–2009, it was a common
practice for governments to guarantee deposits implicitly by bailing out many banks.
With explicit deposit insurance, banks are required to pay an insurance premium to
a deposit insurance fund. This fund is used to reimburse bank depositors in case a
bank fails to honor its obligations. Several countries have a long history of explicit
deposit insurance schemes. In the US, for instance, federal deposit insurance started
under the (Glass–Steagall) Banking Act of 1933 which created the Federal Deposit
Insurance Corporation (FDIC) in charge of insuring deposits at commercial banks.1

Deposit insurance also plays a dominant role in Europe and there are current plans for
a European Union-wide deposit insurance coupled with a reinsurance scheme.2 Both
deposit insurance and reinsurance are the focus of this paper.

Deposit insurance has obvious benefits. It protects small, risk-averse and potentially
unsophisticated savers. It prevents bank runs and fosters financial stability. Bail-outs
as implicit deposit insurance can prevent inefficient liquidation of real investments.
A drawback of deposit insurance, however, is that it may lead to severe distortions.
Calomiris and Jaremski (2016) provide a comprehensive historical account of the
economic and political theories of deposit insurance. They conclude that in general,
deposit insurance tends to increase systemic risk, rather than reducing it. Lucas (2019)
provides estimates of the magnitude of public transfers associated with deposit insur-
ance.

Conceptually, it is clear that implicit deposit insurance may encourage excessive
risk-taking and excessive balance sheet expansion. But it is less clear how distortions
may arise from explicit deposit insurance. Indeed, a substantial literature, which we
are going to discuss in this section, has investigated whether excessive risk-taking is
avoided if deposit insurance is made explicit and how deposit insurance should be
priced.

1 A thorough discussion of this scheme can be found in Pennacchi (2009).
2 The European Commission’s proposal of November 2015 is available at https://ec.europa.eu/info/
publications/commission-proposal-european-deposit-insurance-scheme-edis_en and amendments to the
proposal from2017 canbe found at http://ec.europa.eu/finance/docs/law/171011-communication-banking-
union_en.pdf.
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In the present paper, we use a general equilibrium approach and add the following
insights. First we examine how bank capital structures endogenously emerge in the
presence of explicit deposit insurance. Next, we demonstrate that distortions cannot
be avoided by explicit deposit insurance, due to multiplicity of equilibria. Finally,
we show that these distortions are avoided if explicit deposit insurance is suitably
combined with reinsurance.

We shall proceed with introducing the approach, outlining the results and their intu-
itions, drawing broader policy implications and relating the findings to the literature.

1.2 Model

We study deposit insurance and reinsurance in a simple general equilibrium frame-
work with two periods (t = 1, 2) and two sectors of production. We follow Bolton
and Freixas (2000) and Gersbach et al. (2015) in their modeling of the economy’s pro-
duction side and introduce insurance of bank deposits. The model economy’s basic
characteristics are as follows:

• There is a continuum of risk-averse households and a continuum of banks. House-
holds invest in the capital market and in banks via bonds, bank deposits and bank
equity. There are two technologies for real investments. Both technologies convert
the investment good at t = 1 into the consumption good at t = 2. One technology
is risk-free, and leads to deterministic returns. In contrast, the risky technology
leads to state-contingent returns, and we focus simply on two states of the world:
good and bad realization of returns.
Likewise, there are two sectors of production: The risk-free sector consists of a
continuum of firms working with the risk-free technology, while the risky sector
consists of a continuum of firms working with the risky technology. Households
can invest directly in the risk-free sector, while investment in the risky sector
requires intermediation bybanks.Banks are free to invest in both sectors.Adetailed
motivation for considering such technologies can be found in Bolton and Freixas
(2000). The basic idea is as follows: Firms in the risk-free sector can be interpreted
as well-established businesses, while firms in the risky sector can be viewed as
young innovative firms whose entrepreneurs are subject to “moral hazard" when
their activities are not monitored. Banks have appropriate monitoring ability, while
households do not.

• Bank failures are assumed to be costly, i.e., liquidation of banks yields less con-
sumption goods than production with healthy banks. Avoiding bank failures is
achieved by explicit deposit insurance and works as follows: Banks pay premia to
a deposit insurance fund. If banks are unable to repay depositors (even after wiping
out their equity that has limited liability), then the deposit insurance fund com-
pensates depositors for the shortfall. If even the deposit insurance fund is unable
to cover the losses completely, then the government is committed to provide a
bail-out for the remaining shortfall. Such a government bail-out is financed by
taxing households.3

3 While we focus on costly liquidation as a reason for deposit insurance, other rationales for deposit
insurance could be introduced as well as and are discussed in Sect. 3.1.
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In order to focus on the design and effects of deposit insurance, it is useful to assume
favorable manifestations of some other potential frictions and distortions in the econ-
omy. In particular, we make the following assumptions:

• Banks act as delegated monitors and can eliminate moral hazard problems in the
risky sector.4 Banks are therefore essential for the financing of the risky sector. For
simplicity, we set monitoring costs to zero. We discuss in the concluding section
that the underlying logic holds more generally and how moral hazard and costs of
monitoring can be incorporated in the analysis.

• When a government bail-out is needed, the required taxation of households is lump
sum and therefore does not lead to additional distortions.

Given this set-up, it is a priori unclear whether equilibria in such an economy yield
the optimal allocations that would occur in an Arrow-Debreu version of the economy.
Moreover, it is unclear which form of deposit insurance is conducive to welfare and
whether bail-out of defaulting deposit insurance funds or reinsurance is preferable.

1.3 Main results, intuition and policy perspectives

We establish the following sequence of results: In the set-up with deposit insurance
but without reinsurance, two classes of equilibria exist. In one class, bank equity
completely absorbs losses in bad times and deposit insurance is redundant. The allo-
cation is optimal in the sense that it maximizes the aggregate utility of households and
coincides with the allocation achieved in the Arrow-Debreu version of the model.5

In a second class of equilibria, banks default in the bad state and equilibrium
allocations are not optimal. In this class, we have a continuum of equilibria with
different allocations and welfare levels. This class of equilibria exists with actuar-
ially fair deposit insurance schemes and even when additional systemic surcharges
on deposit insurance premia are imposed. In the event of a banking crisis, deposit
insurance schemes cannot bear the entire burden to guarantee deposits and additional
government bail-outs financed through taxation become necessary.

It is worth emphasizing that the model economy with financial intermediation and
deposit insurance admits a continuum of equilibria with different allocations and
welfare levels, while the standard Arrow–Debreu economy without financial inter-
mediation has a unique equilibrium.6 We next develop an intuition for this result.

Above a certain debt-equity ratio, a continuum of non-optimal equilibria arises.
While too little is invested in the risk-free sector, generating high returns on safe

4 Entrepreneurs in the risky sector then only play the passive role of running the technology. There is also
no moral hazard on the part of bank managers monitoring entrepreneurs in the basic model.
5 Throughout the paper, we will use the terms “optimal" and “non-optimal" in this sense. We reserve the
term “efficient" in order to refer to an allocation which maximizes (expected) output in the economy. In the
next section, it will be made clear that optimality and productive efficiency do not coincide in our model.
6 The latter holds because there exists a representative householdwhich under standard assumptions implies
a unique optimal allocation and a unique equilibrium allocation. While in general, real indeterminacy can
occur in the traditional Arrow-Debreu model, all equilibrium allocations are optimal. However, if default is
possible, then with complete markets, coexistence of optimal and sub-optimal equilibrium allocations may
obtain as well. In contrast, with incomplete markets the possibility of anticipated default may enlarge the
space of feasible allocations and enhance equilibrium welfare, as Zame (1993) has shown.
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assets, there is over-investment in the risky sector and banks raise too many funds.
Such a situation is an equilibrium, as this investment pattern is consistent with the
optimal portfolio choice of risk-averse households. Households anticipate that they
have to pay taxes in the bad state to bail out banks and that they receive additional
funds from the deposit insurance fund in the good state. Hence, households already
face risks they cannot avoid and thus are only willing to invest an additional small
amount in bank equity, which, in turn, is more volatile than in the no default equilibria.
In contrast, since the safe investment in banks via deposits is more attractive than in the
no default equilibria, households are willing to invest a large amount in bank deposits.
Hence, the relatively small amount of investments in risky bank equity and the large
amount in safe bank deposits is consistent with households’ optimal portfolio choice.
In total, banks receive more funding in the form of deposits and end up with less
equity at the same time, which results in a high debt-equity ratio. Since banks invest
all their funds in the risky technology, over-investment occurs in that sector, too little
investment in the frictionless sector and a non-optimal allocation of resources overall.

In order to avoid non-optimal equilibrium allocations associated with deposit insur-
ance schemes of any type, deposit insurance must be coupled with a reinsurance
provision. With a reinsurance provision, the deposit insurance fund writes reinsurance
contracts with households. That is, the deposit insurance fund pays one unit of the
investment good per contract to households after it has itself collected the deposit
insurance premium from banks in period t = 1. If the bad state realizes in period
t = 2, households pay an amount per contract to the deposit insurance fund. The
payment per contract in such cases is determined in equilibrium.

We show that a specific combination of deposit insurance and reinsurance (provided
via the capital market or through reinsurance firms) guarantees an optimal allocation in
any equilibrium. There may still be equilibria with banking crises, but those crises are
immediately resolved through deposit insurance and reinsurance without government
intervention. The key insight is that the amount of reinsurance contracts is linked to
the capital structure (and deposit insurance premia) of banks such that no transfer
from and to the deposit insurance fund is needed in good and bad states, respectively.
Hence, the household’s problem becomes effectively equivalent to the one without
financial intermediation.

However, this only works at a particular capital structure of banks which, in turn, is
uniquely pinned down in equilibrium. The reason is that a particular debt-equity ratio
is associated with a particular amount of losses in the bad state due to limited liability
of equity holders which, in turn, has to be covered by reinsurance. Only if the implied
mix of risky and safe assets is consistent with the choice of households, can a bank
capital structure qualify to be part of an equilibrium. This in turn pins down the capital
structure. Hence, as a further consequence, we show that there exists a unique socially
optimal deposit insurance scheme that supports the equilibrium. Hence, reinsurance
also eliminates the multiplicity of equilibria—or real indeterminacy, to be precise.

Whereas the results will be derived in a general equilibrium setting, under certain
assumptions on technologies and preferences, we argue in the concluding section that
the underlying logic holds truemore generally for economieswith banks and aggregate
risk.
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1.4 Relation to the Literature and Policy Perspectives

Our paper is closely related to several strands in the literature, most notably the lit-
erature on pricing deposit insurance and endogenous bank capital structures. One
important challenge in designing explicit deposit insurance schemes is to determine
the adequate price of the insurance. An influential early literature has addressed the
question how to price deposit insurance; see, e.g., Merton (1977, 1978), Marcus and
Shaked (1984), McCulloch (1985), Ronn and Verma (1986), and Flannery (1991). Its
limits are outlined in Chan et al. (1992) and regulatory forbearance in closing banks
is addressed in Allen and Saunders (1993) and Dreyfus et al. (1994). The work by
Freixas and Rochet (1998) indicates that pricing of deposit insurance can be undesir-
able in adverse selection environments, since it entails subsidization of less efficient
banks by themost efficient ones. One standard approach is to aim for an actuarially fair
premium. Recent contributions by Pennacchi (2006) and Acharya et al. (2010) have
shown that actuarially fair pricing of deposit insurance at the level of an individual bank
is insufficient since banks do not represent a pool of stochastically independent risks.
The reason is that bank failures tend to occur during downturns, or are widespread in
a banking crisis. These insights suggest that it might be appropriate to add a “systemic
risk surcharge” to the actuarially fair premium.

Two rationales for imposing surcharges have been provided. First, as derived in Pen-
nacchi (2006), premia must exceed expected losses, since the deposit insurer bears
aggregate risk. Without such charges for systemic risk, insured deposits would be sub-
sidized compared to uninsured funding. This, in turn, may lead to excessive expansion
of risky investments by commercial banks that are financed by insured deposits.

Second, in a systemic crisis the deposit insurance fund faces particularly low
liquidation values of assets of failing banks because of fire sales and bank inter-
connectedness (Acharya et al. (2010), Allen and Gale (2000) and Kahn and Santos
(2005)). The shortfall per dollar of insured deposits is larger than when only one or
few banks default. Hence, to cover the expected losses, the deposit insurance premium
must be higher than actuarial fairness at the level of the individual bank in isolation
would suggest. In other words, the assessment of an actuarially fair deposit insurance
premium must be based on the risk of individual bank failures together with the risk
of widespread bank failures.7

In this paper, we take a complementary view by focusing on general equilibrium
feedback effects of deposit insurance and how deposit insurance affects the capital
structures of banks. Moreover, we offer a deposit insurance scheme, coupled with
reinsurance, that guarantees socially optimal allocations in all equilibria. The paper
thus may provide a benchmark result for policy proposals that favor some form of
reinsurance as a complement to deposit insurance.

