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Abstract
This paper provides a short overview of how to use machine learning to build data-driven models in fluid mechanics. The
process of machine learning is broken down into five stages: (1) formulating a problem to model, (2) collecting and curating
training data to inform the model, (3) choosing an architecture with which to represent the model, (4) designing a loss function
to assess the performance of the model, and (5) selecting and implementing an optimization algorithm to train the model. At
each stage, we discuss how prior physical knowledge may be embedding into the process, with specific examples from the
field of fluid mechanics.
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1 Introduction

The field of fluid mechanics is rich with data and rife with
problems, which is to say that it is a perfect playground for
machine learning. Machine learning is the art of building
models from data using optimization and regression algo-
rithms. Many of the challenges in fluid mechanics may be
posed as optimization problems, such designing a wing to
maximize lift whileminimizing drag at cruise velocities, esti-
mating a flow field from limited measurements, controlling
turbulence for mixing enhancement in a chemical plant or
drag reduction behind a vehicle, amongmyriad others. These
optimization tasks fit well with machine learning algorithms,
which are designed to handle nonlinear andhigh-dimensional
problems. In fact, machine learning and fluid mechanics
both tend to rely on the same assumption that there are pat-
terns that can be exploited, even in high-dimensional systems
[1]. Often, the machine learning algorithm will model some
aspect of the fluid, such as the lift profile given a particular
airfoil geometry, providing a surrogate thatmaybe optimized
over. Machine learning may also be used to directly solve the
fluid optimization task, such as designing a machine learn-
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ing model to manipulate the behavior of the fluid for some
engineering objective with active control [2–4].

In either case, it is important to realize that machine learn-
ing is not an automatic or turn-key procedure for extracting
models from data. Instead, it requires expert human guidance
at every stage of the process, from deciding on the problem,
to collecting and curating data that might inform the model,
to selecting the machine learning architecture best capable
of representing or modeling the data, to designing custom
loss functions to quantify performance and guide the opti-
mization, to implementing specific optimization algorithms
to train the machine learning model to minimize the loss
function over the data. A better name for machine learning
might be “expert humans teaching machines how to learn a
model to fit some data,” although this is not as catchy. Par-
ticularly skilled (or lucky!) experts may design a learner or
a learning framework that is capable of learning a variety
of tasks, generalizing beyond the training data, and mim-
icking other aspects of intelligence. However, such artificial
intelligence is rare, even more so than human intelligence.
The majority of machine learning models are just that, mod-
els, which should fit directly into the decades old practice of
model-based design, optimization, and control [5].

With its unprecedented success onmanychallengingprob-
lems in computer vision and natural language processing,
machine learning is rapidly entering the physical sciences,
and fluid mechanics is no exception. The simultaneous
promise, and over-promise, of machine learning is causing
many researchers to have a healthy mixture of optimism and
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skepticism. In both cases, there is a strong desire to under-
stand the uses and limitations of machine learning, as well as
best practices for how to incorporate it into existing research
and development workflows. It is also important to realize
that while it is now relatively simple to train a machine learn-
ing model for a well-defined task, it is still quite difficult to
create a new model that outperforms traditional numerical
algorithms and physics-based models. Incorporating par-
tially known physics into the machine learning pipeline well
tend to improve model generalization and improve inter-
pretability and explainability, which are key elements of
modern machine learning [6,7].

