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The mechanical behavior and constitutive equations of isotropic non-dense metals, such as metal foams, porous metals, and
lattice metals, have been extensively studied, but the subsequent yield surfaces depicted by different theoretical models are
somewhat controversial and have not been fully validated in the whole permissible loading space. Based on two accepted
assumptions for isotropic non-dense metals, we proposed a new plastic flow theoretical model. In order to verify its rationality,
we established two mesoscopic models with different initial relative densities and different meso-structures. Then, the large
amount of numerical simulation experimental data was established, which covers enough multiaxial loadings in the permissible
principle-strain space. Our model solves some of the controversies in current models and adapts the equivalent stress,
equivalent strain, and constitutive equations seamlessly to deformation from non-dense to dense state. Numerical results from
two mesoscopic models show the relations between equivalent stress and plastic strain in our theoretical model have better
consistency under all multiaxial loadings than those in some known models. We checked the topology of subsequent yield
surfaces in the plastic principle-strain space and the results turn out the subsequent yield surfaces are not self-similar. The large
amount of numerical test data not only well validates our theoretical model but also will be beneficial to the mechanical study
of non-dense metals under multiaxial loadings.
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1. Introduction

The mechanical behavior and constitutive equations of iso-
tropic non-dense metals, such as metal foams, porous me-
tals, and lattice metals, have been extensively studied [1-5],
several constitutive equations and subsequent yield surface
equations of non-dense metals have been developed [6,7].
Different from the traditional metals, non-dense metals have
obvious volume compressibility [8-10], so the constitutive
models of dense metals cannot be directly applied to non-
dense metals. In practical engineering applications, non-
dense metals are mostly subjected to complex multiaxial
compression loads [11-13], and the deformation mechanism

under multiaxial loads is complex [14-17]. However, the
existing theoretical models of non-dense metals are some-
what controversial [6,18,19], and have not been fully vali-
dated in the permissible loading space due to the difficulty
of carrying out multiaxial experiments [8,11,12]. Therefore,
we proposed a new plastic flow theoretical model to solve
the controversies among current models, and established
two mesoscopic models with different relative densities to
verify the rationality of our theoretical model.

1.1 Plastic theory of traditional metals

The plasticity theory of traditional metals has been devel-
oped for a long time and is now quite well developed. At the
beginning, Tresca [20] found that metal materials would
exhibit some fluidity under certain stress conditions. On this
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basis, de Saint-Venant [21] proposed the famous Saint-
Venant principle with reference to fluid viscosity for plane
problems. Lévy [22] transformed plane problems into space
problems. Then, the yield theory of metal materials gradu-
ally emerged, the most classic model is the Mises yield
criterion [23], which uses the Mises stress e to represent the
yield criterion of metals, ss= 3 / 2e , and s is the devia-
toric stress tensor. Later, the Prandtl-Reuss equations
[24,25] distinguished between elastic deformation and
plastic deformation, the equations can be written as

µ= + 2 , (1a)kk
e e

Ce s= , (1b)p

where and µ are Lame’s constants, is the stress tensor,
is the unit tensor, e is the elastic strain tensor, e p is the
deviatoric plastic strain rate tensor, and C is the plastic
flexibility of metals determined experimentally, the over-dot
of a variable represents the differentiate of the variable with
respect to time, and the superscripts e or p respectively re-
present the variable is related to the elastic part or plastic
part of the strain tensor. The Drucker-Prager postulate [26]
is referred to the plastic flow rule, which is commonly used
in the constitutive models of metals and non-dense metals
[19,27], and it is divided into associated type and non-as-
sociated type according to whether the yield surface is de-
fined as the flow potential function.
Based on the previous theoretical research, the plasticity

theory of traditional metals contains two basic assumptions:
(1) Only existing plastic distortion deformation and no

plastic volumetric deformation;
(2) Decoupling of distortion deformation law and volu-

metric deformation law: plastic distortion deformation is
related to deviatoric stress only, and nothing to do with
mean stress.
For isotropic non-dense metals, it is clear that the first as-

sumption cannot be applied due to the abundance of internal
cell structures, which indicates that the plasticity properties
are both influenced by the deviatoric stress and mean stress.

1.2 Yield surfaces of isotropic non-dense metals

As one of common isotropic non-dense metals, metal foams
have the advantages of low cost, easy manufacture, and
wide application scenarios, so the plasticity properties were
widely studied, especially the initial yield surface and sub-
sequent yield surface [28,29]. The yield surfaces of metal
foams are usually observed in the mean stress and Mises
stress plane [7], and the shape is mainly divided into para-
bolic type [8,9,28] and elliptical type [7,30]. The typically
parabolic type is the GAZT model proposed by Gibson et al.
[8,28]. The most classic model of the elliptical type is the
self-similar model proposed by Deshpande and Fleck [7],

usually called the D-F model, the equations are as follows:
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where is the equivalent stress, m is the mean stress,
= / 3m kk , p is the equivalent plastic strain, e

p is the

Mises plastic strain rate, e e= 2 /3e
p p p , m

p is the volu-

metric plastic strain rate, =m
p

kk
p , and the ellipticity is

obtained from the shape of yield surfaces, Hu and Ht are the
hardening modulus obtained from uniaxial compression and
triaxial equal-proportion loading conditions. In the D-F
model, the associated flow rule is adopted and the sub-
sequent yield evolution is controlled by function T which is
related to the equivalent plastic strain p. Chen and Lu [31]
proposed the yield surface equation combined with
equivalent stress and associated plastic flow rule:

( ) T= + , ( ). (3)ij
2

1

Of course, if ( ), = 0ij1 , Eq. (3) can be degenerated
into the D-F model. Forest et al. [30] defined the following
Eq. (4), which was similar to the equivalent stress equation
in the D-F model:

F G= + , (4)e m
2 2 2

where the parameters F and G are assumed to depend on
porosity, but lack clear physical significance.
The D-F model is widely used because of the simplicity

and few parameters, while due to the lack of sufficient ex-
perimental data, Fleck thought that the ellipticity in Eq. (2)
always remains constant during the subsequent yield evo-
lution process, which has been questioned by subsequent
scholars. Some scholars had further modified the ellipticity
on the basis of the D-F model and believed [6,7,32] the
ellipticity and plastic Poisson’s ratio p have the relation