Our work is also complementary to earlier general equilibrium approaches to
deposit insurance. Boyd et al. (2002) have highlighted that changes in deposit insur-
ance pricing can be outweighed by changes in deposit rates of return and thus may

7 Acharya et al. (2010) further show that incentive-efficient risk premia that discourage banks to take
excessive correlation risk are even higher than the actuarially fair premia.
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have no impact on bank lending in a simple general equilibrium setting.8 Standard
propositions such as the desirability of actuarially fair pricing or undesirability of
subsidization of banks through deposit insurance may therefore not hold.

While Boyd et al. (2002) focus on banks using debt contracts, we develop a general
equilibrium model in which households choose a portfolio of debt and bank equity
structures.9 Bank equity acts as a buffer against losses. We study how bank capital
structures and associated probabilities of bank failures endogenously emerge in the
presence of deposit insurance and reinsurance.

Our analysis also complements Allen et al. (2015) on endogenous bank capital
structures. Their model treats the cost of equity and deposit finance as endogenous,
andprovides a rationale for capital regulation in an environmentwith deposit insurance.
In our two-sector model, we develop a rationale for complementing deposit insurance
with a reinsurance scheme. One feature of our model is that we obtain a multitude of
equilibria. This is due in part to the decreasing marginal returns in a production sector
that uses a risk-free technology.

Finally, over the last decades, several authors have advocated reinsurance as a
complement to deposit insurance in order to avoid or reduce government bail-outs.
Plaut (1991) and Sheehan (2003) have outlined possible reinsurance solutions, and
Madan and Unal (2008) have examined the pricing of reinsurance contracts. Also
the establishment of a European Deposit insurance scheme (EDIS) involves reinsur-
ance in particular phases as mentioned at the beginning of the paper. We provide
a general equilibrium benchmark result and suggest that a judicious combination
of deposit insurance and reinsurance eliminates all non-optimal equilibrium alloca-
tions and avoids government bail-outs—although banking crises can still occur. These
crises, however, are resolved quickly and anticipating them does not distort the invest-
ment allocation in the economy.

The paper is organized as follows. In the next section, we outline the detailed set-
up of our model and characterize the Arrow-Debreu equilibrium. The details of the
Arrow-Debreu equilibrium are relegated toAppendixA. In Sect. 3, we introduce banks
and deposit insurance and develop the corresponding equilibrium concept. In Sect. 4,
we characterize these equilibria and identify the set of equilibria supporting optimal
and non-optimal allocations, respectively. In Sect. 5, we introduce reinsurance and
show that the ensuing equilibrium allocation is unambiguously optimal. Section 6
concludes. Appendix B contains the proofs. Appendix C examines the possibility of
too little risk-taking by banks.

8 In Boyd et al. (2004), they show that this line of reasoning has to be altered in a monetary setting with
reserve requirements.
9 For other important general equilibrium theories of debt and equity financing see Jerman and Quadrini
(2012).
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2 An economywithout financial intermediation

2.1 Production side

We start with the description of the production side of our two-period model. The
periods are denoted by t = 1, 2. There is a continuum of measure one of identical
households initially endowed with an amount ω > 0 of an investment good. The
investment good cannot be consumed or stored. For convenience, we use the variable
ω for both the per capita endowment of households and for the aggregate endowment
with the investment good in the economy.

There are two technologies by which the investment good at t = 1 can be trans-
formed into a consumption good at t = 2. The risk-free technology transforms y units
of investment good into f (y)units of consumptiongood.Theproduction function f (y)
is twice continuously differentiable, strictly increasing, strictly concave, and satisfies
the lower and upper Inada conditions limy↓0 f ′(y) = +∞ and limy↑ω f ′(y) = 0.
The returns of the risky technology are contingent on the state of nature. The state of
nature at t = 2 belongs to the state space {g, b}, i.e., the state of nature can be “good"
or “bad." It is common knowledge that state g occurs with probability σ, and state b
occurs with complementary probability 1 − σ .

The risky technology transforms y units of investment good into yR units of con-
sumption good in state g, and into yR units of consumption good in state b, where
R > R ≥ 0. The expected return of investing one unit of investment good in the risky
technology is

σ R + (1 − σ)R.

It is important to stress that, due to households’ risk-aversion, the optimal allocation
is not characterized by an equal expected marginal product in both sectors. We will
give a detailed characterization of the optimal allocation in Appendix A.

Notice also that we have assumed decreasing returns to scale in one technology
and constant returns to scale in the other technology. The role of these assumptions
is to guarantee an interior solution for the optimal allocation of investment to the two
sectors. In principle, such an interior solution could also be achieved if we assumed
decreasing returns in both sectors, or if we assumed constant returns in the risk-free
firms, and decreasing returns in the risky technology. However, our current setup is
the most tractable modeling choice.

In the sequel, we denote by (yM , yF ) the factor demands in the risky and risk-free
sectors, respectively. The Inada conditions imposed on the production function f (y)
ensure existence of interior solutions. However, the assumption is more stringent than
needed. For instance, the upper Inada condition may be replaced by f ′(w) < R.
In each sector of production, there is competition among a continuum of small and
identical firms who maximize profits while taking all aggregate economic variables
(and in particular, prices) as given.10 Therefore, it is appropriate to focus the analysis
on a representative firm for each sector.

10 In the case of risk-free technology, one often assumes that each firm operates a project of size one and
productivities are project-specific. The distribution of firm productivities generates the function f (yF ).

123



Deposit insurance and reinsurance 433

We assume complete contingent commodity markets—or, equivalently, complete
asset structures. For this purpose, we introduce the price vector (1, pg, pb), where
the price of the investment good has been normalized to one. The price at t = 1 for
obtaining one unit of the consumption good in the good state and nothing in the bad
state is denoted by pg . The price at t = 1 for obtaining one unit of the consumption
good in the bad state and nothing in the good state is denoted by pb. The profit function
of the representative firm in either sector is given by:

�F (yF , pg, pb) = (pg + pb) f (yF ) − yF ,

�M (yM , pg, pb) = (pg R + pbR − 1)yM .

Since the representative firm in either sector is a price-taker, it considers pg and pb as
given and treats its factor demand as its decision variable. Indeed, choosing yF and
yM in order to maximize the representative firms’ profits leads to the conditions

(pg + pb)
−1 = f ′(yF ), (1)

pg R + pbR = 1. (2)

Observe that competitive markets and constant returns to scale in the risky sector
imply that �M = 0 in equilibrium. If condition (2) did not hold, the demand for the
investment good of the representative firm would be zero or infinite, which cannot
occur in equilibrium. In the risk-free technology sector, however, the profit �F > 0
is strictly positive despite perfect competition because of decreasing returns to scale.

2.2 Consumer side

All households have identical preferences over consumption pairs (cg, cb) where
cg(cb) is the consumption in the good (bad) state, with (cg, cb) ∈ R

2+. These pref-
erences are represented by a utility function U (cg, cb) which is additively separable
across states and exhibits constant relative risk aversion. Formally, we assume that

U (cg, cb) = σu(cg) + (1 − σ)u(cb),

u(cs) = (1 − θ)−1 c1−θ
s , s = g, b,

with θ > 0 and θ �= 1.
All households are equally endowedwith ownership of the risk-free technology and

risky technology firms. Due to market completeness, we need not model any trade in
the ownership shares of the firms. Under these assumptions, we can proceed as if there
was a single representative household with utility function u and an initial endowment
ω > 0 of the investment good. The profits of firms in both sectors are denoted by �F

and �M , where we have already argued that �M = 0. Profits are distributed equally
to all households, so that the representative household has a budget set

B(�F , pg, pb) = {(cg, cb) ∈ R
2+|w + �F ≥ pgcg + pbcb}.
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The household seeks to maximize utility over this budget set, which leads to the
first-order condition

(
cg
cb

)θ

=
(
pb
pg

) (
σ

1 − σ

)
. (3)

2.3 Equilibriumwithout financial intermediation

Before discussing frictions and the role of banks, it is helpful to consider a simple
economy without financial intermediation as a benchmark. In that economy, house-
holds can directly finance the representative firms in both sectors of production, and all
agents trade in complete contingent commodity markets. In Appendix A, we provide a
detailed characterization of the Arrow–Debreu equilibrium for this economy.We refer
to this notion of equilibrium as an equilibrium without financial intermediation.Here,
we only summarize two results fromAppendix A that are important for understanding
and benchmarking the subsequent results.

Theorem 1

(i) The tuple (c∗
g, c

∗
b, y

∗
F , y∗

M ) 
 0 is part of an equilibrium without financial inter-
mediation if it solves the following system of equations:

yM = ω − yF ,

cg = f (yF ) + yM R,

cb = f (yF ) + yM R,(
cg
cb

)θ

=
(

σ

1 − σ

) (
R − f ′(yF )

f ′(yF ) − R

)
.

(ii) An equilibrium without financial intermediation yields the optimal allocation.

The second result is of course the manifestation of the first welfare theorem for a
production economy with risk. Note that the equilibrium in Theorem 1(i) specifies the
input allocation and the consumption allocation, respecting the production plans, and
thus the complete commodity allocation. For later reference, we denote the Arrow–
Debreu equilibrium values by p̂g, p̂b, ĉg, ĉb, ŷF , ŷM , and �̂F .

We note that the optimality condition for households in Theorem 1(i) can be equiv-
alently rewritten as

[(1 − σ)c−θ
b + σc−θ

g ] f ′(yF ) = (1 − σ)c−θ
b R + σc−θ

g R.

Verbally, the expected marginal utility from investment is the same in both sectors. In
the sequel, the allocation characterized by Theorem 1 serves as a benchmark as we
discuss economies with frictions caused by financial intermediation as well as deposit
insurance.
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3 An economywith banks and deposit insurance

3.1 Model description

From now on, we will add two new features to the model: First, we assume that
households can invest directly in the risk-free sector, but any investment in the risky
sector requires financial intermediation by banks. More specifically, financing of firms
in the risky sector is plagued by moral hazard. In the simplest case, these firms may
simply not pay back. Banks can alleviate this moral hazard problem by monitoring
borrowers and enforcing contractual obligations.11

Second, there is a continuum of banks. Contrary to the earlier benchmark economy
without financial intermediation, households do not invest directly in the risky tech-
nology but provide funds to banks as deposits and as equity. Banks act in the interest
of their shareholders who have limited liability for losses. Moreover, the government
is committed to ensuring the viability of the banking system. More specifically, bank
failures12 impose positive liquidation costs of L and L in the good and bad state of
the world, respectively with L < R and L < R. To avoid these liquidation costs
the government introduces a deposit insurance scheme with a deposit insurance fund
which operates as follows. In period t = 1, banks must contribute a certain share of
their deposits as a premium to the deposit insurance fund. The deposit insurance fund
invests the premium in the risk-free technology sector.13 If a bank fails to repay its
depositors in period t = 2, then, as a first step, bank equity is wiped out. Once all
equity has been wiped out, the deposit insurance fund reimburses depositors. If even
the deposit insurance fund does not have sufficient means to compensate the deposi-
tors, then the government repays deposits and finances this bail-out by a lump-sum tax
on all households. If the deposit insurance fund is not depleted in the second period,
then the remaining funds are distributed equally to all households.

Several remarks are in order. First, the deposit insurance scheme is motivated from
a normative perspective by high social costs when many banks fail simultaneously.
However, since explicit deposit insurance schemes are widespread in reality, our inves-
tigation could also be motivated from a positive perspective and by the questions:
Which distortions arise from explicit deposit insurance and which complementary
measures and regulations may be able to neutralize potential welfare? Reinsurance
as addressed in our paper is an example for such complementary measures. Second,

11 One interpretation is to think of the risky sector as an industry where firms are subject to moral hazard,
and the necessary monitoring and contract enforcement can only be done by banks and not by households.
See Freixas and Rochet (2008) for a comprehensive account of the microeconomic foundations of financial
intermediation, and Diamond (1984) for the foundation of banks as delegated monitors.
12 Since all banks behave in the same way, bank failures in our model correspond to the collapse of the
entire banking system and the costs of bank failures are assumed to be caused by this collapse.
13 This requirement is important. Allowing the deposit insurance fund to invest in the risky technology
would mean that the deposit insurance has less funds available precisely when they are needed to repay
depositors.
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avoiding bank failures could also be justified by a desire to protect a class of extremely
risk-averse depositors.14

Explicit deposit insurance schemes introducepotential distortions, since households
may be taxed in the bad state and receive refunds from the deposit insurance fund in
the good state. In order to focus on the aforementioned distortions, we make three
additional assumptions to rule out other sources of friction: First, we assume that
banks can monitor the representative risky technology firm perfectly at zero cost—
any moral hazard at the bank level is eliminated. Second, we assume that the bank
acts in the best interest of its shareholders/equity-holders. In particular, there is no
friction between the interests of the bank managers as agents and the shareholders as
principals. In the last section, we outline how moral hazard of bank managers can be
integrated in our analysis. Third,we only consider lump-sum taxation of and lump-sum
refunds to households, thus eliminating any tax distortions.