2 Physics informedmachine learning for
fluidmechanics

Appliedmachine learningmaybe separated into a few canon-
ical steps, each of which provides an opportunity to embed
prior physical knowledge: (1) choosing the problem tomodel
or the question to answer; (2) choosing and curating the data
used to train the model; (3) deciding on a machine learning
architecture to best represent or model this data; (4) design-
ing loss functions to quantify performance and to guide the
learning process; and (5) implementing an optimization algo-
rithm to train the model to minimize the loss function over
the training data. See Fig. 1 for a schematic of this process
on the example of reduced-order modeling. This organiza-
tion of steps is only approximate, and there are considerable
overlaps and tight interconnections between each stage. For
example, choosing the problem to model and choosing the
data to inform this model are two closely related decisions.
Similarly, designing a custom loss function and implement-
ing an optimization algorithm to minimize this loss function
are tightly coupled. In most modern machine learning work-
flows, it is common to iteratively revisit earlier stages based
on the outcome at later stages, so that the machine learning
researcher is constantly askingnewquestions and revising the
data, the architecture, the loss functions, and the optimiza-
tion algorithm to improve performance. Here, we discuss
these canonical stages of machine learning, investigate how
to incorporate physics, and review examples in the field of
fluid mechanics. This discussion is largely meant to be a
high-level overview, and many more details can be found in
recent reviews [5,8–10].

2.1 The problem

Data science is the art of asking and answering questions
with data. The sub-field of machine learning is concerned
with leveraging historical data to build models that may be
deployed to automatically answer these questions, ideally in
real-time, given new data. It is critical to select the right sys-

Fig. 1 Schematic of the five stages of machine learning on an example
of reduced-order modeling. In this case, the goal is to learn a low dimen-
sional coordinate system z = f 1(x, θ1) fromdata in a high-dimensional
representation x, along with a dynamical system model ż = f 2(z, θ2)
for how the state z evolves in time. Finally, this latent state derivative ż
must be able to approximate the high dimensional derivative ẋ through
the decoder ẋ ≈ f 3(ż, θ3). The loss functionL (θ ,X) defines howwell
the model performs, averaged over the data X. Finally, the parameters
θ = {θ1, θ2, θ3} are found through optimization

tem to model, motivated by a problem that is both important
and tractable. Choosing a problem involves deciding on input
data that will be readily available in the future, and output
data that will represent the desired output, or prediction, of
the model. The output data should be determinable from the
inputs, and the functional relationship between these is pre-
cisely what the machine learning model will be trained to
capture.

The nature of the problem, specifically what outputs will
bemodeled givenwhat inputs, determines the large classes of
machine learning algorithms: supervised, unsupervised, and
reinforcement learning. In supervised learning, the training
data will have expert labels that should be predicted or mod-
eledwith themachine learning algorithm.These output labels
may be discrete, such as a categorical label of a “dog” or a
“cat” given an input image, in which case the task is one of
classification. If the labels are continuous, such as the aver-
age value of lift or drag given a specified airfoil geometry,
then the task is one of regression. In unsupervised learning,
there are no expert labels, and structure must be extracted
from the input data alone; thus, this is often referred to as
data mining, and constitutes a particularly challenging field
of machine learning. Again, if the structure in the data is
assumed to be discrete, then the task is clustering. After the
clusters are identified and characterized, these groupingsmay
be used as proxy labels to then classify new data. If the struc-
ture in the data is assumed to be continuously varying, then
the task is typically thought of as an embedding or dimension-
ality reduction task. Principal component analysis (PCA) or
proper orthogonal decomposition (POD) may be thought of
as unsupervised learning tasks that seek a continuous embed-
ding of reduced dimension [11]. Reinforcement learning is
a third, large branch of machine learning research, in which
an agent learns to make control decisions to interact with an
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environment for some high level objection [12]. Examples
include learning how to play games [13,14], such as chess
and go.

2.1.1 Embedding physics

Deciding on what phenomena to model with machine learn-
ing is often inherently related to the underlying physics.
Although classicalmachine learning has been largely applied
to “static” tasks, such as image classification and the place-
ment of advertisements, increasingly it is possible to apply
these techniques to model physical systems that evolve in
time according to some rules or physics. For example, we
may formulate a learning problem to find and represent a con-
served quantity, such as aHamiltonian, purely fromdata [15].
Alternatively, the machine learning task may be to model
time-series data as a differential equation, with the learn-
ing algorithm representing the dynamical system [16–20].
Similarly, the task may involve learning a coordinate trans-
formation where these dynamics become simplified in some
physical way; i.e., coordinate transformations to linearize or
diagonalize/decouple dynamics [21–28].