= 9(1 2 )/[2(1 + )]p p2 , but the plastic Poisson’s ratio p

is difficult to measure in practice, so different researches
gave scattered values of the ellipticity [7,17,32]. Zhu et al.
[6] pointed out there was a problem with that the ellipticity
was assumed to be constant, and proposed the ellipticity
changed with equivalent plastic strain, called the Zhu-Zheng
model:

( )b b b b= exp + ( ) + , (5)p p2
1 2 3

2
4

where b b b b, , ,1 2 3 4 are the phenomenological parameters
obtained from several multiaxial loading conditions. How-
ever, in the Zhu-Zheng model, the definitions of ellipticity
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and equivalent plastic strain p affect each other, and there
is a lack of discussion on the physical significance of the
ellipticity. Recently, Zhuang et al. [18] revised the D-F
model again through the plastic Poisson’s ratio observed by
DIC and the modified ellipticity, but only the uniaxial
compression and hydrostatic pressure conditions were con-
sidered, which was not convincing enough. Besides, some
scholars thought Lode parameters affected the shapes of
yield surfaces [33,34]. While Wu et al. [19] found that the
Lode parameters had less influence and the tension-com-
pression asymmetry was not obvious on the initial yield
surface according to the complete shape in the principle-
strain space.
To sum up, some scholars believe the ellipticity in the

constitutive models is not constant, but have not given a
clear physical significance to it, so the definitions of
equivalent stress and equivalent strain are also not reason-
able enough. Furthermore, the topology of subsequent yield
surfaces is controversial, and has not been checked in the
principle-strain space due to the lack of sufficient experi-
mental data.

1.3 Mesoscopic models for predicting the mechanical
behavior of non-dense metals

Due to the difficulty of carrying out multiaxial experiments,
more and more scholars obtained the mechanical behavior
under multiaxial loads through numerical simulation ex-
periments [35-37]. In the numerical simulation experiment,
firstly, a multicellular geometric model similar to the cel-
lular material was constructed, and the geometric model was
endowed with the same material properties with matrix
material, then multiaxial loads were applied to the geometric
model to obtain the mechanical properties. The commonly
used simulation mesoscopic models are mainly divided into
three types according to different meso-structures [38]:
regular meso-structures [39,40], three-dimensional (3D) CT-
based meso-structures [41-43] and Voronoi meso-structures
[44,45]. In regular meso-structure models, the cellular pores
are usually spherical structures [46], hexahedrons and dec-
ahedrons, etc. Among them, the spherical structure is the
simplest and satisfies strong isotropy. Currently, the popular
metal foams are isotropic non-dense metals with low re-
lative density [8], and the mesoscopic modeling methods of
metal foams include: (1) the CT-based model scans the real
metal foams through 3D CT, and establishes a model whose
mesoscopic structure is similar to the metal foams. But the
modeling process of CT-based model is too complicated and
the amount of calculation is large; (2) Voronoi mesoscopic
model uses the 3D Voronoi method to establish a geometric
model with a random cell structure and controls the relative
density through shell element parameters [47], and the cal-
culation amount is relatively small, so the Voronoi meso-

scopic model is widely used. Tang et al. [48] used the
Voronoi mesoscopic model to statistically calculate the ef-
fect of shape irregularity and size irregularity of cell struc-
tures on the mechanical properties of metal foams under
uniaxial loading condition. Zhang et al. [3,49] analyzed the
influence of different meso-structural parameters under
multiaxial loads, and preliminarily tested the validity of the
Voronoi mesoscopic model through uniaxial tension and
compression experiments. On this basis, Wu et al. [19,50]
further verified the validity through biaxial tensile experi-
ments, and gave the complete initial yield surface and failure
surfaces of metal foams in the principle-strain space.
To sum up, the spherical regular meso-structure is more

uniform and the relative density is high. The Voronoi me-
soscopic model has certain randomness and the relative
density can be low. In order to verify the rationality of our
theoretical model, we considered to establish two meso-
scopic models with different initial relative densities and
different meso-structures.

1.4 Main works in this paper

(1) Starting from the plasticity theory of conventional me-
tals, two basic plasticity assumptions of non-dense metals
were clarified. On this basis, a new plastic flow theoretical
model of isotropic non-dense metals was proposed to solve
the controversies among current theoretical models.
(2) In order to verify its rationality, we established two

mesoscopic models with different initial relative densities
and different meso-structures, namely the isotropic spherical
cell model and Voronoi mesoscopic model. Then, the large
amount of numerical simulation experimental data was es-
tablished, which covers enough multiaxial loadings in the
permissible principle-strain space.
(3) Then, the numerical results were analyzed, and found

that the relations between equivalent stress and strain in our
theoretical model have good consistency under all multi-
axial loadings than those in some known models. And our
model adapts the equivalent stress, equivalent plastic strain,
and constitutive equations seamlessly to deformation from
non-dense to dense state.
(4) Finally, we checked the topology of subsequent yield

surfaces in the plastic principle-strain space, and the results
turn out that the subsequent yield surfaces are not self-si-
milar.

2. Theoretical model

To solve the controversies among current theoretical models
we proposed a new plastic flow theoretical model for iso-
tropic non-dense metals. Based on the assumptions of iso-
tropic non-dense metals, we gave the extended Prandtl-

D. Qiao, et al. Acta Mech. Sin., Vol. 39, 423085 (2023) 423085-3



Reuss equations and constructed two constitutive equations
to close the set of constitutive equations.

2.1 Extended Prandtl-Reuss equations

The presence of plastic volumetric deformation is the main
difference between non-dense metals and dense metals. And
common non-dense metals such as metal foams are con-
sidered to satisfy macroscopic isotropy [7,9]. Combining
these two features, two basic assumptions of non-dense
metals were clarified:
Assumption 1: Both existing plastic distortion deforma-

tion and plastic volumetric deformation;
Assumption 2: Decoupling of distortion deformation law

and volumetric deformation law: plastic distortion de-
formation is only related to deviatoric stress, and plastic
volumetric deformation is only related to mean stress.
According to the above assumptions, the plastic flexibility

C (in Eq. (1b)) of initial dense metal is classified into plastic
distortion flexibility Ce and plastic volume flexibility Cm,
which characterize the relationships between deviatoric
stress and deviatoric plastic strain, mean stress and volu-
metric plastic strain respectively:

Ce s= , (6a)p
e

C= , (6b)m
p

m m

where =m
p

kk
p and = /3m kk , Ce is the plastic distortion-

flexibility rate and Cm is the plastic volume-flexibility rate.
Combining Eqs. (1) and (6), the extended Prandtl-Reuss
equations for isotropic non-dense metals were proposed as

µ
C C

e
s
e s

+ = ,   = + /3,
= /3,   = + 2 ,

= ,   = /3,
(7)

e p p p
kk
p

kk kk
e e

p
e kk

p
m kk

where is the strain tensor. In fact, the plastic flow rule has
already been considered in Eq. (7), because the orthogonally
and fluidity are guaranteed by the plastic distortion flex-
ibility and plastic volume flexibility. The extended Prandtl-
Reuss equations are the flow constitutive equations applic-
able to isotropic non-dense metals and do not depend on the
existence of stress-strain relations or yield surfaces [51], so
we constructed the theoretical model on the basis of them.
For spatial displacement-loading problems, is a known

tensor, and the tensor expressions in the extended Prandtl-
Reuss equations all contain 6 equations or unknowns, while
according to the characteristics of deviatoric stress and de-
viatoric plastic strain rate (s = 0kk and e = 0kk

p ), there are
only 5 independent equations or unknowns when s or e p is
contained in expressions. The independent equations and
unknowns in the extended Prandtl-Reuss equations were
listed in Table 1, and there are a total of 28 independent

equations and 30 unknown variables.
From Table 1, we need to construct two additional con-

stitutive equations to obtain a closed set of constitutive
equations, but the directly constructing method of con-
stitutive equations from ,  m e or C C,  m e is still difficult,
because the governing equations related to yield surfaces are
unknown. That is why researchers usually tend to define
equivalent stress and equivalent plastic strain (or equivalent
strain) [6,7], so we followed this train of thought to define
the reasonable equivalent stress and equivalent plastic strain
firstly, which are directly related to the subsequent yield
surfaces.
In addition, for force-loading problems, the known vari-

ables change from to , and the numbers of independent
equations and unknown variables keep no change. For dense
metals, 0kk

p and the equation C= /3kk
p

m kk becomes
C = 0m , so there is only one additional constitutive equation
needed to be added.

2.2 Equivalent stress and equivalent plastic strain

For isotropic non-dense metals, the relations of plastic dis-
sipation power and equivalent stress and plastic strain
usually meet P = p. After transforming form and in-
troducing the dimensionless function A (The specific pro-
cess is shown in Appendix A), the equivalent stress and
equivalent plastic strain were given as

( )
( ) ( )

A C C

A C C

( ) = 2 /3 + / ,

( ) = 1 3 /2 + / .
(8)
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The specific expressions of Eq. (8) are very close to these
of the D-F like models, so the parameters in different the-
oretical models can be compared. The ellipticity  in Eq.
(2) can be defined as Eq. (9) and has more clear physical
significance: it is the ratio of the plastic volume-flexibility
rate to the plastic distortion-flexibility rate:

( )C C =3 / 2 . (9)m e
2

In the D-F model, the ellipticity  was regarded as a

Table 1 Number of independent equations and unknowns in the extended
Prandtl-Reuss equations

Equations Number of
independent equations Unknowns Number of

unknowns

+ =e p 6 e 6

e= + /3p p p
kk 5 p 6

s = + /3kk 5 s 5

µ= + 2kk
e e 6 6

Ce s=p
e 5 Ce ,  p

e 5 + 1

C= / 3kk
p

m kk 1 Cm 1
Total 28 – 30
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constant under arbitrary loading conditions for metal foams.
But according to Eq. (9), it is a parameter related to two
deformation rates and cannot be a constant, for example, a
“pure” distortion deformation may induce ellipticity  to
zero. That is why many researchers try to modify  and
relate it to the material deformation. Similarly, the coeffi-
cients F and G in Eq. (4) can also be represented by Ce and
Cm, which means that the coefficients are given clear phy-
sical significance.
At present, the function A is the key to determining our

equivalent stress and equivalent plastic strain equations.
Based on our previous knowledge of metal foams, there are
two facts:
(1) The shape irregularity of metal foams has a non-neg-

ligible impact on the constitutive relationship [52], including
the yield surface. And the greater shape irregularity, the
lower yield stress;
(2) The relative density of metal foams significantly af-

fects the yield surface [3]. And the larger the relative den-
sity, the larger the yield stress.
The shape irregularity corresponds to the distortion de-

formation at the macroscopic level, which can be re-
presented by e

p, and the current relative density [53] can be
represented by m

p. Considering relative density and shape
irregularity have opposite effects on the stress and referring
to the ellipticity  in the D-F like models, we believe that A
should be a function of /e

p
m
p and C C/m e. In addition, in

order to make function A more versatile, it should meet three
basic requirements: (1) it can be directly used for initial
dense metals (C C/ 0m e ); (2) it can adapt to the deforma-
tion from non-dense to dense; (3) it does not diverge under
hydrostatic loads. Based on these three requirements, we
choose a simple expression—the linear combination of the
power functions of C C/m e and /e

p
m
p, as the following

equation:

( )
( )

A
a C C b

C C c
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/ + /

/ + /
. (10)
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m
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Substituting Eq. (10) into Eq. (8), the specific equations of
equivalent stress and equivalent plastic strain can be ob-
tained:
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Equation (11) contains four constant coefficients, the
coefficient a is a scale coefficient that can be obtained
by referring to the loading curve of hydrostatic pressure
condition, and c is a small number c = 0.001, existing to
prevent the denominator from being 0 under special
cases. The coefficients b and d change with the initial
relative densities of mesoscopic models, and affect the
shapes of - p relations. After the equations of
equivalent stress and equivalent plastic strain were de-
termined, we further constructed the two additional
constitutive equations to close the constitutive equa-
tions.

2.3 Additional constitutive equations

Since the equivalent stress and equivalent plastic strain have
been recommended in Eq. (11), one constitutive equation
can be set as the relation of them. As for the second con-
stitutive equation, some researchers choose to set the rela-
tion of the ellipticity and equivalent plastic strain, such as
Eq. (5). Here, according to the native feature of plastic
volumetric deformation of non-dense metals, we simply
choose the function of plastic volume-flexibility rate Cm

against the deformation variables. So, the two constitutive
equations are given following:

= ( ,  ), (12a)p p

( )C C= ,  . (12b)m m m
p

e
p

Next, the two constitutive equations were discussed se-
parately.