As before, all individual actors in the economy (households, firms, and banks) are
atomic and, therefore, ought to be treated as price (or contract) takers. We will now
discuss in turn the relevant optimization problems of firms, banks, and households.

3.2 Firms

Households still invest directly in the risk-free sector. More formally, we will say that
risk-free technology firms issue bonds to households. The bond obliges the firm to
pay an amount RF to the household in the second period, while its purchase price
is normalized to one. Risk-free firms maximize profits by an appropriate choice
of the factor demand yF . That is, a risk-free firm solves the optimization problem
maxyF f (yF )− RF yF . It is straightforward that the solution of this problem satisfies

RF = f ′(yF ).

Under an appropriate notion of equilibrium, risk-free firms maximize their profits,
and so the above equality holds. In what follows, we will use the notation RF for the
risk-free rate and, equivalently, for the marginal return on the risk-free technology,
whenever no confusion arises.

It does not imply, however, that we can use RF and f ′(yF ) completely interchange-
ably. In particular, whenever it is not yet established that some value of yF is part of
an equilibrium, we cannot simply replace f ′(yF ) with the notation RF .

Now consider the risky sector. For the representative risky firm, the only channel
of funding is financial intermediation by banks. Due to perfect monitoring, banks can
enforce the terms of the loan contract and make loan repayment rates contingent on

14 Suppose that in addition to the class of households present in our formal model there is a second
continuum if households that are extremely risk-averse, lack the financial literacy to invest in all assets and
only concentrate their savings on bank deposits and their risk. Then, introducing deposit insurance increases
welfare of this retail household group (interested only in the traditional retail services of banks) as risky
deposits are avoided. Hence, our investigation can be understood as ways to create safe deposits for retail
households with simultaneous instruments to limit or even eliminate potential welfare losses for the first
class of households. Formal details of the version with two classes of households which may also preclude
the possibility to eliminate non-optimal equilibria via capital requirements are available upon request.
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the state. We claim that equilibrium repayment of loans by the representative firm is
given as follows: In the good state, the firm repays R per unit, and repayment in the
bad state is R. If the pair of repayment rates was different from (R, R), then a risky
firm would either demand an infinite amount of funds or no funds from banks. The
former case occurs if at least one contingent repayment rate is below the equilibrium
rate. The latter occurs if both repayment rates are higher than the equilibrium rate and
one is strictly higher.15 With equilibrium repayment rates (R, R) the representative
risky firm makes zero profits in equilibrium, reflecting the outcome under perfect
competition with constant returns to scale technology.

3.3 Banks and deposit insurance

There is a continuum of identical banks that are financed by (outside) equity and
interest bearing deposits. The total amounts of debt and equity in the economy are
equally distributed to all banks, and denoted by D and E . Therefore, we proceed by
considering only one representative bank receiving deposits D and equity E and acting
competitively.16 Given that the price of the investment good has been normalized to
one, and D and E are expressed in terms of investment good, one can alternatively
think of D and E as the number of debt and equity contracts in the economy.

We will make use of an equilibrium concept which requires equilibrium variables,
such as D and E, to be strictly positive. Requiring D > 0 simplifies the technical
analysis, but it is not essential for the results since allowing D = 0 just adds a
“full equity" equilibrium to the class of equilibria with optimal allocations. Our main
results, however, pertain to the existence or non-existence of equilibria with non-
optimal allocations.

Moreover, we do not consider cases with zero equity since otherwise banks are not
legal entities and cannot operate. This is in line with common practice for regulators
to require a certain amount of equity for a bank to be founded and to obtain a banking
license.17 Moreover, a situation with zero equity would be inconsistent with equilib-
rium in our model as the return on equity can grow without bound as equity tends to
zero.

Let RD be the (gross) rate of return on deposits. That is, for every unit of deposits,
the bank pays RD in the second period. Deposits are risk-free due to (explicit and
implicit) deposit insurance. Due to a standard arbitrage argument, the return on all
risk-free assets in the economy must be equal if households make an optimal portfolio
choice. Formally, we have

15 One could consider a scenario when the risky firm accepts one or two higher contingent repayment
rates and would default if it cannot repay. If bankruptcy imposes no costs on firms or does not reduce
the investment returns, such a constellation would lead to the same effective repayment rates R and R,
respectively.
16 The capital structure of the representative bank is supply determined, i.e., banks are willing to accept
all resources they are offered in the form of deposits. However, the optimal and non-optimal equilibria we
will derive continue to exist if banks actively choose their capital structure as will be discussed in Sect. 4.5.
17 To give one example, the European Union requires an initial capital stock of equity not less than EUR
5 million, see Article 12 of Directive 2013/36 EU.
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RD = RF ,

where we recall that RF is the rate of return on bonds. In what follows, we will often
write RF when we mean the risk-free return in the economy.

Deposit insurance works as follows: A bank has to contribute a share δ ∈ [0, 1] of
its deposits to the deposit insurance fund (DIF). The DIF then invests the amount δD
in safe assets, i.e., in the risk-free technology sector. If the bank is able to honor its
obligations towards depositors at t = 2, then the funds of the DIF are distributed to
households. If banks cannot honor their obligations towards depositors, then the DIF
reimburses the depositors. If the funds of the DIF are insufficient for this purpose, then
the government provides a bail-out for the remaining deposits financed by a lump-sum
tax on households.

We consider the problem of the representative bank.With the exception of Sect. 4.5,
the capital structure of banks is determined by the portfolio choices of households,
while banks only choose their investments. Given that the representative bank has
obtained D and E , the objective is to maximize the payoff to its shareholders. The
choice variable is the shareα ∈ [0, 1]which the bank invests in risky technology, while
the complementary share 1 − α is invested in risk-free technology. Due to perfect
competition, the representative bank takes the prices prevailing in the economy as
given.

We next consider the formal problem of the representative bank that aims at maxi-
mizing the expected payoff to bank shareholders. Taking into account that shareholders
are not liable for losses, their payoffs in the good and bad state are given by:

π(α) =max{0, (αR + (1 − α)RF
)
((1 − δ)D + E) − RF D},

π(α) =max{0, (αR + (1 − α)RF
)
((1 − δ)D + E) − RF D}.

We use the notation RE (α) = π(α)/E and RE (α) = π(α)/E for the return on
equity in either state. Since E is taken as given in the bank’s optimization problem,
maximizing the expected shareholder payoff is equivalent to maximizing the expected
return on equity. More formally, the bank’s optimization problem is:

max
α∈[0,1] σπ(α) + (1 − σ)π(α).

We are going to show that the representative bank optimally chooses α = 1,
provided that households invest sufficiently in risk-free technology.

Lemma 1 Suppose that RF < σ R + (1 − σ)R. Then it is optimal for the bank to
choose α = 1.

The proof of Lemma 1 is given in Appendix B. The condition RF < σ R + (1− σ)R
holds in the first-best allocation as there is a risk-return trade-off for consumers. Under
this condition, the preceding lemma shows that in any equilibrium banks invest fully
in the risky technology sector. We will show, however, that under this condition both
optimal and non-optimal allocations can emerge. We do not know if equilibria with
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RF > σ R + (1 − σ)R exist. If such equilibria existed, the allocation would be non-
optimal—which strengthens the case for reinsurance made in Sect. 5.

3.4 Consumer choice problem

In this subsection,wediscuss the consumer choice problemat the level of the individual
household. Each household chooses a portfolio consisting of direct investment in risk-
free technology, deposits, and bank equity. Since the rate of return on deposits is the
same as that on direct investment in the risk-free technology sector, the household
portfolio problem can be thought of as one-dimensional: The household chooses to
invest some share of its funds in risk-free assets with payoff structure (RF , RF ),

and the complementary share in equity, which is a risky asset with payoff structure
(RE , RE ). One unit of either asset can be exchanged for one unit of the other asset;
their price is normalized to one.

Banks are obliged to pay a share δ of their deposits to a deposit insurance fund.
We require this fund to invest the premium in the risk-free technology sector. In the
good state, the entire deposit insurance fund is distributed to households. In case banks
default in the bad state, the deposit insurance fund is used to repay depositors, and
any remaining shortfall is financed by a lump-sum tax on all households. Formally,
the deposit insurance fund leads to the following state-contingent fixed effects (tg, tb)
on household consumption:

tg = δDRF , (4)

tb =
{

δDRF if [(1 − δ)D + E]R ≥ DRF ,

[(1 − δ)D + E]R + δDRF − DRF otherwise.
(5)

The pair (tg, tb) is determined by the aggregate portfolio decisions of all households,
but taken as given by any individual household. In addition, household consumption
is enhanced by profits of firms in the risk-free technology which produce an amount
f (yF ), and need to pay their bond-holders an amount yF RF . Hence, the profit is

�F = f (yF ) − yF RF

= f (yF ) − yF f ′(yF ) > 0,

which is distributed to households in either state. Sincewe are considering a continuum
economy, the individual household not only takes (tg, tb) and �F as given, but also
the allocation yF , the risk-free rate RF , and the returns on equity (RE , RE ).

Wenext consider a representative household who chooses the amount to be invested
in equity. His optimization problem could be written as follows:

max
E∈[0,ω]

(
σ

1 − θ

)
(ERE + (ω − E)RF + tg + �F )1−θ

+
(
1 − σ

1 − θ

)
(ERE + (ω − E)RF + tb + �F )1−θ .
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We note that the solution to the above problem leaves unspecified how the funds
invested in risk-free assets will be divided between bank deposits and direct investment
in risk-free technology. We will see later that this division of funds will be pinned
down by the price of deposit insurance. The above optimization problem leads to the
following first-order condition:

(
σ

1 − σ

)(
RE − RF

RF − RE

)
=

(
ERE + (ω − E)RF + tg + �F

ERE + (ω − E)RF + tb + �F

)θ

. (6)

This condition is derived using a representative household approach, where it is
tacitly assumed that it is indeed optimal for households to make the same choice.
Since using the representative household approachdoes notwork in allmacroeconomic
environments - and indeed we will encounter such a case later on when we introduce
reinsurance - we next provide an explicit proof that all households choose the same
portfolio whenwe have only deposit insurance. In the proof of the proposition, we take
the average equity investment E of households as given, and express an individual
household’s choice as a product ηE, where η ∈ R+ is the actual choice variable. The
proof strategy then is to establish first that all households want to choose the same η,

implying that each household’s individual equity investment is equal to the average
E, and hence η = 1.

Proposition 1 Suppose that each individual household chooses an optimal portfolio
and that RE > RF > RE . Then, all households choose the same portfolio, charac-
terized by Eq. (6).

The proof of Proposition 1 is given in Appendix B. A household’s consumption
can now be written as

cg = ERE + (ω − E)RF + �F + tg, (7)

cb = ERE + (ω − E)RF + �F + tb. (8)

Using the notation ψ = D/E for the debt-equity ratio and Lemma 1, we can write
return on equity in the two states as

RE = π(1)/E = (1 + ψ − δψ)R − ψRF ,

RE = π(1)/E = max{0, (1 + ψ − δψ)R − ψRF }.

Substituting for tg, tb,�F , RE , and RE into Eqs. (7) and (8), and using the condition
ω = yF + yM yields

cg = RE f (yF ) + yM R,

cb = RE f (yF ) + yM R.

Verbally, households are the ultimate recipients of the risk-free technology profit and
any “profit" of the deposit insurance fund, and must finance the bail-out in case the
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deposit insurance fund is insufficient to pay off depositors. Deriving the above equa-
tions for cg and cb, we have verified that the entire amount of consumption goods
produced by both technologies will find its way back to households.

3.5 Pricing deposit insurance

We next take a closer look at the deposit insurance scheme. Recall that δ ∈ (0, 1)
denotes the fraction of its deposits that a bank has to pay as insurance premium. Thus,
the bank can freely choose how to invest its equity as well as a share 1 − δ of the
deposits, while the share δ of the deposits is paid to the DIF. Due to Lemma 1, the
bank invests the entire amount E + (1− δ)D in the risky technology sector. Suppose
that D > 0 and assume, in addition, that the bank defaults in the bad state. In that
case, the shortfall can be written as follows:

� = DRF − (E + (1 − δ)D)R.