2.1.2 Examples in fluid mechanics

There are many physical modeling tasks in fluid mechanics
that are benefiting from machine learning [5,9]. A large field
of study focuses on formulating turbulence closure model-
ing as a machine learning problem [8,29], such as learning
models for the Reynolds stresses [30,31] or sub-gridscale
turbulence [32,33]. Designing useful input features is also
an important way that prior physical knowledge is incorpo-
rated into turbulence closure modeling [34–36]. Similarly,
machine learninghas recently been focusedon the problemof
improving computational fluid dynamics (CFD) solvers [37–
40]. Other important problems in fluidmechanics that benefit
from machine learning include super-resolution [41,42],
robust modal decompositions [1,43,44], network and cluster
modeling [45–47], control [4,48] and reinforcement learning
[49,50], and design of experiments in cyberphysical systems
[51]. Aerodynamics is a large related field with significant
data-driven advances [52]. The very nature of these prob-
lems embeds the learning process into a larger physics-based
framework, so that the models are more physically relevant
by construction.

2.2 The data

Data is the lifeblood of machine learning, and our ability to
build effective models relies on what data is available or may
be collected. As discussed earlier, choosing data to inform
a model is closely related to choosing what to model in the
first place, and therefore this stage cannot be strictly separated

from the choice of a problem above. The quality and quantity
of data directly affects the resulting machine learning model.
Many machine learning architectures, such as deep neural
networks, are essentially sophisticated interpolation engines,
and so having a diversity of training data is essential to these
models being useful on unseen data. For example, modern
deep convolutional neural networks rose to prominence with
their unprecedented classification accuracy [53] on the Ima-
geNet data base [54], which contains over 14 million labeled
images with over 20,000 categories, providing a sufficiently
large and rich set of examples for training. This pairing of a
vast labeled data set with a novel deep learning architecture
is widely regarded as the beginning of themodern era of deep
learning [55].

2.2.1 Embedding physics

The training data provides several opportunities to embed
prior physical knowledge. If a system is known to exhibit
a symmetry, such translational or rotational invariance, then
it is possible to augment and enrich the training data with
shifted or rotated examples. More generally, it is often
assumed that with an abundance of training data, these physi-
cal invariances will automatically be learned by a sufficiently
expressive architecture. However, this approach tends to
require considerable resources, both to collect and curate the
data, as well as to train increasingly large models, making it
more appropriate for industrial scale, rather than academic
scale, research. In contrast, it is also possible to use physi-
cal intuition to craft new features from the training data, for
example by applying a coordinate transformation that may
simplify the representation or training. Physical data often
comes from multiple sources with different fidelity, such as
from numerical simulations, laboratory experiments, and in-
flight tests. This is an important area of research for flight
testing and unsteady aerodynamics [52], and recently physics
informed neural networks have been used with multifidelity
data to approximate PDEs [56].

2.2.2 Examples in fluid mechanics

Fluids data is notoriously vast and high-dimensional, with
individual flow fields often requiring millions (or more!)
degrees of freedom to characterize. Moreover, these flow
fields typically evolve in time, resulting in a time series of
multiple snapshots. Although vast in the spatial and/or tem-
poral dimensions, data is often rather sparse in parameter
space, as it is expensive to numerically or experimentally
investigate multiple geometries, Reynolds numbers, etc.
Thus there are many algorithms designed for both rich and
sparse data. Other considerations involve exciting transients
and observing how the system evolves when it is away from
its natural state. In many other cases, fluids data might be
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quite limited, for example given by time-series data from a
few pressure measurements on the surface of an airfoil, or
from force recordings on an experimental turbine.