2.3.1 Relative equation between equivalent stress and
equivalent plastic strain
Ideally, the optimal coefficients should result in a high
concentration for the relations of equivalent stress and
equivalent plastic strain under different proportion load-
ing conditions. According to the relevant studies of metal
foams [18], the shape of the hydrostatic pressure curve is
basically close to that of uniaxial loading curve, so the
specific form of Eq. (12a) can be characterized by refer-
ring to uniaxial theoretical models. Besides, Eq. (13)
should meet the two requirements: (1) it will degenerate
to linear for dense metals; (2) when the equivalent plastic
strain rate keeps 0 ( 0p ), the equivalent stress rate is 0
( = 0). The rate related expression of Eq. (12a) is given
as

( )a a= 1 + exp , (13)p p
1 2

where a1 is related to the subsequent hardening, a2 is related
to the dense stage of materials. The specific values of a1 and
a2 in Eq. (13) can be obtained from the hydrostatic pressure
condition.
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2.3.2 Relative equation between plastic volume flexibility
and plastic strain
Similarly, the relative equation between plastic volume
flexibility and plastic strain should meet the two require-
ments: (1) it contains the plastic triaxiality, and when the
plastic triaxiality increases, the volume flexibility rate of the
model should be reduced due to the ratio of volumetric
deformation to whole deformation is gradually less; (2) it
keeps 0 (C = 0m ) for dense state ( = 0m

p ). Besides, referring
to the equation for the plastic flexibility rate of dense metals
(The equation is given in Appendix B), the plastic bulk
flexibility of non-dense metals should satisfy the logarith-
mic form. Considering the above reasons, Eq. (14) was gi-
ven as follows:

( )
C a

a a
=

1 + exp /
. (14)m

m
p

m
p

e
p

m
p a

3

4 5
6

The coefficients a3, a4, a5, a6 are constants related to
materials, which need to be determined from triaxial loading
conditions. Compared with Eq. (6b), Eq. (14) is basically
equivalent to the expression of m, which is obviously in-
dependent on the extended Prandtl-Reuss equations.
According to the above analysis, combined with Eqs. (7),

(11), (13) and (14), the new plastic flow theoretical model is
obtained, which gives a clear physical significance for the
ellipticity and solves the controversies among current
models.

2.4 Theoretical analysis under the extreme deforma-
tion process

To test the applicability of our model, we designed an ex-
treme deformation process, which is compressing the non-
dense metal to fully dense state. Obviously, the plastic vo-
lumetric strain will always be constant when loaded to
dense, so we considered that the equivalent stress, equiva-
lent strain, and constitutive equations have the following
properties: the equivalent stress and equivalent plastic strain
will degrade to be proportional to the Mises stress and Mises
strain, respectively; the constitutive relations of equivalent
stress and equivalent plastic strain do not change with dif-
ferent loading conditions, which means the equivalent stress

is only related to the equivalent plastic strain; the plastic
volume compliance constitutive equation becomes the
identity.
Because the plastic volumetric deformation no longer

increases, the volumetric plastic strain rate remains at 0, and
the mean stress is not 0, so the plastic volume-flexibility rate
Cm is 0 in any loading condition. The following equations
exist:

C= const,  = 0,  0,  = 0. (15)m
p

m
p

m m

For the convenience of the comparison with the D-F
model and the Zhu-Zheng model, combined with Eq. (15),
we listed the constitutive equations of different theoretical
models under the deformation process in Table 2.
From Table 2, only our theoretical model satisfies the

equivalent stress, equivalent plastic strain, and constitutive
equations adapt seamlessly to deformation from non-dense
to dense state.

3. Verification methods and data processing

To verify the rationality of our theoretical model, we es-
tablished two mesoscopic models and enough triaxial
loading conditions in the permissible loading space. After
the model verification and correction, the calculation pro-
cess of - p relations could be given, and the dispersion
value was proposed to facilitate the analysis and comparison
of data.

3.1 Mesoscopic models

Two mesoscopic models with different initial relative den-
sities and different meso-structures were established,
namely the isotropic spherical cell model and the Voronoi
mesoscopic model.

3.1.1 Isotropic spherical cell model
The isotropic spherical cell model is called Sph-cell model
for convenience. We took a cube with a side length of
75 mm and uniformly dug out spheres with radius R
= 5.7 mm to obtain the Sph-cell model with 60.3% relative
density, as shown in Fig. 1b. The presence of 6 cells in one

Table 2 Comparison of different constitutive equations when a non-dense metal is loaded to fully dense
Our model The D-F model The Zhu-Zheng model

ab
c= 2

3 e
2 2 ( ) = 1

1 + ( /3)
( + )e m

2
2

2 2 2 ( ) = 1
1 + ( /3)
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2

2
2 2 2

c
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1 2 ( )H H= + 1e

u
e

t
p ( )H H= + 1e
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C = 0m
= const b b b b= exp( ) + ( ) +p p2

1 2 3
2

4
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single direction is enough to ensure the stability of the
macroscopic mechanical properties of the mesoscopic
model. The unidirectional profile of Sph-cell model in Y
direction and the representative volume unit were shown in
Fig. 1a and c, respectively.

3.1.2 Voronoi mesoscopic model
Then, the Voronoi mesoscopic model was established, as
shown in Fig. 1e, which is the same with the models used in
our previous studies [19,49,50], called Voronoi model here.
The usability of Voronoi model had been verified in our
previous researches. The initial relative density of Voronoi
model is 13% and the model size is 30 mm × 30 mm ×
30 mm. The average cell radius is about 1.66 mm, so there
are about 9 cells in one direction, which can effectively
keep the stability of the macroscopic mechanical properties.
The unidirectional profile of Voronoi model in Y direction
and the representative volume unit were shown in Fig. 1d
and f.
The matrix materials of the mesoscopic models are metal

aluminum with elastoplastic constitutive relationship. The
elastic modulus is 70 GPa and the plastic hardening modulus

is 30 MPa. In practical and simulation experiments, force-
loading and displacement-loading methods are usually used
[3,6]. Due to the long stress plateau stage of cellular metals,
the force-loading method is used for initial yield studies, and
the displacement-loading method is more suitable for sub-
sequent yielding studies. Therefore, we used the triaxial
displacement-loading method to control the nominal strain
rate of mesoscopic models. During the loading process, the
six surfaces of mesoscopic model are fixed by rigid plates,
the negative directions of XYZ axis are called fixed ends and
the rigid plates at fixed ends remain stationary, the positive
directions are called loading ends and the rigid plates at
loading ends are controlled by displacement. The triaxial
displacement-loading diagrams of Sph-cell model and Vor-
onoi model were shown in Fig. 2a and b.