This is the amount which the bank fails to repay to its depositors, and which would
have to be compensated by the DIF. However, the funds available to the DIF equal
δDRF , which is the insurance premium compounded by the risk-free rate. Let

μ = μ(δ) = δDRF

DRF − (E + (1 − δ)D)R

be the cover ratio of the deposit insurance fund. Clearly, there is a one-to-one corre-
spondence between choosing the cover ratio μ of the deposit insurance and choosing
its premium δ. More precisely, we find by rearranging that

δ = RF − (
1 + E

D

)
R(

1
μ

)
RF − R

. (9)

Recall that we are considering equilibria with D, E > 0, so we have the inequality

δ <
RF − R(
1
μ

)
RF − R

, (10)

and we can see that δ < 1 for any μ ≤ 1.
One pricing mechanism for deposit insurance schemes is actuarial fairness. A

deposit insurance premium is actuarially fair if the DIF expects to break even, that
is, the expected shortfall is equal to the insurance premium compounded at the risk-
free rate.18 In our model, an actuarially fair deposit insurance is characterized by a

18 One might also consider an alternative definition of actuarial fairness which takes the perspective of the
insured party. In particular, one could define an insurance as being actuarially fair if the premium equals
the expected loss, that is, if δD = (1− σ)�. Mutatis mutandis, the conclusions of the equilibrium analysis
in Sect. 5 would remain valid.
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cover ratio of 1 − σ. Choosing a cover ratio μ > 1 − σ is tantamount to imposing a
surcharge on the actuarially fair premium. Observe that for any μ < 1, the deposit
insurance fund is more than exhausted in the bad state, so that a government bail-out
is needed. In particular, since 1−σ < 1, an actuarially fair deposit insurance does not
make government bail-outs dispensable. If μ = 1, then the DIF perfectly insures the
financial system; we refer to this case as full insurance. In the sequel, we are going to
demonstrate that non-optimal equilibrium allocations are possible in economies with
banks and deposit insurance as long as the cover ratio is strictly less than one.

3.6 Market clearing for investment good

Recall that households allocate their funds to deposits, equity, and risk-free technology
investment. Denote their investment in risk-free technology by yF,h . Hence,

ω = E + D + yF,h .

In the presence of deposit insurance, the risk-free technology sector is funded not only
by households directly but also by the DIF. We continue to use the notation yF for the
factor demand in the risk-free technology sector. Thus, the factor market clears if the
following condition is satisfied:

yF = δD + yF,h .

Using the above identity, we can rewrite the market-clearing condition as

ω = E + (1 − δ)D + yF .

For μ < 1, define

Dμ(E) = (ω − yF )(RF − Rμ) − ERF

(1 − μ)RF
. (11)

To interpretDμ(E), recall that optimal consumer choice determines the amount of
funds invested in the two risk-free assets (bank deposits and risk-free technology), but
does not specify the distribution of funds between those two assets. Combining Eq.
(9) and the market-clearing condition above, we can see that Dμ(E) determines the
equilibrium amount of deposits as a function of the equilibrium amount of equity in
an economy where the deposit insurance covers the share μ of the shortfall in the bad
state. Now we are ready for the equilibrium definition.

3.7 Equilibriumwith banks and deposit insurance

We next introduce the equilibrium definition for arbitrary deposit insurance schemes.
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Definition 1 An equilibriumwith banks and δ-deposit insurance is a tuple (c∗
g, c

∗
b, y

∗
M ,

y∗
F , ψ∗, E∗, R∗

E , R∗
E , R∗

F ) 
 0 which solves the following system of equations:

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE − RF

RF − RE

)
, (12)

cg = f (yF ) + yM R, (13)

cb = f (yF ) + yM R, (14)

yF = ω − yM , (15)

yM = E + (1 − δ)ψE, (16)

RE = (1 + ψ − δψ)R − ψRF , (17)

RE = max
{
0, (1 + ψ − δψ)R − ψRF

}
, (18)

RF = f ′(yF ), (19)

and, moreover, satisfies the inequalities RF < σ R + (1 − σ)R and (1 + ψ)E ≤ ω.

Equivalently, we could have included the variables (tg, tb,�F ) and Eqs. (4) through
(8) in the equilibrium definition. As we have argued previously, either the pair of Eqs.
(13) and (14) or the pair of Eqs. (7) and (8) would then become redundant. As a result,
this alternative equilibrium definition would consist of three extra variables and three
extra independent equations without changing anything substantive.

Let us now discuss the equations in Definition 1 in turn. Equation (12) is the
condition emanating from optimal portfolio choice of the households. Equations (13)
through (15) are simple market-clearing conditions. Equation (16) is a consequence
of Proposition 1: Banks invest as much as possible of their equity and their deposits in
risky technology, but due to the deposit insurance this is subject to the restriction that
the share δ of the deposits must be paid to the fund as an insurance premium. Given
such investment behavior by banks, and given that return on deposits equals the bond
return RF , it follows that return on equity in both states is given by Eqs. (17) and (18).
Finally, Eq. (19) states that the rate of return on bonds corresponds to the marginal
product in the risk-free technology sector.

Moreover, the equilibrium definition includes an inequality which says that house-
hold investment in deposits and equity cannot exceed the funds ω available to the
household. Importantly, this inequality combined with Eq. (16) implies that in any
equilibrium with banks and δ-deposit insurance, we have yF ≥ δψE = δD. Verbally,
this means that the factor demand in the risk-free technology sector is sufficiently high
to absorb all the funds of the deposit insurance.

Let us focus for a moment on the first four equations in the equilibrium definition.
They are analogous to the definition of an equilibrium allocation without financial
intermediation except that the returns (RE , RE ) have taken the place of the returns
(R, R). The reason is obvious: In an equilibrium without financial intermediation,
households invest directly in the risky technology, whereas in the equilibrium with
banks and δ-deposit insurance, all risky technology investment is mediated by banks.
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The risky asset is bank equity, while the household perceives bank deposits as risk-free
due to the deposit insurance.

Consider the special case of the above equilibrium definition where δ = 0. We call
it equilibrium with banks and 0-deposit insurance. This case can be interpreted in
two ways: First, it can be seen as the equilibrium concept for an economy with banks,
actuarially fair deposit insurance, and government bail-out guarantees in which no
default occurs. Alternatively, it can also be thought of as an equilibrium concept for
an economy with banks in which deposits are guaranteed by the government but there
is no deposit insurance fund.

As we will show in the next sections, the equilibria set out in Definition 1 typically
involve a continuum of possible debt-equity ratios (“leverage ratios"). In Sect. 4.5
below, we show that the equilibria continue to exist when banks actively manage their
capital structure, e.g. by sequentially issuing their liability claims or by selecting their
individual leverage.

4 Equilibrium analysis

In this section, we establish two results: First, in the economy with banks and deposit
insurance, the optimal allocation can be supported by amultitude of equilibria. Second,
a multitude of non-optimal allocations is also consistent with equilibrium.

4.1 Equilibria supporting the optimal allocation and an impossibility result

Proposition 2 Suppose that the tuple (c∗
g, c

∗
b, y

∗
M , y∗

F ) is an equilibrium allocation
without financial intermediation. Then, (i) there exists a continuum of equilibria with
banks and 0-deposit insurancewhich supports (c∗

g, c
∗
b, y

∗
M , y∗

F ), and (ii) for any δ > 0,
there does not exist an equilibrium with banks, δ-deposit insurance and no default that
supports (c∗

g, c
∗
b, y

∗
M , y∗

F ).

The proof of Proposition 2 is given in Appendix B.
We now define a special case of an equilibrium with banks and 0-deposit insurance

in which banks are “on the brink of default" in the bad state. We call this equilibrium
the critical leverage equilibrium.

Definition 2 A critical leverage equilibrium is a tuple (c∗
g, c

∗
b, y

∗
M , y∗

F , ψ∗, E∗, R∗
E , R∗

F )


 0 which solves the following system of equations:

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE − RF

RF

)
, (20)

cg = f (yF ) + yM R, (21)

cb = f (yF ) + yM R, (22)

yF = ω − yM , (23)

yM = E(1 + ψ), (24)
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RE = (1 + ψ)R − ψRF , (25)

RF = f ′(yF ), (26)

ψ = R

RF − R
, (27)

and, moreover, satisfies the inequalities R∗
F < σ R + (1 − σ)R and E(1 + ψ∗) ≤ ω.

The critical leverage equilibrium is unique and a special case of the equilibrium
with banks and δ-deposit insurance. In particular, it is that equilibrium with banks and
δ-deposit insurance in which all equity is wiped out in the bad state but bank default
is just avoided. Since the deposit insurance does not need to refund any depositors,
its premium is zero. The critical leverage equilibrium supports the optimal allocation,
but it will be important as a reference point for the construction of equilibria which
support a non-optimal allocation.

One important remark is in order.While there exist equilibria associated with δ = 0
and an optimal allocation, there are other equilibria associated with δ = 0 and non-
optimal allocations. This is shown next.

4.2 Non-optimal equilibrium allocations

We have shown that an equilibrium with banks and δ-deposit insurance can replicate
the optimal allocation of the equilibrium without financial intermediation. Next, we
show that there also exist equilibria with banks and δ-deposit insurance which support
non-optimal allocations. In fact, there are circumstances in which there is no value
of δ which guarantees that all equilibria under δ-deposit insurance involve optimal
allocations. This is the problem we aim to address by introducing reinsurance.

In Appendix A, we describe the optimal allocation as that involving an investment
ŷF in the risk-free technology as well as a complementary investment ω − ŷF in the
risky technology. We are going to show in this subsection that an allocation involving
a slight under-investment in risk-free technology can be supported by an equilibrium
with banks and δ-deposit insurance. More formally, let

Y ′
F = {yF ∈ (0, ŷF )| f ′(yF ) < σ R + (1 − σ)R}.

We will show that any allocation in Y ′
F is supported by an equilibrium for sufficiently

small insurance premia.19,20

Theorem 2 For every allocation y′
F ∈ Y ′

F and every δ′ <
R− f ′(y′

F )

R
, there exists an

equilibrium with banks and δ′-deposit insurance which supports the allocation y′
F .

19 In Appendix A, we argue that f ′(ŷF ) < σ R + (1− σ)R. Due to the concavity of f , it follows that Y ′
F

is non-empty.
20 We consider equilibria which support a non-optimal allocation, in the sense that yF < ŷF .Verbally, this
means that there is over-investment in the risky technology and under-investment in the risk-free technology.
One may wonder if there could also be equilibria which support allocations with yF > ŷF , that is, where
investment in the risky technology is lower than optimal. In such an equilibrium, f ′(yF ) < f ′(ŷF ) <

σ R + (1 − σ)R. This is addressed in Sect. 4.4.
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The proof of Theorem 2 is given in Appendix B. One implication of the above
theorem is that a rangeof non-optimal allocations canbe supportedby equilibria if there
is no deposit insurance, that is, if δ = 0. Moreover, a range of non-optimal allocations
can also be supported by equilibria as long as the premium δ per unit of deposits is
sufficiently small. More specifically, we see from the statement of the above theorem
that a non-optimal allocation y′

F is consistent with equilibrium if δ < (R− f ′(y′
F ))/R.

Theorem 2 implies the following proposition, which is useful because it is stated
only in terms of model primitives.

Proposition 3 Non-optimal equilibrium allocations exist if the deposit insurance pre-
mium satisfies

δ < (1 − σ)

(
R − R

R

)
.

The proof of Proposition 3 can be found in Appendix B.
We note that the above proposition implies that non-optimal equilibrium allocations

exist in the special case with δ = 0.
So far in this subsection, we have shown that non-optimal equilibrium allocations

arise for sufficiently small values of δ. Now we are going to derive a condition on
the cover ratio μ such that the corresponding premium δ is “sufficiently small" in that
sense. We have shown before that a cover ratio of μ ≤ 1 corresponds to a premium

δ =
f ′(yF ) −

(
1+ψ
ψ

)
R(

1
μ

)
f ′(yF ) − R

.

Since the term (1 + ψ)/ψ takes values in the interval (1,∞), we have

f ′(yF ) −
(
1+ψ
ψ

)
R(

1
μ

)
f ′(yF ) − R

<
f ′(yF ) − R(

1
μ

)
f ′(yF ) − R

.

Now suppose that

f ′(ŷF ) − R(
1
μ

)
f ′(ŷF ) − R

< (1 − σ)

(
R − R

R

)
.

If this inequality holds, then the previous proposition implies that we can find a non-
optimal allocation in the neighborhood of the optimal allocation ŷF which can be
supported by an equilibrium. Suitably rearranging the above inequality, we obtain the
following proposition.
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Proposition 4 A non-optimal allocation in a sufficiently small neighborhood of the
optimal allocation ŷF can be supported by an equilibrium in the presence of a deposit
insurance with any cover ratio μ such that:

μ <
(1 − σ) f ′(ŷF )(

f ′(ŷF )−R
R−R

)
R + (1 − σ)R

.

The right-hand side of the inequality in the above proposition depends only on the
primitive model parameters. For any configuration of the parameters, there is a critical
cover ratio below which deposit insurance cannot rule out non-optimal equilibrium
allocations. We want to argue that there can be economies in which this critical cover
ratio is close to one, so that even very comprehensive deposit insurance cannot rule
out non-optimal equilibrium allocations. Intuitively, consider a sequence of economies
such that, along this sequence, the term R− R goes to zero. This implies that the term
f ′(ŷF )− R tends to zero as well. Since f ′(ŷF ) < R, the latter convergence is “faster"

than the former. Consequently, the entire fraction f ′(ŷF )−R
R−R

tends to zero along the

sequence. Moreover, the entire inequality becomes μ < 1, irrespective of the value
of σ, provided that 1 − σ > 0.