2.3 The architecture

Once a problem has been identified, and data is collected
and curated, it is necessary to choose an architecture with
which to represent the machine learning model. Typically,
a machine learning model is a function that maps inputs to
outputs

y = f(x; θ) (1)

and this function is generally represented within a specified
family of functions parameterized by values in θ . For exam-
ple, a linear regressionmodelwouldmodel outputs as a linear
function of the inputs, with θ parameterizing this linear map,
or matrix. Neural networks have emerged as a particularly
powerful and flexible class of models to represent functional
relationships between data, and they have been shown to be
able to approximate arbitrarily complex functions with suffi-
cient data and depth [57,58]. There is a tremendous variety of
potential neural network architectures [11], limited only by
the imagination of the human designer. The most common
architecture is a simple feedforward network, in which data
enters through an input layer and maps sequentially through
a number of computational layers until an output layer. Each
layer consists of nodes, where data from nodes in the pre-
vious layer are combined in a weighted sum and processed
through an activation function, which is typically nonlinear.
In this way, neural networks are fundamentally composi-
tional in nature. The parameters θ determine the network
weights for how data is passed from one layer to the next, i.e.
the weighted connectivity matrices for how nodes are con-
nected in adjacent layers. The overarching network topology
(i.e., how many layers, how large, what type of activation
functions, etc.) is specified by the architect or determined
in a meta-optimization, thus determining the family of func-
tions that may be approximated by that class of network.
Then, the network weights for the specific architecture are
optimized over the data to minimize a given loss function;
these stages are described next.

It is important to note that not all machine learning archi-
tectures are neural networks, although they are one of the
most powerful and expressivemodern architectures, powered
by increasingly big data and high performance computing.
Before the success of deep convolutional networks on the
ImageNet dataset, neural networks were not even mentioned
in the list of top ten machine learning algorithms [59]. Ran-
dom forests [60] and support vector machines [61] are two
other leading architectures for supervised learning. Bayesian
methods are also widely used, especially for dynamical sys-

tems [62]. Genetic programming has also been widely used
to learn human-interpretable, yet flexible representations of
data for modeling [16,63–65] and control [4]. In addition,
standard linear regression and generalized linear regression
are still widely used for modeling time-series data, espe-
cially in fluids. The dynamic mode decomposition (DMD)
[1,17,66] employs linear regression with a low-rank con-
straint in the optimization to find dominant spatiotemporal
coherent structures that evolve linearly in time. The sparse
identification of nonlinear dynamics (SINDy) [18] algorithm
employs generalized linear regression, with either a sparsity
promoting loss function [67] or a sparse optimization algo-
rithm [18,68], to identify a differential equation model with
as few model terms as are necessary to fit the data.

2.3.1 Embedding physics

Choosing a machine learning architecture with which to
model the training data is one of the most intriguing opportu-
nities to embed physical knowledge into the learning process.
Among the simplest choices are convolutional networks for
translationally invariant systems, and recurrent networks,
such as long-short-time memory (LSTM) networks [20]
or reservoir computing [19,69], for systems that evolve in
time. LSTMs have recently been used to predict aeroelastic
responses across a range ofMach numbers [70]. More gener-
ally, equivariant networks seek to encode various symmetries
by construction, which should improve accuracy and reduce
data requirements for physical systems [71–74]. Autoen-
coder networks enforce the physical notion that there should
be low-dimensional structure, even for high-dimensional
data, by imposing an information bottleneck, given by a con-
striction of the number of nodes in one or more layers of the
network. Such networks uncover nonlinear manifolds where
the data is compactly represented, generalizing the linear
dimensionality reduction obtained by PCA and POD. It is
also possible to embed physics more directly into the archi-
tecture, for example by incorporating Hamiltonian [75,76] or
Lagrangian [77,78] structure. There are numerous successful
examples of physics-informed neural networks (PINNs) [79–
83], which solve supervised learning problems while being
constrained to satisfy a governing physical law. Graph neural
networks have also shown the ability to learn generalizable
physics in a range of challenging domains [64,84,85]. Deep
operator networks [86] are able to learn continuous opera-
tors, such as governing partial differential equations, from
relatively limited training data.