3.2 Loading conditions

Typically, cellular metals will fail under tension conditions
and the failure points under different loading conditions
together form the failure surface. According to Wu’s re-
searches [19,50], the distance between the failure surface

Figure 1 Sph-cell model: a unidirectional profile in Y direction; b whole model; c representative volume unit. The Voronoi model: d unidirectional profile
in Y direction; e whole model; f representative volume unit.
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and the initial yield surface of metal foams in the principle-
strain space is very close, so it is less significant to study the
subsequent yield evolution within the range of the failure
surface. Similarly, the researches on subsequent yield sur-
faces are focused on overall compression conditions [6,7],
corresponding to the “failure missing area” in Fig. 2c, and
Wu et al. [50] gave the specific range of “failure missing
area” on the basis of Voronoi model. Therefore, we verified
the rationality of our theoretical model by triaxial loading
conditions within “failure missing area”, which is the per-
missible loading space. In Fig. 2c, the area composed of
black points is the failure area, and the area composed of red
points is “failure missing area”. In the principle-strain space,
only the loading conditions in the > >1 2 3 space (The
space between the =1 2 yellow plane and the =2 3 green
plane) are considered because the models satisfy macro-
scopic isotropy, and the loading data in other spaces can be
obtained by simple symmetry. Usually, different proportion
loading conditions in the principle-strain space can be de-
scribed by two dimensions, namely nominal strain triaxiality

n and nominal strain Lode parameter n [19], the variables
with subscript n represent the variables related to nominal
strains or nominal stresses, and other variables without
specifically noted are related to true strains or true stresses.
The different latitude lines in Fig. 2c represent different n,
which is defined as = /n en mn. And different longitude
lines represent different n, which is defined as

J= 1 cos3 = 1 4 /n n en3
3 , ranging from 0 to 2, where is

the Lode angle with the range between the two planes, J n3 is

the third invariant of the deviatoric nominal strain tensor,
J e e e =n n n n3 1 2 3 . Since the “failure missing area” does not
include overall tension conditions, it is better to set the
compression directions to positive values in later char-
acterization so that the calculated nominal strain triaxiality
and nominal strain Lode parameter are also positive. In or-
der to cover the permissible loading space, six n are se-
lected, which are 0.067, 0.167, 0.22, 0.33, 0.417, 0.5, and
five n are selected, which are 0, 0.46, 1, 1.54, 2, corre-
sponding to the six red latitude lines and five black long-
itude lines in Fig. 2c, and together with the hydrostatic
pressure condition, a total of 31 fixed-proportion loading
conditions are preset for either mesoscopic model, which are
indicated by red dots in the figure. For simplicity, we used
the form of “( , )n n ” to represent the loading condition, for
example, “(0.33, 0)” represents the loading condition where
the nominal strain triaxiality is 0.33 and the nominal strain
Lode parameter is 0, and the corresponding triaxial nominal
strain ratio is : : = 4 : 1 : 1n n n1 2 3 . In addition, “(0, *)”
and “*” respectively represent the triaxial hydrostatic pres-
sure condition and n of this condition, because all nominal
strain Lode parameters coincide in the condition, which
corresponds to that “(0, *)” is the coincide point of all
longitude lines in Fig. 2c.
It is worth noting for uniaxial and biaxial loading condi-

tions, at least one of three loading directions is the free
boundary, and the stress on the free boundary is kept at 0,
while the proportion of triaxial nominal strain changes sig-
nificantly during the loading process due to the existence of

Figure 2 Schematic diagram of two mesoscopic models under the triaxial displacement-loading condition: a Sph-cell model; b Voronoi model. c Different
loading conditions and the “failure missing area” in the principle-strain space.
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Poisson’s ratio. In other words, these loading conditions do
not belong to fixed-proportion loading conditions in the
principle-strain space, so the uniaxial and biaxial loading
conditions are not considered here.

3.3 Reliability of mesoscopic model

After the loading data of different loading conditions were
obtained, the two mesoscopic models should be validated
and corrected. And the reliability verification of the meso-
scopic model mainly includes experimental verification,
isotropy verification and the correction of elastic modulus
during the loading process.

3.3.1 Experimental verification
The reliability of Voronoi model had been verified by
practical experiments in our previous researches [19], in-
cluding uniaxial compression, uniaxial tension and biaxial
tension experiments, and the verification results are good
enough before the model failure (shown in Fig. 3). In ad-
dition, due to the uniformity and simplicity of internal
structure, we considered that it does not need to carry out
practical experimental verification on the Sph-cell model.

3.3.2 Isotropy verification
Since the cellular metals satisfy isotropy is the most im-

portant assumption in our theoretical model, we verified the
isotropy of two mesoscopic models by the loading data,
including the verification of uniaxial loading curves in dif-
ferent loading directions and the verification of plastic dis-
tortion-flexibility rates in different directions. The uniaxial
loading curves in different directions of mesoscopic models
are shown in Fig. 4a and b. We found that the coincidence of
three curves of Sph-cell model is very high, while the three
curves of Voronoi model are relatively close but do not
overlap.
After that, we compared the coincidence of plastic dis-

tortion-flexibility rates during the triaxial loading process.
From Eq. (6a), for any triaxial fixed-proportion loading
condition, there are at least three plastic distortion-flexibility
rates Ce, which can be obtained from the stress and strain

data in three directions, namely C C C,  ,  ex ey ez. Therefore, the
model is considered to satisfy isotropy when the equation

C C C 1/ = 1/ =1/ex ey ez holds. As shown in Fig. 4c, for Sph-

cell model, the three C1/ e curves are close to completely
overlapping into one curve, indicating that this model sa-
tisfies isotropy well during the triaxial loading process. And
when the volumetric strain is smaller than 0.25, the C1/ e

curves are basically straight lines. Combined with the uni-
directional profiles during the loading process in Fig. 4e, it

Figure 3 Comparison of simulation results and experimental results under different conditions [19]: a uniaxial compression condition; b uniaxial tension
condition; c 1:1 biaxial tension condition; d 2:1 biaxial tension condition.
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can be found that when the volumetric strain is smaller than
0.25, the hole shapes basically remain spherical corre-
sponding to the straight-line segment in Fig. 4c, which in-
dicates that the model deformation is dominated by
shrinkage of hole structures. However, when the volumetric
strain is greater than 0.25, the hole shapes begin to change
and cannot remain spherical, which means the model de-
formation becomes dominated by the buckling and collapse
of hole structures. Then, the hole structures disappear and
the model is completely densification when the volumetric
strain is about 0.45. Compared to Sph-cell model, the C1/ e

curves of Voronoi model are not smooth and can barely be
regarded as coincidence, as shown in Fig. 4d. From Fig. 4f,
the model deformation during the loading process contains
both local cell collapse and overall structure contraction, and
the red dashed parts are the local cell collapse when the
volumetric strain is 1.
Taken together, we believed that the Sph-cell model sa-

tisfies strong isotropy, but the isotropy of Voronoi model is
slightly poor, so we considered to correct the isotropy of
Voronoi model in the relevant characterization.