In the next subsection, we will state two formal results: In Proposition 5, we are
going to show that non-optimal equilibrium allocations are possible in the presence
of actuarially fair deposit insurance. Moreover, we are going to provide a numerical
example to demonstrate that non-optimal equilibrium allocations can persist even in
the presence of a deposit insurance with a 99% cover ratio.

4.3 Non-optimalities under large cover ratios

Proposition 5 below shows that non-optimal equilibrium allocations are possible under
an actuarially fair deposit insurance. In order to prepare for the proof of this proposi-
tion, we need to make sure first that there can be economies in which the actuarially
fair deposit insurance premium does not exceed the factor demand in risk-free technol-
ogy. We provide two examples of economies which have this property. In the second
example below, we allow that the upper Inada condition is weakened. We explore the
fact that withμ = 1−σ , Eq. (9) implies δD ≤ ω ·(RF −R)(1−σ)/(RF −R(1−σ)).

Example 1 Let ω = 1, f (yF ) = 2
√
yF − yF , θ = 2, σ = 2/3, R = 1/2, R = 2.

In this example, ŷF = 1/4 and we write R̂F for f ′(ŷF ) = 1. Further, since ω = 1
and (R̂F − R)(1 − σ)/(R̂F − R(1 − σ)) = 1/5, it can be achieved that the entire
deposit insurance premium is invested in risk-free technology when an equilibrium
with riskless rate R̂F or close to R̂F is realized.

Example 2 We set ω = 1, σ = 1/2, θ = 1/2, R = 0, R = 2, and assume that

f (yF ) = 2(yF − y2F
2 ). In this example, R̂F = 2/(1 + √

2) and ŷF = 2 − √
2. Since

ω = 1 and (R̂F −R)(1−σ)/(R̂F −R(1−σ)) = 1/2 < 2−√
2, it can be achieved that
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the entire deposit insurance premium is invested in risk-free technology in equilibria
with riskless rates close to R̂F .

We next provide a proof that non-optimal equilibrium allocations can arise under
actuarially fair deposit insurance.21 This will help prove that non-optimal equilibrium
allocations can occur under any deposit insurance scheme.

Proposition 5 Suppose the Arrow-Debreu equilibrium allocation satisfies R̂F ≤ 1.
Suppose that the deposit insurance is actuarially fair. Then there exist equilibria with
financial intermediationwhere the investment in risk-free technology is strictly smaller
than ŷF , the investment in the risky technology is E + (1 − δ)D, banks only invest in
the risky technology and default in the bad state. In addition to coverage by deposit
insurance, government bail-out of banks is necessary in the bad state. The resulting
equilibrium allocation is non-optimal.

The proof of Proposition 5 is given in Appendix B. Notice that the hypothesis of the
proposition and the assumption that the deposit insurance premium does not exceed
the factor demand of the risk-free sector are satisfied for certain model specifications
as we have seen in Examples 1 and 2.

The argument in the proof of Proposition 5 relies on the fact that households (a) are
taxed in the bad state and (b) receive a refund in the good state. Thus, the argument
still applies when deposit insurance is slightly actuarially unfair. Actually, the validity
of (a) or (b) suffices. Therefore, the proof of the proposition works even when deposit
insurance covers a huge fraction of the banks’ deficit in case of default, provided that
(c) the deposit insurance can invest all its premium revenue in the risk-free sector,
that is the factor demand of the risk-free sector is high enough and (d) Eq. (11) can
be applied. The right-hand side of (11) is ill defined and (11) is not applicable if
μ = 1. While (c) does not hold in general, it does hold with μ = 0.99 in some model
specifications as the following example demonstrates.

Example 3 Let n > 1 be a natural number. Put ω = 1, R = (n + 1)1/2 − 1, R =
(n + 1)1/2, y+

F = 1 − 1/(n + 1), y0F = 1 − 1/(n + 2) and

f (yF ) =
⎧⎨
⎩
2n1/2 · (yF )1/2 for yF ∈ [0, y0F ];

2n1/2 · (yF )1/2 − [n1/2 · (n + 2)3/4](yF − y0F )4 for yF > y0F .

Then p̂g R+ p̂b R = 1 implies ( p̂g+ p̂b)(n+1)1/2 > 1 and consequently ( p̂g+ p̂b) >

(n+1)−1/2. Profitmaximization in risk-free technology requires ( p̂g+ p̂b) f ′(ŷF ) = 1.
Now ( p̂g + p̂b) f ′(y+

F ) > (n + 1)−1/2 · n1/2 · (y+
F )−1/2 = (n/(n + 1))1/2 · (n/(n +

1))−1/2 = 1.Hence ŷF > y+
F = 1−1/(n+1).Dividing R, R and f by (4/3)(n+1)1/2

yields a model with identical ŷF and (3/4)(1− (n + 1)−1/2) = R < R̂F < R = 3/4.
Next let n = 24. Then y∗

F = ŷF > 24/25 = 0.96, E∗ = y∗
M/(1 + ψ∗) = ŷM/(1 +

ψ∗) ∈ (0, 1/25) and R∗
F = R̂F ∈ (3/5, 3/4) at the critical leverage equilibrium. For

21 Without deposit insurance, Gersbach et al. (2015) have already shown that non-optimalities can arise.
We extend this proof to the case of deposit insurance.
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RF ≈ R̂F , we obtain yF ≈ y∗
F and 0 < E ≈ E∗. If in addition, we set μ = 0.99

in (11), then Dμ(E) < 100 · [(ω − yF ) · (1 − 0.99R/R)] ≤ (100/25) · 0.208 =
0.832 < yF . This means that the entire insurance premium can be invested in risk-
free technology when deposit insurance provides 99% coverage. It follows that the
proof of Proposition 5 can be repeated with 99% deposit insurance coverage instead of
actuarially fair deposit insurance. Hence it is possible to have equilibria where banks
default in the bad state, there is 99% coverage by deposit insurance, government
bail-out of banks is necessary, and the equilibrium allocation is non-optimal. The
construction is independent of the probability σ, provided that σ ∈ (0, 1).

In this section, we have shown how financial intermediation cum deposit insurance
can change the equilibrium allocation. While the optimal allocation is still supported
by a continuum of equilibria, there is also a continuum of non-optimal allocations
which can be supported by equilibria of this economy. Even in the presence of deposit
insurance, the incentive of banks to maximize expected return on equity can result in
over-investment in the risky technology, and under-investment in the safe technology,
relative to what is optimal for the households. We have shown that non-optimal equi-
librium allocations can persist even in the presence of a deposit insurance with a high
cover ratio. Intuitively, this means that imposing a surcharge on the actuarially fair
premium need not guarantee an optimal allocation, even if this surcharge is chosen
very high.

4.4 Too little investment in the risky sector?

We have seen that there can be equilibria with actuarially fair deposit insurance and
yF < ŷF . In such an equilibrium, there is under-investment in the risk-free technology
and over-investment in the risky technology, which is in line with most of the literature
and prima facie intuition. The question remains whether there can be equilibria with
deposit insurance and yF > ŷF so that the allocation is non-optimal because of too
much investment in the risk-free sector and too little investment in the risky sector.
We show in Proposition 8 in Appendix C that an equilibrium with 0-deposit insurance
and yF > ŷF is impossible.22

4.5 Individual choice of debt and equity

So far, we have assumed that the amounts of debt and equity are determined by the
choices of the households, and are evenly distributed to all banks. In the corporate
finance literature, one would typically think of the capital structure as being chosen
by individual banks. In particular, an individual bank would first choose the amount
of equity it issues, and then decide on the amount of deposits it accepts. Under such
an alternative assumption, all equilibria of our model could be replicated if we assume
that households choose banks randomly to deposit their funds.23

22 The examination of cases with δ-deposit insurance (δ > 0) is left to future research.
23 This argument follows the logic developed in Gersbach et al. (2015).
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Alternatively, one could take a static rather than sequential corporate finance per-
spective and investigate whether the equilibria discussed in the present section persist
if an individual bank deviates from the equilibrium debt-equity ratio, by changing
simultaneously its choices of debt and equity. If an individual bank had an incentive to
do so, then the entire continuum of banks would have the same incentive and the equi-
librium would break down. However, both optimal and non-optimal equilibria would
still arise in this case as well. For instance, if a bank selects a higher debt-equity ratio
in order to achieve higher return on equity the market price of this amount of equity
would increase accordingly, neutralizing any possible gains for shareholders at this
deviating bank.24

5 Deposit insurance with reinsurance

5.1 The reinsurance scheme

In the previous section, we have seen that in the presence of a deposit insurance, it
is still possible to support equilibria with default and with a non-optimal allocation
of input to the two sectors. Non-optimal equilibria can exist not only when deposit
insurance is actuarially fair but even when a premium above the actuarially fair level
is charged, as with “systemic risk surcharges." In the present section, we introduce
a deposit insurance with reinsurance, and we show that under that deposit insurance
scheme, all equilibria of the model economy support the optimal allocation, even if
they may involve bank default.

A deposit insurance with reinsurance works as follows: Banks pay a share δ of
their deposits to a deposit insurance fund as a premium. The deposit insurance fund
writes reinsurance contracts with households: A household which is willing to pay an
amount q to the deposit insurance fund if the bad state occurs at t = 2, receives a
payment of one from the deposit insurance at time t = 1. In equilibrium, the amount
q adjusts to clear the market for reinsurance contracts. Thus, the deposit insurance
fund collects a total amount of δD from the banks as a premium, passes all these funds
on to households under a reinsurance contract, and the households have a payment
obligation of δDq in the bad state. We emphasize that household insolvency is not an
issue here. In equilibrium, it is ensured that households have sufficient resources to
meet their payment obligations under the reinsurance contracts.25

In this section, we define a reinsurance equilibrium. This equilibrium concept is
based on the previously defined equilibrium with banks and δ-deposit insurance, but
is adapted to the economy in which the deposit insurance fund contracts reinsurance
instead of investing in the risk-free technology. Our claim is that, for a suitable choice
of δ, all reinsurance equilibria support the optimal allocation.More precisely, we claim

24 This follows from non-arbitrage reasoning as otherwise households would only demand equity from the
deviating bank, which would preclude market clearing.
25 All that we are implicitly assuming away is the possibility of strategic default by households. In practice,
one way to exclude strategic default could be to treat households’ payment obligations towards the deposit
insurance fund like tax liabilities.
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that optimality is achieved if the deposit insurance premium is determined as follows:

δRI E (ψ, yF ) =
{
0 if ψ f ′(yF ) ≤ (1 + ψ)R,

1/ψ if ψ f ′(yF ) > (1 + ψ)R.
(28)

We note that the deposit insurance premium δ depends on the capital structure
and hence we have a flexible deposit premium and thus a flexible deposit insurance
scheme.26 We discuss the two cases in turn. In the first case, the amount of deposits in
the economy is sufficiently low so that banks will not default in the bad state. Hence,
we have trivial deposit insurance with zero premiumwhich never leads to any payment
obligation. It is intuitive that the same logic as in Theorem 5 in the Appendix applies:
The equilibrium without financial intermediation can be replicated.

The interesting case is where the amount of deposits in the economy is sufficiently
large so that banks do default in the bad state. In that case, the deposit insurance
receives premium payments δD = (1/ψ)D = E . That is, every unit of equity is
balanced by one reinsurance contract. Next, we consider the portfolio choice problem
of the household in the presence of deposit insurancewith reinsurance and bank default
in the bad state:

max
η∈[0, ω/E], κ∈R+

(
σ

1 − θ

) (
ηERE + (ω + κE − ηE)RF + �F

)1−θ

+
(
1 − σ

1 − θ

)
((ω + κE − ηE)RF + �F − κEq)1−θ .

Recall how a reinsurance contract works: A household receives a payment of one
at time t = 1 and has to pay an amount q at time t = 2 if and only if the bad state
occurs. If a household enters into κE such reinsurance contracts, this yields a loss of
κEq in the bad state.

The above portfolio choice problem is best understoodwhen compared to the analo-
gous problem in the previous section: As before, we use E to denote the average equity
investment of households.Whatever an individual household’s choice of equity invest-
mentmay be, it can be expressed as a product ηE for some η ∈ [0, ω/E], and the factor
η can be taken as the individual household’s choice variable. Contrary to the previous
section, the deposit insurance does not lead to a restitution tg nor to a loss tb for all
households—participation in the reinsurance contract is a decision of the individual
household. Hence, there is a second choice variable κ. While the “average" household
receives δD = (1/ψ)D = E in the first period under the reinsurance contract, the
individual household receives κE . The amount which the individual household can
invest in equity or in risk-free assets is thus ω + κE rather than just ω. In the bad
state, however, the household is obliged to pay κEq. The profit �F remains a fixed
effect which is paid to every household in both states, regardless of the household’s
individual choices. Now let us consider the first-order conditions emanating from the

26 One can show that no flexible deposit insurance scheme can avoid equilibria with a bail-out if reinsurance
is absent. However, flexible deposit insurance might nevertheless yield socially optimal solutions which
will be addressed in our subsequent research.
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above portfolio problem:

(
ηERE + (ω + κE − ηE)RF + �F

(ω + κE − ηE)RF + �F − κEq

)θ

=
(

σ

1 − σ

) (
RE − RF

RF

)
, (29)

(
ηERE + (ω + κE − ηE)RF + �F

(ω + κE − ηE)RF + �F − κEq

)θ

=
(

σ

1 − σ

) (
RF

q − RF

)
. (30)

These portfolio conditions admit multiple optimal portfolios for an individual house-
hold. The model economy includes two states, so two independent assets suffice for
market completeness. The reinsurance contract is therefore a redundant asset. As a
result, the individual household is indifferent between a continuum of possible portfo-
lio choices. All these portfolio choices, however, lead to the same consumption bundle.
Let us now turn to that consumption bundle by considering the aggregate consumption
demanded by all households. In the good state, we find

cg = ERE + ωRF + �F

= ((1 − δ)D + E)R − DRF + ωRF + f (yF ) − yF RF

= DR + f (yF ) + RF (yM − D)

= yM R + f (yF ).