2.3.2 Examples in fluid mechanics

There are numerous examples of custom neural network
architectures being used to enforce physical solutions for
applications in fluid mechanics. The work of Ling et al.
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[30] designed a custom neural network layer that enforced
Galilean invariance in the Reynolds stress tensors that they
were modeling. Related Reynolds stress models have been
developed using the SINDy sparse modeling approach [87–
89]. Hybrid models that combine linear system identification
and nonlinear neural networks have been used tomodel com-
plex aeroelastic systems [90]. The hidden fluid mechanics
(HFM) approach is a physics-informed neural network strat-
egy that encodes the Navier–Stokes equations while being
flexible to the boundary conditions and geometry of the
problem, enabling impressive physically quantifiable flow
field estimations from limited data [91]. Sparse sensing
has also been used to recover pressure distributions around
airfoils [92]. The Fourier neural operator is a novel oper-
ator network that performs super-resolution upscaling and
simulation modeling tasks [93]. Equivariant convolutional
networks have been designed and applied to enforce sym-
metries in high-dimensional complex systems from fluid
dynamics [73]. Physical invariances have also been incor-
porated into neural networks for subgrid-scale scalar flux
modeling [94]. Lee and Carlberg [95] recently showed how
to incorporate deep convolutional autoencoder networks into
the broader reduced-order modeling framework [96–98],
taking advantage of the superior dimensionality reduction
capabilities of deep autoencoders.

2.4 The loss function

The loss function is how we quantify how well the model is
performing, often on a variety of tasks. For example, the L2

error between the model output and the true output, averaged
over the input data, is a common term in the loss func-
tion. In addition, other terms may be added to regularize
the optimization (e.g., the L1 or L2 norm of the parameters
θ to promote parsimony and prevent overfitting). Thus, the
loss function typically balances multiple competing objec-
tives, such asmodel performance andmodel complexity. The
loss function may also incorporate terms used to promote
a specific behavior across different sub-networks in a neu-
ral network architecture. Importantly, the loss function will
provide valuable information used to approximate gradients
required to optimize the parameters.

2.4.1 Embedding physics

Most of the physics-informed architectures described above
involve custom loss functions to promote the efficient train-
ing of accurate models. It is also possible to incorporate
physical priors, such as sparsity, by adding L1 or L0 regu-
larizing loss terms on the parameters in θ . In fact, parsimony
has been a central theme in physical modeling for century,
where it is believed that balancing model complexity with
descriptive capability is essential in developing models that

generalize. The sparse identification of nonlinear dynamics
algorithm [18] learns dynamical systems models with as few
terms from a library of candidate terms as are needed to
describe the training data. There are several formulations
involving different loss terms and optimization algorithms
that promote additional physical notions, such as stability
[99] and energy conservation [100]. Stability promoting loss
functions based on notions of Lyapunov stability have also
been incorporated into autoencoders, with impressive results
on fluid systems [101].

2.4.2 Examples in fluid mechanics

Sparse nonlinear modeling has been used extensively in fluid
mechanics, adding sparsity-promoting loss terms to learn
parsimonious models that prevent overfitting and general-
ize to new scenarios. SINDy has been used to generate
reduced-order models for how dominant coherent structures
evolve in a flow for a range of configurations [100,102–105].
These models have also been extended to develop compact
closure models [87–89]. Recently, the physical notion of
boundedness of solutions, which is a fundamental concept
in reduced-order models of fluids [106], has been incorpo-
rated into the SINDy modeling framework as a novel loss
function. Other physical loss functions may be added, such
as adding the divergence of a flow field as a loss term to
promote solutions that are incompressible [107].