3.3.3 Elastic modulus correction
For isotropic non-dense metals, the current relative density

[53] affects the constitutive relationship such as the yield
stress and elastic modulus, and varies during the loading
process. Considering the specific range of “failure missing
area” and for convenience, we considered that the effect of
the current relative density on elastic modulus can be re-
presented by volumetric strain m.
For Sph-cell model, there is a lack of relevant studies on

the variation of elastic modulus with relative density, so we
used the loading-unloading method to calculate the varia-
tion. Specifically, the model is loaded to different degrees
and unloaded until triaxial stresses are 0 to obtain the triaxial
stress differences and strain differences. Based on these
differences and assuming the Poisson’s ratio is essentially
constant, the variation of elastic modulus with loading de-
grees can be obtained. And the points with different colors
correspond to the data under different loading conditions, as
shown in Fig. 5. Obviously, the variation of elastic modulus
with volumetric strain can be divided into two sections ac-
cording to the value of elastic modulus, the elastic modulus
changes linearly with volumetric strain when the value is
less than 70 GPa, and the linear equation of the elastic
modulus of the Sph-cell model ES corresponds to the black
line in Fig. 5:

E = 88.356 + 33.119 GPa. (16)mS

Figure 4 Isotropy verification of mesoscopic models. The uniaxial stress-strain curves in different directions: a Sph-cell model, b Voronoi model; C1/  - e m
curves in different directions under (0.5, 0) condition: c Sph-cell model, d Voronoi model; different profiles in Y direction under (0.5, 0) condition: e Sph-cell
model, f Voronoi model.
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Then, the elastic modulus keeps constant when the value
is bigger than 70 GPa, this is because the E of matrix ma-
terials is 70 GPa (The red dotted line in Fig. 5).
For Voronoi model, the strain differences obtained by the

loading-unloading method will bring large errors due to the
complex internal structures, so we corrected the elastic mod-
ulus of Voronoi model by referring to related studies. Gibson
and Ashby [1] proposed the classical formula for the variation
of elastic modulus with relative density, Zhang et al. [49,52]
gave the specific variation equation for Voronoi model based
on GAZT model, so we replaced the influence of relative
density in Zhang’s study with m to obtain the correction
equation of elastic modulus of Voronoi model EV, as Eq. (17):
E = 2.278exp(1.15 ) GPa. (17)mV

Based on the data after correction, the - p relations
under different loading conditions could be calculated ac-
cording to Eqs. (7) and (11), the whole calculation process
can be determined and shown in Appendix C.

3.4 Dispersion value

Further, for constitutive relations, the optimal undetermined
parameters should minimize the dispersion degree of all
curves. Therefore, to obtain the optimal dispersion degree
and fitting coefficients, we defined the dispersion value Rsum
to assess the dispersion degree, which is the sum of nor-
malized standard deviations of the equivalent stresses for all
loading conditions with equivalent plastic strain, as Eq. (18):

R

R R

 = 31 ,

=
31

,

= ,

(18)
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m j

j

i
j

j j
m

j
m

i
i

=1

31

=1

2
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100

where i represents the number of equal separations of
equivalent plastic strain and j represents the number of
different loading condition. j is the equivalent stress for
different loading conditions at the same equivalent plastic
strain, and j

m is the average value of j, Ri represents the
dispersion value at the same equivalent plastic strain.

4. Results and discussion

According to the calculation process and the dispersion
value, the optimal - p relations under different loading
conditions can be obtained. Based on the results, we could
not only compare our results with these of some known
models, but also verify the characterization effect of the

constitutive equations in our theoretical model.

4.1 Optimal results and coefficients

The coefficients b and d affect the shape and dispersion
degree of different - p relations, which can be determined
by optimal Rsum. The optimal dispersion values and coef-
ficients of the two mesoscopic models were listed in
Table 3.
The - p relations are relatively concentrated during the

whole loading process as shown in Fig. 6a and b. And in
Fig. 6, the same colors are used for the same triaxiality
curves, and the same thicknesses are used for the same Lode
parameter curves. The results indicate that our theoretical
model is applicable from initial yield to fully densification
for isotropic cellular metals.
In addition, the relative density of initial dense metals is

100%, and the following equations hold

C= 0,  = 0,  0,  = 0. (19)m
p

m
p

m m

Substituting Eq. (19) into Eq. (11), we can get

ab
c

d
= 1,

= 0.
(20)

Combined with the coefficient values in Table 3 and Eq.
(20), the coefficients b and d can be constructed as functions
of initial relative density 0, Eq. (21) exists

b

d

= 2.13 + 3.72,

= 0.17 0.422 + 0.252.
(21)0

0
2

0

Obviously, the parameter b increases with the increase of

Figure 5 Variations of elastic modulus of Sph-cell model under different
loading conditions.

Table 3 Optimal dispersion values and coefficients of mesoscopic models

Models Rsum a b c d
Sph-cell 2.8 0.2 5 0.001 0.06
Voronoi 5.4 0.32 4 0.001 0.2
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initial relative density, and the coefficient d decreases with
the increase of initial relative density.