In order to understand this chain of equalities, we need the following considerations:
Banks can choose how to invest an amount (1 − δ)D + E, and as by Proposition
1, they invest this entire amount in the risky technology. Since only the banks can
invest in the risky technology, this implies (1 − δ)D + E = yM . Moreover, since
δ = 1/ψ = E/D, we have yM = D. Finally, the above chain of equalities uses the
market-clearing conditions for the investment good so that yM = ω − yF . Using the
same considerations, we can also show that

cb = yM R + f (yF ).

Analogously to the previous section, the market-clearing condition for the investment
good combined with appropriate definitions of return on equity and of q implies
market-clearing for the consumption good in both states. This observation allows us
to rewrite Eqs. (29) and (30) above as

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE − RF

RF

)
,

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RF

q − RF

)
.
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These two equations imply that

(
RE − RF

RF

)
=

(
RF

q − RF

)
.

This expression can be rewritten as

(
RE

RF

)
=

(
RF

q − RF

)
+ 1,

or, equivalently,

(
RE

RF

)
=

(
q

q − RF

)
.

Finally, multiplying by RF and dividing by q reveals that

(
RE

q

)
=

(
RF

q − RF

)
.

We see that the three ratios
(
RE
q

)
and

(
RF

q−RF

)
as well as

(
RE−RF

RF

)
are all equal. In

particular, this gives us the condition

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE

q

)
.

Intuitively, the condition says that a household cannot benefit from reallocation an
infinitesimal amount of its investment between bank equity and reinsurance contracts.

We are now ready for the statement of the equilibrium definition.

5.2 Reinsurance equilibrium

Definition 3 A reinsurance equilibrium is a tuple (c∗
g, c

∗
b, y

∗
M , y∗

F , E∗, ψ∗, R∗
E , R∗

E ,

R∗
F , q∗, δ∗) which solves the following system of equations:

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE − RF

RF − RE

)
, (31)

cg = f (yF ) + yM R, (32)

cb = f (yF ) + yM R, (33)
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yF = ω − yM , (34)

yM = (1 + ψ − δψ)E, (35)

RE = (1 + ψ − δψ)R − ψRF , (36)

RE = max{0, (1 + ψ − δψ)R − ψRF }, , (37)

RF = f ′(yF ), (38)

δψq = −min{0, (1 + ψ − δψ)R − ψRF }, (39)

δ = δRI E (ψ, yF ), (40)

as well as the additional restriction

(
cg
cb

)θ

=
(

σ

1 − σ

) (
RE

q

)
(41)

in case δψq > 0, and moreover, satisfies the inequalities R∗
F < σ R + (1 − σ)R and

E(1 + ψ) ≤ ω.

Equations (31) through (38) correspond to the equations in Definition 1 of the equilib-
rium with banks and δ-deposit insurance. Equation (39) simply says that the payment
obligation of households under the reinsurance contract corresponds exactly to the
amount of the shortfall in the bad state. Equation (40) reiterates the above construc-
tion of the deposit insurance premium. Finally, Eq. (41) only becomes relevant if a
shortfall does occur in the bad state, and a non-zero deposit insurance is concluded. In
that case, the portfolio decision of the household is no longer one-dimensional. Instead,
the household can be thought of as choosing two portfolio variables. As before, in equi-
librium, the household should have no incentive to move an infinitesimal amount of its
investment from bank equity to bank deposits (or to risk-free technology investment).
This requirement is already formalized in Eq. (31) above. In addition, the household
should not have an incentive to contract an infinitesimal extra amount of reinsurance
and invest the proceeds at time t = 1 into bank equity. This requirement is represented
by Eq. (41).

Also in the presence of reinsurance, the cost of bank defaults is ultimately borne by
the households. Instead of paying a lump-sum tax to finance a government bail-out,
they have payment obligations under the reinsurance contract. It may seem that the
two scenarios are quite similar after all, and one may wonder why they have different
consequences for allocative optimality. In order to understand this, recall that each
individual household remains completely free to enter into a reinsurance contract,
while the lump-sum tax is obviously mandatory for all households, irrespective of
their individual investment decision. In equilibrium, the payment obligation q adjusts
to clear themarket for reinsurance contracts. Thebenefit of this system is that individual
households find it optimal to choose a portfolio which internalizes the risk associated
with their investment in bank deposits. In contrast, without reinsurance, an individual
household externalizes that risk to the deposit insurance fund and, ultimately, to other
households.
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Another clarification is in order: Suppose that we are in an economy with banks,
deposit insurance, and reinsurance as defined in the present section. We want to argue
that the only “reasonable" equilibrium concept for such an economy is reinsurance
equilibrium as inDefinition 3. In order to see this, consider the following requirements:
Any appropriate notion of equilibriumwould be such thatmarkets for consumption and
investment goods clear, so Eqs. (32)–(33) should be part of any equilibrium definition.
We have shown in Lemma 1 that banks want to invest fully in the risky technology,
thus Eq. (35) would also have to hold in any equilibrium. Moreover, a reasonable
equilibrium definition would also require that households do arbitrage between bonds
in risk-free technology and risk-free deposits. Thus, the rate of return on deposits
would have to be RF and, consequently, Eqs. (36)–(37) would hold. Recall also that
Eq. (38) follows from firms’ profit maximization, which would also be true in any
equilibrium. Finally, households’ portfolio choice would have to be optimal in any
equilibrium as well, which means that Eq. (31) and, if pertinent, Eq. (41) have to hold.
Thus, in the economy with banks, deposit insurance, and reinsurance, there is no loss
in focusing on the notion of reinsurance equilibrium.

5.3 Optimality of the reinsurance equilibrium

Theorem 3 below is the main result of the present paper. It claims that in an economy
where the deposit insurance fund contracts reinsurance rather than invest in risk-free
assets, non-optimal allocations can no longer be consistent with equilibrium.

Theorem 3 All reinsurance equilibria support the optimal allocation.

The proof of Theorem 3 is given in Appendix B. The existence of a reinsurance
equilibrium can be shown by a similar construction as the existence of an equilibrium
with banks and δ-deposit insurance which supports the optimal allocation. Moreover,
a reinsurance equilibrium with default also exists, but it is unique. That is, only one
debt-equity ratio ψ is consistent with such an equilibrium.

Corollary 1 All reinsurance equilibria with default (if any) involve the same debt-
equity ratio.

The proof of Corollary 1 is given in Appendix B. Alternatively, the uniqueness
result can also be derived from the uniqueness of the Arrow-Debreu price system
of the form (1, p̂g, p̂b). In the equilibrium with default, one unit of equity provides
R

∗
E = ψ · (R − RF ) units of consumption in the good state and nothing in the bad

state. The reinsurance contract delivers q units of consumption in the bad state, where
Eq = � = D · (RF − R), hence q = ψ · (RF − R). But then 1/ p̂g = R

∗
E and

1/ p̂b = q. Each of these two equations fixes ψ .
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As a next step, we show constructively that a reinsurance equilibrium with default
exists. Let a tuple (c

g, c

b, y


M , y

F , E, ψ, R


E , R
E , q, δ) be defined as follows:

ψ = R̂F

R̂F − R
+ R̂F

R − R̂F
,

y
F = ŷF ,

y
M = ŷM ,

R


E = ψ(R − R
F ),

R
E = 0,

q = ψ(R
F − R),

E = y
M/ψ,

δ = 1/ψ.

Proposition 6 The tuple (c
g, c


b, y


M , y

F , E, ψ, R


E , R
E , q, δ) is a reinsurance

equilibrium.

The proof of Proposition 6 is given in Appendix B. This yields:

Theorem 4 A reinsurance equilibrium with default exists.

To sum up, we have established the following findings:
First, all reinsurance equilibria involve the optimal allocation, even if banks default.

The reason is that neither in the good nor in the bad state, portfolio decisions of
households are impacted by transfers from governments—refunds from the deposit
insurance fund or taxes to bail out banks. Hence, the banking system receives the
socially optimal aggregate amount of investment goods to be invested in the risky
sector in the form of deposits and equity and the banking system cannot increase the
scale further.

Second,while a continuumof possible capital structures and associated non-optimal
equilibria with default deposit insurance exists, only one equilibrium capital structure
under reinsurance exists in which banks default. The reason is as follows. Since all
reinsurance equilibria involve the optimal allocation, the amount of risky assets for
households is equal to the amount in the Arrow-Debreu world. A particular amount
of bank equity contracts and thus a particular capital structure requires a particular
combination of deposit insurance and reinsurance contracts to avoid government bail-
out. Only for one particular capital structure will the ensuing portfolio of risky assets
(bank equity and reinsurance contracts) mimic the amount of risky assets in theArrow-
Debreu setting. Thus, the equilibrium capital structure in the reinsurance equilibrium
with default is unique.

Third, we have assumed that households honor their obligations when they (freely)
choose to acquire reinsurance contracts. One might be concerned about strategic
default of households in this context. Such concerns are important and might require
some wealth or collateral thresholds for households to qualify for the acquisition of
reinsurance contracts.
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Fourth, one may wonder how our main results would carry over to a model with
an arbitrary (finite) number of states of nature. Indeed, the existence of non-optimal
equilibrium allocations requires only that there is (at least) one state in which the cover
ratio of the deposit insurance is strictly less than one. Suppose that there are n states
of nature, and the cover ratio of the deposit insurance fund is strictly less than one in
m < n of those states. Then, we can guarantee that the optimal allocation obtains in
any equilibrium by allowing for a set of m independent reinsurance contracts.

6 Conclusion and extensions

We have performed a simple general equilibrium analysis of deposit insurance and
have derived two main results: First, deposit insurance in itself does not guarantee
optimal equilibrium allocations, not even with very high premia. Second, deposit
insurance cum reinsurance does guarantee that the optimal allocation is achieved in
equilibrium.

It is useful to stress that the main logic behind both of these results would apply in
many other general equilibrium models with banks. Deposit insurance alone cannot
prevent portfolio decisions of households that cause distortions regarding the socially
optimal mix of risky and safe assets. The reason is that deposit insurance either leads
to taxation in bad states to cover bail-out costs or to additional transfers in good states
since the insurance fund was not needed.

A judicious combination of deposit insurance and reinsurance avoids both taxation
and transfers from the government since the amount of reinsurance contracts is linked
to the capital structures of banks (and deposit insurance scheme). This, in turn, pins
down the equilibrium capital structure of banks. This logic could be applied to any
other general equilibrium model with banks and aggregate risk.

The model allows some important extensions. One could, for instance, introduce
costs of monitoring or moral hazard at the level of bank managers. In the former case,
the analysis carries over readily to economies in which monitoring is costly and costs
per loan are constant. In the latter case, in the spirit of Holmström and Tirole (1997),
the bank manager must receive an incentive pay that motivates him to monitor firms.
Then, one can only achieve a second-best allocation. Given the second-best allocation,
one can perform the parallel exercise and a judicious combination of deposit insurance
and reinsurance implements the second-best allocation.27

Of course, numerous other extensions deserve further scrutiny. For instance, the
reinsurance scheme can be viewed as a form of catastrophe bond. Since the risk
of banking crises is notoriously difficult to assess, reinsurance of deposit insurance
might need professional expertise. One might thus ask whether the same role for
reinsurance as in our main theorem could be performed by reinsurance companies

27 Suppose, e.g., that shareholders need to pay byM (0 < b < 1) to bankers in order to ensure monitoring
of loans ( Holmström and Tirole (1997)) or to avoid diversion of funds. Then, we can repeat the entire
exercise with revised returns R − b, R − b on investments in yM for financiers of banks and income byM
of bank managers. The allocation is at most second-best, since lower returns will attract too little funds to
the risky sector. However, given bankers’ incentive constraints, the allocation is second-best, indeed. More
formal details are available upon request.
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which households finance by equity contracts. One might also consider circumstances
when there is ambiguity about the occurrence of banking crises and how reinsurance
has to be designed in such circumstances. Finally, how insurance schemes have to
be designed when banking competition is imperfect is another important avenue of
research, following the comprehensive framework outlined in Vives (2016). These
extensions will further enrich the socially valuable dual role that deposit insurance
and reinsurance can have in insuring the financial system.
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Appendix A: Equilibria without Financial Intermediation

An equilibrium in this economy is defined as follows:

Definition 4 An equilibriumwithout financial intermediation is a tuple (p∗
g, p

∗
b, c

∗
g, c

∗
b,

y∗
F , y∗

M ,�∗
F ) 
 028 which satisfies the following system of equations:

(
cg
cb

)θ

=
(
pb
pg

) (
σ

1 − σ

)
, (42)

ω = pgcg + pbcb − �F , (43)

�F = (pg + pb) f (yF ) − yF , (44)

f ′(yF ) = (pg + pb)
−1, (45)

yM = ω − yF , (46)

cg = f (yF ) + yM R, (47)

cb = f (yF ) + yM R. (48)

The first equation is the optimal ratio of consumptions in both states for the house-
hold and thus represents the maximization of expected household utility. The second

28 Throughout the paper we use the vector notation v1 
 v2 if vector v1 is strictly greater in all components
than vectorv2, andv1 > v2 ifv1 isweakly greater in all components thanv2 with at least one strict inequality.
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equation is the household’s budget constraint, taking into account that the profits of
risk-free technology firms are distributed to households, while risky technology firms
make zero profits. The third equation specifies the risk-free technology profits, and the
fourth equation is the condition for optimal producer choice. The remaining equations
are standard market-clearing conditions for investment good, consumption good in
the good state, and consumption good in the bad state, respectively.