2.5 The optimization algorithm

Ultimately, machine learning models are trained using opti-
mization algorithms to find the parameters θ that best fit the
training data. Typically, these optimization problems are both
high-dimensional andnon-convex, leading to extremely chal-
lenging optimization landscapes with many local minima.
While there are powerful and generic techniques for convex
optimization problems [108,109], there are few generic guar-
antees for convergence or global optimality in non-convex
optimization.Modern deep neural networks have particularly
high-dimensional parameters θ and require large training
data sets, which necessitate stochastic gradient descent algo-
rithms. In a sense, the optimization algorithm is the engine
poweringmachine learning, and as such, it is often abstracted
from the decision process. However, developing advanced
optimization algorithms is the focus of intense research
efforts. It is also often necessary to explicitly consider the
optimization algorithm when designing a new architecture
or incorporating a novel loss term.

2.5.1 Embedding physics

There are several ways that the optimization algorithm may
be customized or modified to incorporate prior physical
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knowledge. One approach is to explicitly add constraints
to the optimization, for example that certain coefficients
must be non-negative, or that other coefficients must satisfy
a specified algebraic relationship with each other. Depend-
ing on the given machine learning architecture, it may be
possible to enforce energy conservation [100] or stabil-
ity constraints [99] in this way. Another approach involves
employing custom optimization algorithms required to min-
imize the physically motivated loss functions above, which
are often non-convex. In this way, the line between loss func-
tion and optimization algorithm are often blurred, as they are
typically tightly coupled. For example, promoting sparsity
with the L0 norm is non-convex, and several relaxed opti-
mization formulations have been developed to approximately
solve this problem. The sparse relaxed regularized regres-
sion (SR3) optimization framework [68] has been developed
specifically to handle challenging non-convex loss terms that
arise in physically motivated problems.

2.5.2 Examples in fluid mechanics

Loiseau [100] showed that it is possible to enforce energy
conservation for incompressible fluid flows directly by
imposing skew-symmetry constraints on the quadratic terms
of a sparse generalized linear regression (i.e. SINDy) model.
These constraints manifest as equality constraints on the
sparse coefficients θ of the SINDy model. Because the
standardSINDyoptimizationprocedure is basedon a sequen-
tially thresholded least-squares procedure, it is possible to
enforce these equality constraints at every stage of the regres-
sion, using theKarush–Kuhn–Tucker (KKT) conditions. The
SR3 optimization package [68] was developed to general-
ize and extend these constrained optimization problems to
more challenging constraints, and to more generic optimiza-
tion problems. This is only one of many examples of custom
optimization algorithms being developed to train machine
learning models with novel loss functions or architectures.

3 Parting thoughts

This brief paper has attempted to provide a high level
overview of the various stages of machine learning, how
physics can be incorporated at each stage, andhow these tech-
niques are being applied today in fluid mechanics. Machine
learning for physical systems requires careful consideration
in each of these steps, as every stage provides an opportunity
to incorporate prior knowledge about the physics. A working
definition of physics is the part of a model that generalizes,
and this is one of the central goals ofmachine learningmodels
for physical systems. It is also important to note that machine
learning is fundamentally a collaborative effort, as it is nearly
impossible to master every stage of this process.

The nature of this topic is mercurial, as new innovations
are being introduced every day that improve our capabili-
ties and challenge our previous assumptions. Much of this
work has deliberately oversimplified the process of machine
learning and the field of fluidmechanics.Machine learning is
largely concerned with fitting functions from data, and so it
is important to pick the right functions to fit. The inputs to the
function are the variables and parameters that we have access
to or control over, and the outputs are quantities of interest
that we would like to accurately and efficiently approximate
in the future. It is a fruitful exercise to revisit classically
important problems where progress was limited by our abil-
ity to represent complex functions. For example, Ling et al.
[30] had great success revisiting the classical Reynolds stress
models of Pope [110] with powerful modern techniques.
More fundamentally, machine learning is about asking and
answering questions with data. We can’t forget why we are
asking these questions in the first place: because we are curi-
ous, and there is value in knowing the answer.
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