4.2 Compared with several published theoretical
model

4.2.1 Compared under preset loading conditions
Compared with the D-F model and the Zhu-Zheng model,
for Sph-cell model, it can be calculated that the dispersion
value obtained by the D-F model is R = 4.28sum and ob-
tained by the Zhu-Zheng model is R = 4.73sum , which are
both larger than that of our theoretical model. And from Fig.
6c and e, it can be found that when the equivalent plastic

strain is about 0.25, the curves show a clear dispersion, and
the dispersion occurs much earlier compared to Fig. 6a. For
Voronoi model, the dispersion value obtained by the D-F
model is R = 10.64sum and obtained by the Zhu-Zheng
model is R = 10.81sum , as shown in Fig. 6d and f, the dis-
persion degree in the second half in Fig. 6f increases sig-
nificantly, and the dispersion degrees in Fig. 6d and f are
greater than that in Fig. 6b. By above contrast, the relations
between equivalent stress and plastic strain in our theoretical
model have good consistency under all multiaxial loadings
than these in the D-F model and the Zhu-Zheng model.

4.2.2 Compared under the extreme deformation process
Further, we compared the - p relations of different theo-

Figure 6 - p relations of mesoscopic models, by our theoretical model: a Sph-cell model, b Voronoi model; by the D-F model: c Sph-cell model,
d Voronoi model; by the Zhu-Zheng model: e Sph-cell model, f Voronoi model.
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retical models under the extreme deformation process de-
signed in Sect. 2.4, as shown in Fig. 7. The fully dense
points in the figure indicate the moment when the meso-
scopic model is compressed to full densification. Obviously,
after the fully dense points, the curves of the D-F model and
the Zhu-Zheng model continue to increase sharply, but the
curve of our theoretical model has clearly turned. Our curve
produces some fluctuations due to contact stiffness and
calculation errors. Overall, our curves after densification are
closer to the performance of elasto-plastic dense metals
under triaxial loading conditions than other models.

4.3 Characterization effect of two constitutive equations

4.3.1 Characterization effect of the constitutive equation
characterized by equivalent stress and equivalent plastic strain
Based on the previous data, the characterization effects of
the two additional equations in our theoretical model can be
verified, which are Eqs. (13) and (14). The fitting curves of
equivalent stress and equivalent plastic strain can be ob-
tained based on Eq. (13) and shown in Fig. 8a and b for two
mesoscopic models, the red points are the loading data and
the blue points are the fitting data for all loading conditions,
the goodness of fit corresponding to Sph-cell model is
R = 0.9942 , and the goodness of fit corresponding to Vor-
onoi model is R = 0.9762 . Combining the goodness of fit
values and the two figures, it can be considered that Eq. (13)
is reasonable enough.

4.3.2 Characterization effect of the constitutive equation
characterized by plastic volume flexibility and plastic strain
For the constitutive equation characterized by plastic vo-

lume flexibility and plastic strain, due to the poor isotropy of
Voronoi model, we introduced the plastic Lode parameter
( p) into the plastic volume-flexibility rate equation (Eq.
(14)) for correction, and obtained the following equation:

C a

a a
=

1 + exp
. (22)m

m
p

m
p e

p

m
p

a
p

3

4 5

6

While there are four different variables in Eq. (22), so we
select the fitting Cm as the horizontal axis of Fig. 8c and d,
which makes the error look larger in the two figures. The
goodness of fit corresponding to Sph-cell model is
R = 0.9952 and to Voronoi model is R = 0.9782 , we thought
that the fitting results of Eq. (22) are acceptable for the two
mesoscopic models. After the above analysis, it can be
considered that the characterization effects of the con-
stitutive equations are acceptable.

5. Subsequent yield surfaces

In order to determine whether the subsequent yield surfaces
are self-similar, the topology of subsequent yield surfaces
in the plastic principle-strain space was checked and ana-
lyzed.
For the reason of that the shape of the initial yield surface

in the principle-strain space is more regular than that in the
principle-stress space [19], it is recommended to use the
equivalent plastic strain as the subsequent yield criterion, so
the specific topology of subsequent yield surfaces in the
plastic principle-strain space for the two mesoscopic models
were drawn in Fig. 9a and b. For Sph-cell model, the shape
of each subsequent yield surface appears to be fairly close to
an ellipsoid, and for Voronoi model, the shapes of sub-
sequent yield surfaces are close to ellipsoidal surfaces only
when the equivalent plastic strain is less than 1.5.
In Refs. [7,9,30], the subsequent yield surfaces of metal

foams are regarded as self-similar, but the self-similarity is
not agreed in Refs. [6,31], and it is difficult to directly judge
whether the self-similarity is satisfied from Fig. 9, so we fit
the subsequent yield surfaces by the ellipsoidal equation,
and compared the principal axis lengths of fitting ellipsoids.
From Figs. 2c and 9, it can be found that the subsequent
yield surface ellipsoids can be depicted by a standard el-
lipsoidal equation after a certain rotation of the plastic
principle-strain coordinate system ( ,  ,  p p p

1 2 3 ) to the new

coordinate system ( ,  ,  p p p
1 2 3 ), shown in Fig. 10. And

the new coordinates ,  ,  p p p
1 2 3 reflect the volumetric

plastic strain, plastic Lord parameter, and Mises plastic
strain respectively. The standard ellipsoidal equation in the
new coordinate system is shown in Eq. (23).

Figure 7 - p relations of different theoretical models under the extreme
deformation process.
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+ + = 1, (23)1
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2
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2*

2
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where ,  ,  1* 2* 3* are the principal axis lengths of fitting
ellipsoids. Then, we listed ,  ,  1* 2* 3* of different sub-
sequent yield ellipsoids in Table 4, and the goodness-of-fit
of all surfaces is greater than 0.97.
From Table 4, it can be determined that the proportions of

the principal axis lengths for different subsequent yield el-
lipsoids are changed at different loading states for both
mesoscopic models, implying that the subsequent yield
surfaces are not self-similar.

6. Conclusion

Based on two accepted assumptions for isotropic non-dense
metals, we proposed the new plastic flow theoretical model.
In order to verify its rationality, we established two meso-
scopic models with different initial relative densities and

different meso-structures. Then, the large amount of nu-
merical simulation experimental data was established, which
covers enough multiaxial loadings in the permissible prin-
ciple-strain space, and the model verification and correction
were carried out to ensure the validity of models and data.
Then, the extreme deformation process from non-dense to
dense state was designed, and the relations of equivalent
stress and plastic strain in our theoretical model were

Figure 8 Fitting effect of two additional constitutive equations. The equation of - p relation: a Sph-cell model, b Voronoi model; The equation of Cm and
plastic strain: c Sph-cell model, d Voronoi model.