Substitute the expressions for c∗
g, c∗

b, and �∗
F into the budget constraint to find

ω = y∗
F + y∗

M · (pg R + pbR).

Using the fact that ω = y∗
F + y∗

M , we see that the condition

pg R + pbR = 1

emanating from optimal producer choice is implied by the system of equations in the
definition of an equilibrium without financial intermediation.

The equilibrium allocation

A first welfare theorem

In this subsection, we characterize the optimal allocation of the investment good
to the two sectors of production. We mean by an optimal allocation an allocation
that maximizes household utility. Because of the CRRA utility function, the optimal
allocation does not coincidewith the productively efficient allocationwhichmaximizes
total expected output in the economy. More formally, we give the following definition
of the optimal allocation.

Definition 5 The input allocation (ŷF , ω − ŷF ) is optimal if it maximizes the house-
hold’s utility

(
σ

1 − θ

) (
f (yF ) + (ω − yF )R

)1−θ +
(
1 − σ

1 − θ

) (
f (yF ) + (ω − yF )R

)1−θ

over yF ∈ [0, ω].

The economy without financial intermediation was previously introduced in Gers-
bach et al. (2015). It has been shown that the optimal allocation exists, is unique, and
allocates strictly positive amounts of the investment good to both sectors. Moreover,
the concomitant Arrow–Debreu equilibrium is unique up to price normalization. For
later reference, we denote the Arrow–Debreu equilibrium values by p̂g , p̂b, ĉg , ĉb,
ŷF , ŷM and �̂F .
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Examination of the first-order condition emanating from the optimization problem
in the above definition reveals that the optimal allocation ŷF satisfies

(
σ

1 − σ

) (
R − f ′(ŷF )

f ′(ŷF ) − R

)
=

(
f (ŷF ) + (ω − ŷF )R

f (ŷF ) + (ω − ŷF )R

)θ

. (49)

The following proposition is the manifestation of the first welfare theorem in the
model at hand.

Proposition 7 An equilibrium without financial intermediation involves the optimal
allocation.

Proof In an equilibrium without financial intermediation, the market-clearing condi-
tions imply that the right-hand side of Eq. (49) is equal to (cg/cb)θ .Moreover, in such
an equilibrium, the conditions for optimal producer choice imply that

pg R + pbR = (pg + pb) f
′(ŷF ) = 1.

We can use this expression to show that

(
R − f ′(ŷF )

f ′(ŷF ) − R

)
= pb/pg.

We see that the first-order condition for the optimal allocation and the equilibrium
condition for optimal consumer choice coincide. ��

From the first-order condition describing the optimal allocation and from the
inequalities ω > ŷF and R > R, it can be inferred from Eq. (49) that if (ŷF , ω − ŷF )

is the optimal allocation, then

f ′(ŷF ) < σ R + (1 − σ)R.

Due to the concave technology in risk-free technology, the marginal product in the
risk-free technology sector is lower than the marginal product in the risky technology
sector at the optimal allocation. Due to risk aversion, it is not optimal for households
to equalize the marginal products in both sectors. Hence, as pointed out before, the
optimal allocation is not the “productively efficient" allocation.

Reformulation of equilibrium

It will be useful to work with a reformulation of the equilibrium without financial
intermediation that does not involve the prices (pg, pb) anymore. In order to achieve
this reformulation, we start by considering the optimization problem of an individual
household, taking choices of all other households as given. The individual household’s
optimization problem is “one-dimensional": The household chooses a share β ∈ [0, 1]
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of its initial endowment to be invested in the risk-free asset (that is, in risk-free tech-
nology production), and the complementary share 1 − β to be invested in the risky
asset (that is, risky technology production). Since the individual household has zero
mass, it takes the allocation yF and the concomitant marginal product f ′(yF ) as given.
This is in contrast to the previous subsection where we considered the optimization of
the entire allocation in the economy. We can express the individual household utility
as a function of β:

U (β) =
(

σ

1 − θ

) (
c1−θ
g (β)

)
+

(
1 − σ

1 − θ

) (
c1−θ
b (β)

)
,

which leads us to the first-order condition

(
cg
cb

)θ

= −
(

σ

1 − σ

) (
∂cg/∂β

∂cb/∂β

)
. (50)

Equation (50) gives a general first-order condition for a one-dimensional consumer
choice problem which will repeatedly be useful in the sequel. In the case at hand,

cg(β) = β(ω + �F ) f ′(yF ) + (1 − β)(ω + �F )R,

cb(β) = β(ω + �F ) f ′(yF ) + (1 − β)(ω + �F )R,

and thus Equation (50) becomes

(
cg
cb

)θ

=
(

σ

1 − σ

) (
R − f ′(yF )

f ′(yF ) − R

)
.

Consider the following theorem.

Theorem 5 The tuple (c∗
g, c

∗
b, y

∗
F , y∗

M ) 
 0 is part of an equilibrium without financial
intermediation if it solves the following system of equations:

yM = ω − yF , (51)

cg = f (yF ) + yM R, (52)

cb = f (yF ) + yM R, (53)(
cg
cb

)θ

=
(

σ

1 − σ

) (
R − f ′(yF )

f ′(yF ) − R

)
. (54)

Proof In order to prove the theorem,weneed to show that for any tuple (c∗
g, c

∗
b, y

∗
F , y∗

M )


 0 which satisfies Eqs. (51)–(54), one can find prices (p∗
g, p

∗
b) such that

(c∗
g, c

∗
b, y

∗
F , y∗

M , p∗
g, p

∗
b) is an equilibrium without financial intermediation. Indeed,

let prices (p∗
g, p

∗
b) be given by the equalities

p∗
b/p

∗
g = R − f ′(y∗

F )

f ′(y∗
F ) − R
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and

(p∗
g + p∗

b)
−1 = f ′(y∗

F ).

It is now easily verified that all the equations in the definition of an equilibriumwithout
financial intermediation are satisfied.

Appendix B: Proofs

Proof of Lemma 1 Consider first the case where π(α) > 0 = π(α). Then,

∂
(
σπ(α) + (1 − σ)π(α)

)
/∂α = σ(R − RF )((1 − δ)D + E).

This partial derivative is independent of α. The supposition RF < σ R + (1 − σ)R
implies that R − RF > 0, and thus the above partial derivative is strictly positive, as
desired. Now consider the case where π(α) > π(α) > 0. Then, the relevant partial
derivative is

∂
(
σ�(α) + (1 − σ)π(α)

)
/∂α = σ(R − RF )((1 − δ)D + E) + (1 − σ)(R − RF )((1 − δ)D + E).

Again, invoking the supposition that RF < σ R + (1− σ)R shows that this partial
derivative is strictly positive. Indeed, the optimization problem of the representative
bank has no interior solution. ��
Proof of Proposition 1 Weare going to show that all households choose the sameequity,
while the above representative household approach assumes this. More formally, an
individual household’s equity is equal to ηE,where the individual household’s choice
variable is η,while E is the aggregate level of equity chosen by all households. Hence,
if some household chooses η > 1, then it chooses to invest more in equity than the
“average" household, while if η < 1, then this particular household invests less than
“average" in equity. It will be sufficient to consider the range η ∈ [0, ω/E]. The
portfolio choice problem of an individual household can now be stated formally as
follows:

max
η∈[0,ω/E]

(
σ

1 − θ

) (
ηERE + (ω − ηE)RF + tg + �F

)1−θ

+
(
1 − σ

1 − θ

) (
ηERE + (ω − ηE)RF + tb + �F

)1−θ
.

Recalling that E > 0, the first-order condition for the consumer choice problem
can be written as

(
σ

1 − σ

)(
RE − RF

RF − RE

)
=

(
ηERE + (ω − ηE)RF + tg + �F

ηERE + (ω − ηE)RF + tb + �F

)θ

. (55)
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The left-hand side is independent of η. For RE > RF > RE , the right-hand side is
strictly increasing in η. That is, only one value of η ∈ [0, ω/E] can solve this first-
order condition if the existence of one solution is guaranteed. Hence, all households
must choose the same portfolio. But then it follows that η = 1. ��
Proof of Proposition 2 (i) The proof is constructive. Let (c∗

g, c
∗
b, y

∗
M , y∗

F ) be the optimal

input allocation and concomitant consumptions, and choose any ψ∗ ∈ [0, R
R∗
F−R ].

Notice that any choice of ψ∗ in that interval guarantees that banks do not default in
the bad state. Now define E∗, R∗

E , and R∗
E as follows:

E∗ = y∗
M

1 + ψ∗ ,

R
∗
E = (1 + ψ∗)R − ψ∗R∗

F ,

R∗
E = (1 + ψ∗)R − ψ∗R∗

F .

We need to check that the tuple (c∗
g, c

∗
b, y

∗
M , y∗

F , ψ∗, E∗, R∗
E , R∗

E ) solves Eqs. (12)
through (18) in the definition of the equilibrium with banks and δ-deposit insurance.
This is immediate for Eqs. (13) through (18). To see that it is also true for Eq. (12),
we use Theorem 1(i) and observe that with 0-deposit insurance,

RE − RF

RF − RE
= (1 + ψ)R − (1 + ψ)RF

(1 + ψ)RF − (1 + ψ)R
= R − RF

RF − R
.

(ii) The proof is by contradiction. Again, let (c∗
g, c

∗
b, y

∗
M , y∗

F ) be the optimal input

allocation and concomitant consumptions, and choose any ψ∗ ∈ [0, R
R∗
F−R ]. Notice

that any choice of ψ∗ in that interval guarantees that banks do not default in the bad
state. Now suppose that, for some δ > 0, there is an equilibrium with banks and δ-
deposit insurance that supports the optimal input allocation. Then, in order to conform
to Definition 1, the return on equity in that equilibrium must be

R
∗
E = (1 + ψ∗ − δψ∗)R − ψ∗R∗

F ,

R∗
E = (1 + ψ∗ − δψ∗)R − ψ∗R∗

F .

Then, we find

RE − RF

RF − RE
= (1 + ψ)(R − RF ) − δψR

(1 + ψ)(RF − R) + δψR
�= R − RF

RF − R
.

The input allocation is not optimal according to Theorem 1(i), a contradiction. ��
Proof of Proposition 3 Suppose that δ < (1−σ)

(
R−R
R

)
.This inequality can be rewrit-

ten as

δ <
R − σ R − (1 − σ)R

R
.
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Now consider the inequality f ′(y′
F ) < σ R + (1 − σ)R. It can be written as

−(1 − σ)R < σ R − f ′(y′
F ).

Substituting for −(1 − σ)R into the first inequality above yields

δ <
R − f ′(y′

F )

R
.

Now the proposition follows from Theorem 2. ��
Proof of Proposition 5 Take the critical leverage equilibrium introduced in Definition
2 where investment in risk-free technology is y∗

F , investment in the risky sector is

y∗
M = ω − y∗

F , deposits assume the threshold value D∗ = R

R∗
F
y∗
M , equity assumes

the value E∗ =
(
1 − R

R∗
F

)
y∗
M and the equilibrium bond return R∗

F satisfies σ R +
(1 − σ)R > R∗

F . Let us fix a bond return (denoted by ŘF ) slightly above R∗
F such

that σ R+ (1−σ)R > ŘF and the bank chooses α = 1. Given the higher bond return
ŘF , the representative risk-free technology firm chooses a profit maximizing input
denoted by y̌F , with y̌F < y∗

F . The resulting profit is denoted by �̌F and satisfies
�̌F < �∗

F .
At the critical leverage equilibrium, the demand for equity is E∗ when tb = 0 and
δ = 0, the return on bonds is R∗

F and a unit of equity pays R(1+ D∗
E∗ ) − R∗

F
D∗
E∗ in the

good state and zero in the bad state. If one replaced R∗
F by ŘF > R∗

F , �∗
F by �̌F ,

δ = 0 by the actuarially fair rate given by (9) when μ = 1−σ , E = E∗ and D = D∗,
and tb = 0 by ťb = −(1 − δ)ŘF D∗ + R(E∗ + (1 − δ)D∗) < 0, then the household
would demand more of the risk-free asset.29

Now assume E ∈ (0, E∗] and D = D1−σ (E) given by (11). Consider the household’s
portfolio choice when the profit distributed is �̌F , δ is given by (9) with μ = 1 − σ ,
tb = −(1 − δ)ŘF D + R(E + (1 − δ)D), the return on bonds is ŘF and a unit
of equity pays R(1 + (1−δ)D

E ) − ŘF
D
E in the good state and zero in the bad state.

There is a unique optimal γ (E) ∈ [0, 1] so that the household invests γ (E)ω in
safe assets and [1− γ (E)]ω in equity. By Berge’s maximum theorem (or the explicit
solution of the household’s portfolio choice problem), γ (E) is a continuous function

29 Observe first of all that cg > cb and homothetic preferences of the household (together with standard

properties) imply that |MRS| is smaller at the consumption bundle (čg, čb) = (cg − (�F − �̌F ) +
δD∗ ŘF , cb−(�F−�̌F )− ťb) than at (cg, cb). Next consider normalized gradients of the form (|MRS|, 1).
Denote by∇ the household’s normalized gradient at (cg, cb) and by ∇̌ its normalized gradient at (čg, čb). If
in the reference equilibrium situation, the household replaces one unit of the bond by one unit of equity, then

consumption is changed in the directionυ = (R(1+ D∗
E∗ )−RF

D∗
E∗ −RF , −RF ) and at equilibrium, portfolio

choice is optimal, that is ∇ · υ = 0. If in the new situation, the household replaces one unit of the bond by

one unit of equity, then consumption is changed in the direction υ̌ = (R(1+ D∗
E∗ ) − ŘF

D∗
E∗ − Ř f ,−ŘF ).

It follows that 0 = ∇ · υ > ∇ · υ̌ > ∇̌ · υ̌. But ∇̌ · υ̌ < 0 means that the household benefits from reducing
its equity holding and increasing its bond holding by the same amount.
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of E . Set η(E) = [1 − γ (E)]ω. As reasoned above, η(E∗) < E∗. Like in the proof
of Proposition 6 of Gersbach et al. (2015), the examination of the solution of the
household’s portfolio choice problem shows existence of Eo ∈ (0, E∗) with η(Eo) >

Eo. By the intermediate value theorem, there exists E ∈ (Eo, E∗) with η(E) = E . At
this E and the corresponding values for D, δ and tb, the asset market is cleared—as
well as the consumption good market in both states—while the bond return is ŘF and
risk-free technology production is less than at the Arrow-Debreu equilibrium. Hence
the equilibrium allocation is non-optimal. By 3.5, bail-out is necessary if the bank
defaults.
It remains to check whether the bank is actually going to default in the bad state. In the
critical leverage equilibrium, R(E∗ +D∗)− RF D∗ = 0. Let� = y∗

F − y̌F > 0. Then
R(E∗ + D∗ +�)− ŘF (D∗ +�) < 0. Further E∗ + D∗ = ω − y∗

F , E + D(1− δ) =
ω − y̌F and E < E∗. Hence E∗ + D∗ + � = ω − y̌F = E + D(1 − δ) and
D∗ +� = ω− E∗ − y∗

F + y∗
F − y̌F = ω− E∗ − y̌F < ω− E − y̌F = (1− δ)D < D.

It follows that R(E + (1 − δ)D) − ŘF D < R(E∗ + D∗ + �) − ŘF (D∗ + �) < 0,
which means that the bank is going to default in the bad state, indeed. ��
Proof of Proposition 6 It is immediate that our construction satisfies Eqs. (34) through
(40). Now consider Eq. (41). By substitution from the above construction of c

g, c

b, R



E
and q, we can reduce Eq. (41) to

(
f (ŷF ) + ŷM R

f (ŷF ) + ŷM R

)θ

=
(

σ

1 − σ

) (
R − R̂F

R̂F − R

)
.

This equality is true due to the definition of ŷF and ŷM . Indeed, our construction
satisfies Eq. (41). Finally, we have to verify that our construction also satisfies Eqs.
(31)–(33). Given the previous step, it is sufficient to show that the following equality
is satisfied:

ψR − (1 + ψ)R̂F

R̂F
= R − R̂F

R̂F − R
.

Solving this expression for ψ, we see that it is simply equivalent to the definition
of ψ. Indeed, we have now shown that our construction satisfies all the Eqs. (31)
through (41). ��

Proof of Theorem 2 Step 1.Fix y′
F ∈ Y ′

F and δ′ <
R− f ′(y′

F )

R
.Consider RE as a function

of ψ, thus

RE (ψ) = (1 + ψ − δ′ψ)R − ψ f ′(y′
F )

= R + ψ[(1 − δ′)R − f ′(y′
F )].

Observe that the term in brackets is strictly positive, hence we find the limit behavior
limψ→0 RE (ψ) = R and limψ→∞ RE (ψ) = ∞. Since RE (ψ) is continuous on R+,

we can invoke the intermediate value theorem to find that for any ρ > R, there exists
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ψ > 0 such that RE (ψ) = ρ.

Step 2. Now let us define the function

ρ(yF ) =
(

f (yF ) + (ω − yF )R

f (yF ) + (ω − yF )R

)θ (
1 − σ

σ

)
f ′(yF ) + f ′(yF ).

Observe that ρ is continuous and strictly decreasing in yF . Thus for y′
F we have

ρ′ := ρ(y′
F ) > ρ(ŷF ) ≥ R̂F .30 We have now established that there is ψ ′ such that

RE (ψ ′) = ρ′.

Step 3. Consider the tuple (c′
g, c

′
b, y

′
M , y′

F , E ′, ψ ′, R′
E , R′

E ), where y′
F is as fixed in

Step 1, ψ ′ is as defined in Step 2, R
′
E = RE (ψ ′), and the remaining variables are

given by:

y′
M = ω − y′

F ,

E ′ = y′
M/(1 + ψ ′ − δ′ψ ′),

c′
g = f (y′

F ) + y′
M R,

c′
b = f (y′

F ) + y′
M R.

It is now easily verified that the tuple under consideration satisfies Eqs. (12)–(18). We
note that RE = 0.31

Moreover, since (15) and (16) are satisfied, we note that even in the extreme case
with households investing almost everything in deposits, y′

F ≥ δD′ still holds.
Hence, the tuple constructed is indeed an equilibrium with banks and δ′-deposit

insurance, as desired. ��

Proof of Theorem 3 Comparing the system of Eqs. (31)–(41) above with the system of
Eqs. (51)–(54) describing the optimal allocation, we see that a reinsurance equilibrium

30 Regarding the latter inequality: By (20), the critical leverage equilibriumwith 0-deposit insurance yields
ρ(ŷF ) = R

∗
E . By (25) and (27),

R
∗
E = 1

f ′(ŷF ) − R
· {[R − R + f ′(ŷF )] · R − R · f ′(ŷF )}

= (R − R) · f ′(ŷF )

f ′(ŷF ) − R
≥ R

where the last inequality follows from R > f ′(ŷF ) > R ≥ 0. Hence ρ(ŷF ) ≥ R. Actually, > holds for
R > 0 and = holds for R = 0.
31 To see this, observe that RE = 0 holds at the critical leverage equilibrium by definition: Banks are just
at the brink of default. Any additional investment in the risky technology leads to default, and thus return
on equity in the bad state remains zero.
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supports the optimal allocation if the equilibrium variables R
∗
E and y∗

F satisfy

R
∗
E − R∗

F

R∗
F − R∗

E
= R − R∗

F

R∗
F − R

.

In order to verify that this equality holds in any reinsurance equilibrium,we distinguish
two cases. The first case is a reinsurance equilibrium in which ψ∗R∗

F ≤ (1 + ψ∗)R.

In such an equilibrium, δ∗ = 0. Then, substituting for the returns on equity from Eqs.
(36) and (37), we have

R
∗
E − R∗

F

R∗
F − R∗

E
= (1 + ψ∗)R∗ − (1 + ψ∗)R∗

F

(1 + ψ∗)R∗
F − (1 + ψ∗)R

= R − R∗
F

R∗
F − R

,

as desired. The second case is that of a reinsurance equilibrium in which ψ∗R∗
F >

(1 + ψ∗)R. In such an equilibrium, δ∗ = 1/ψ∗ and δ∗ψ∗q∗ = q∗ > 0. Thus, by
applying Eq. (41) and by substitution for R

∗
E and q∗ from Eqs. (36) and (39) and using

R∗
E = 0, we obtain the chain of equalities

R
∗
E − R∗

F

R∗
F − R∗

E
= R

∗
E − R∗

F

R∗
F

= R
∗
E

q
= ψ∗R − ψ∗R∗

F

ψ∗R∗
F − ψ∗R

= R − R∗
F

R∗
F − R

.

(The first equality in the chain holds because banks default, in which case return on
equity is zero.)

Indeed, all reinsurance equilibria support the optimal allocation. ��

Proof of Corollary 1 Consider a reinsurance equilibriumwith default, and let R
∗
E be the

return on equity in the good state and ψ∗ be the debt-equity ratio in that equilibrium.
From Theorem 3, it follows that

R
∗
E − R̂F

R̂F
= R − R̂F

R̂F − R
.

Moreover, in a reinsurance equilibrium with default, Eq. (36) reduces to

R
∗
E = ψ∗(R − R̂F ).

Substituting this expression for R
∗
E in the previous equation, and suitably rearranging

terms yields

ψ∗ = R̂F

R̂F − R
+ R̂F

R − R̂F
.

��
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Appendix C: On Under-investment in the Risky Sector

We are going to show the claims in Sect. 4.4 by the following proposition:

Proposition 8 There does not exist an equilibrium with 0-deposit insurance and yF >

ŷF .

Proof The proof is an immediate consequence of the following two assertions (A) and
(B):

(A) There does not exist an equilibrium with 0-deposit insurance, yF > ŷF and no
default.

(B) There does not exist an equilibriumwith 0-deposit insurance, yF > ŷF and default.

Let us proceed under the assumption δ = 0.
Regarding (A), we observe that an equilibrium with 0-deposit insurance and no

default is a Radner equilibrium with complete markets. Hence it is equivalent to
an Arrow–Debreu equilibrium, by Proposition 19.D.1 of Mas-Colell et al. (1995).
Therefore, the equilibrium allocation is efficient and satisfies yF = ŷF .

Regarding (B), let us use yF to parametrize (individually and socially) feasible
consumption plans with equal treatment of households (like in (12) and (13)):

cg(yF ) = f (yF ) + (ω − yF )R;
cb(yF ) = f (yF ) + (ω − yF )R.

Then d
dyF

(
cg
cb

)
= 1

c2b
· [·] with

[·] = ( f ′ − R) · ( f + (ω − yF )R)

− ( f + (ω − yF )R) · ( f ′ − R)

= ( f ′ · (ω − yF ) + f ) · (R − R) < 0.

That is, cg/cb is decreasing in yF . By Eq. (27) in Gersbach et al. (2015) (or the
equilibrium condition (12) in this paper),

cg
cb

=
[

σ(RE − RF )

(1 − σ)(RF − RE )

] 1
θ

holds at equilibrium. In case RE = 0,

cg
cb

=
[

σ(RE − RF )

(1 − σ)RF

] 1
θ

.

Hence RE
RF

is decreasing in yF as long as RE = 0.
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According to Proposition 5 of Gersbach et al. (2015), there exists an equilibrium
without default (and with 0-deposit insurance) where the bank is on the brink of
defaulting in the bad state. Let Do denote the amount of deposits and Eo denote
the amount of equity in that equilibrium. Then the equilibrium returns are R

o
E =

R + Do

Eo · (R − R̂F ) and Ro
E = 0. In general,

RE = R + D
E · (R − RF ).

Now suppose that there exists an equilibrium with default and yF > ŷF . At such

an equilibrium, RF < R̂F and RE
RF

<
R
o
E

R̂F
. Consequently, RE < R

o
E or

R + D

E
(R − RF ) < R + Do

Eo
(R − R̂F ).

Since RF < R̂F , D/E < Do/Eo has to hold. But then
D
E (R − RF ) > Do

Eo (R − R̂F ).

For either D
E (R − RF ) ≥ 0 > Do

Eo (R − R̂F ) or 0 > D
E (R − RF ) > D

E (R − R̂F ) >
Do

Eo (R − R̂F ),
D
E (R−RF ) > Do

Eo (R− R̂F ) implies RE > Ro
E = 0. Thus assuming an equilibrium

with default and yF > ŷF leads to the conclusion that there is no default at that
equilibrium, a contradiction. This shows the assertion. ��
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