Table 4 Principal axis lengths of different subsequent yield ellipsoids

Models p
1
*

2
*

3
*

Sph-cell

0.05 0.0602 0.1328 0.0281
0.15 0.3544 0.3828 0.0833
0.25 0.5728 0.5748 0.1424
0.35 0.7619 0.7634 0.1991
0.45 0.9646 0.9681 0.2508

Voronoi

0.5 0.9731 0.9731 0.2692
1.0 5.55×103 3.48×106 0.5184
1.5 7.15×103 5.18×106 0.772
2.0 1.78×103 5.41×106 1.026
2.5 1.26×105 8.69×106 1.294
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compared with those in the D-F model and the Zhu-Zheng
model. The research draws the following conclusions:
(1) Our theoretical model solves the controversies among

current models and adapts the equivalent stress, equivalent
plastic strain, and constitutive equations seamlessly to de-
formation from non-dense to dense state.
(2) Numerical results from two mesoscopic models show

that the relations between equivalent stress and plastic strain
in our theoretical model have good consistency under all
multiaxial loadings than those in some known models.
(3) We checked the topology of subsequent yield surfaces

in the plastic principle-strain space and the results turn out
that the subsequent yield surfaces are not self-similar.
(4) A large amount of numerical simulative test data is

provided, which not only well validates our theoretical
model but also will be beneficial to the mechanical study of
non-dense metals under multiaxial loadings.

Appendix A: Equation form of equivalent stress
and equivalent plastic strain

For isotropic non-dense metals such as metal foams, dif-
ferent researchers gave different expressions for equivalent
stress and equivalent strain, but these definitions of

equivalent stress and equivalent strain usually meet

P = , (A1)p

where P is the plastic dissipation power representing the
current state of materials, defined as Eq. (A2):

P = . (A2)p

Combined with the extended Prandtl-Reuss equations, ij
p

can be written as

C Ce s= + 3 = + 3 . (A3)p p m
p

e m
m

If according to the definition e e= 2 /3e
p p p ,

ss= 3 /2e , and Eq. (6a) Ce s=p
e , there is C=2 /3e

p
e e .

Therefore, substituting Eq. (A3) into Eq. (A2) leads to

P C Cs

s

= + 3

= 3
2 / + 1

3 = + . (A4)

e m
m

e
p

e m
p

e
p

e m
p

m

In order to obtain the equivalent stress and equivalent
plastic strain with clear physical significance, after replacing
the stress or the strain rate in Eq. (A4) respectively, two
forms of plastic power equations were deduced by trans-
forming form:

( )PC C C1/ = 2
3 + / , (A5)e e m m e

2 2

( ) ( )PC C C= 3
2 + / . (A6)e e

p
e m

p
m

2 2

The dimension of Eq. (A5) is the square of stress, and the

Figure 9 Subsequent yield surfaces in the plastic principle-strain space:
a Sph-cell model; b Voronoi model.

Figure 10 Two coordinate systems ( ,  ,  p p p
1 2 3 ) and ( ,  ,  p p p

1 2 3 ) in the
plastic principle-strain space.
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dimension of the second equation Eq. (A6) is the square of strain
rate. After introducing a dimensionless function A, the equivalent
stress and equivalent plastic strain can be defined as Eq. (A7):

( ) ( )

AP C A C C

C P A A C C

( ) = / = 2
3 + / ,

( ) = / = 1 3
2 + / .

(A7)
e e m m e

p
e e

p
e m

p
m

2 2 2

2 2 2

Appendix B: Equation of plastic volume flex-
ibility of dense metals

The constitutive equation characterized by plastic volume
flexibility Cm and plastic strain can be obtained by analogy
with the equation form of plastic flexibility C.
The elastoplastic constitutive model of the initial dense metal

is shown in Fig. B1, and the metal enters the plastic stage at
moment t0, 0 is the yield stress, 0 is the yield strain, so the
following equations exist during the uniaxial loading process:

( )
t t

E E t t t
= ( ),    = ( ),
= + ( ) ,    ,

(B1)0 0

M 0 M* 0 0

where EM is the elastic modulus and EM* is the hardening
modulus of dense metals. Combined with Eqs. (B1) and
(1b), the following Eqs. (B2) exists

( )
C E

C
t E E

E E t t t

= 3
2 = 3

2
/

=
3 ( ) 1 /

2 + ( ( ) ) ,    .
(B2)

e
M

M* M

M 0 M* 0
0

Appendix C: Calculation flowchart of the rela-
tions of equivalent stress and equivalent plastic
strain

Based on the loading data, - p relations under different
loading conditions could be calculated, so we took (0.33, 0)
condition as an example to draw the flowchart of the whole
calculation process. First, the triaxial stress-strain relations
can be obtained as Fig. C1a, and the E of two models can be

corrected by Eqs. (16) and (17). Then, -m m
p, -e e

p,C -m m
p,

C1/ -e e
p relations can be obtained by Eq. (7), shown in Fig.

C1b. Finally,  - p relations with different coefficients are
given by substituting the results into Eq. (11), shown in Fig.
C1c. According to the flowchart, we could obtain the  - p

relations under different loading conditions.
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各向同性非密实金属的塑性流动理论模型及验证

乔丹, 杨宝, 蒋震宇, 周立成, 刘泽佳, 刘逸平, 汤立群

摘要 目前已有较多各向同性非密实金属(如泡沫金属、多孔金属和晶格金属等)的力学特性和本构方程的相关研究, 然而各种理论

模型所呈现的后续屈服面仍存在较大争议, 并且它们尚未在许可加载空间得到充分验证. 我们基于各向同性非密实金属的两个基本假

设, 提出了一种新的塑性流动理论模型. 为了验证该理论模型的合理性, 我们构建了两个不同相对密度和不同细观结构的仿真模型, 并
在许可主应变空间中进行了大量数值模拟试验. 我们的理论模型解决了现有理论中存在的一些争议, 并且使得等效应力、等效应变和

本构方程无缝地适应从非密实到密实状态的变形过程. 数值结果表明, 相比已知模型, 我们的理论模型得到的等效应力与等效塑性应

变间的关系在多轴加载下具有更好的一致性. 此外, 我们还检查了塑性主应变空间中后续屈服面的拓扑结构, 发现不同后继屈服面之

间并不满足自相似性. 本文中大量数值测试数据既验证了我们的理论模型的有效性, 同时也为研究非密实金属的多轴力学行为提供了

重要依据.
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