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Abstract
Reduced order modeling (ROM) techniques are numerical methods that approximate the solution of parametric partial differ-
ential equation (PED) by properly combining the high-fidelity solutions of the problem obtained for several configurations,
i.e. for several properly chosen values of the physical/geometrical parameters characterizing the problem. By starting from a
database of high-fidelity solutions related to a certain values of the parameters, we apply the proper orthogonal decomposition
with interpolation (PODI) and then reconstruct the variables of interest for new values of the parameters, i.e. different values
from the ones included in the database. Furthermore, we present a preliminary web application through which one can run
the ROM with a very user-friendly approach, without the need of having expertise in the numerical analysis and scientific
computing field. The case study we have chosen to test the efficiency of our algorithm is represented by the aortic blood flow
pattern in presence of a left ventricular (LVAD) assist device when varying the pump flow rate.
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1 Introduction

Reduced order modeling (ROM) (see, e.g., [1]) is a well-
spread technique used both in academia and in industry. It
has been introduced as an efficient tool to approximate full
order systems by significantly reducing the computational
cost required to obtain numerical solutions in a parametric
setting. ROM consists in two main stages: an offline phase
that can be carried out on high performance computing facil-
ities, and an online one that hinges on a system of reduced
dimensionality to perform the parametric computation on
portable devices. In the offline phase, the reduced order space
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is built starting from full order complex simulations com-
puted for certain values of the physical and/or geometrical
parameters. In this work, we employ the proper orthogonal
decomposition (POD) for the detection of the reduced basis
functions that span this new reduced space. After the creation
of such a space, in the online phase a new parametric solu-
tion is obtained as a linear combination of the precomputed
reduced basis functions, by means of an interpolation carried
out by using RBF functions [2]. The resulting ROM is thus
called proper orthogonal decomposition with interpolation
(PODI) [3].

The aim of this work is the development of an efficient
non-intrusive data-driven reduced order model to be used
within hemodynamics framework. The reader can find exam-
ples of the ROM application in the hemodynamics field in
[4–8]. We highlight that the online evaluation of the data-
driven approach used here is based only on data and does
not require knowledge about the governing equations that
describe the system. It is also non-intrusive, i.e. no modi-
fication of the simulation software is carried out. For this
reason it is particularly versatile thanks to its capability to
be coupled with commercial solvers as well. It should be
noted that many efforts are making in order to integrate ROM
and technological innovation. From this viewpoint, a crucial
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step is the web server ARGOS [9], developed by mathLab
group at SISSA that will make possible the exploitation of
reduced order models to a wide category of people work-
ing in industrial and biomedical contexts. Through specific
web applications the user will be able to solve many complex
problems without the need of being an expert in numerical
analysis and scientific computing. In particular, it is expected
that the ATLAS project [10] will collect all cardiovascular
applications. In this framework, we present a preliminary
web application through which one can run the ROM by
using a very user-friendly GUI interface. The benchmark we
have chosen to test the efficiency of our algorithm is repre-
sented by the aortic blood flow pattern in presence of a left
ventricular assist device (LVAD) (see, e.g., [11–17]) when
varying the pump flow rate (see, e.g., [8,18,19]).

Thework is organized as follows. In Sect. 2 we present the
general parametric full order model governing hemodynam-
ics problems, over which we apply the proposed numerical
methodology. In Sect. 3 we present the PODI method, whilst
in Sect. 4 we show the numerical setting of the problem and
the achieved results, as well as provide a brief description of
theweb application developed. Finally, in Sect. 5 conclusions
and perspectives are provided.

2 Full order model

In this work we consider the blood as modeled by the
unsteady incompressible Navier-Stokes equations described
in an Eulerian framework. We consider a fixed domain
� ⊂ R

d with d = 2, 3 over a time interval of interest (t0,
T ) ⊂ R

+. Let π ∈ P ⊂ R
P be a parameter vector in a

P-dimensional parameter space P . We have

ρ ∂tu(x, t;π) + ρ ∇ · (u(x, t;π) ⊗ u(x, t;π)) −
2μ�u(x, t;π) + ∇ p(x, t;π) = 0, (1)

∇ · u(x, t;π) = 0, (2)

in�×[t0, T ], endowed with proper boundary conditions. In
Eqs. (1)–(2), ∂t denotes the time derivative, ρ = 1060 kg/m3

is the blood density, μ = 0.004 Pa·s is the blood dynamic
viscosity, u is the blood velocity and p is the pressure.

We impose a no slip boundary condition on the wall of
the domain. At the inflow, we prescribe a known flow-rate
and ∂ p/∂n = 0 where n is the outward normal. On the other
hand, in order to enforce realistic outflow boundary condi-
tions at eachoutlet of the domain,we consider theWindkessel
model based on the electric–hydraulic analogy [20]. By rep-
resenting the blood pressure and flow rate with voltage and
current, respectively, and by describing the effects of fric-
tion and inertia in blood flow and of vessel elasticity with
resistance R, inductance L and capacitance C, respectively,

Fig. 1 Three-element Windkessel model for the generic outlet k

the methods for analysis of electric circuits can be borrowed
and applied to the investigation of cardiovascular dynamics.
In this work, we consider a three-element Windkessel RCR
model [21]. It consists of a proximal resistance Rp,k , a com-
pliance Ck , and a distal resistance Rd,k , for each outlet k
(Fig. 1).

The downstream pressure, pk , is expressed through the
following differential algebraic equations (DAE) system:

⎧
⎨

⎩

Ck
dpp,k
dt

+ pp,k − pd,k

Rd,k
= Qk,

pk − pp,k = Rp,k Qk,

(3)

where Qk is the flow rate, and pp,k and pd,k are the proximal
and the distal pressure, respectively.

For the space discretization of problems Eqs. (1)–(2), we
adopt the Finite Volume (FV) approximation. A partitioned
approach has been used to deal with the pressure-velocity
coupling. In particular a Poisson equation for pressure has
been used. This is obtained by taking the divergence of the
momentum equation (1) and exploiting the divergence free
constraint (2),

�p = −∇ · [∇ · (u ⊗ u)] . (4)

We have used the PISO algorithm [22] employed in the finite
volume C++ library OpenFOAM® [23].

For more details, we refer the reader to Ref. [8].

3 Reduced order model

The reduced order model we propose is the so-called proper
orthogonal decomposition with interpolation. It is a tech-
nique widely used within the reduced order modeling com-
munity in the study of parametric problems. POD allows to
extract, from a set of high-dimensional snapshots, the opti-
mal basis which minimizes the error between the original
snapshots and their orthogonal projection. The data-driven
approach used in this work is based only on data and does
not require knowledge about the governing equations that
describe the system (and which generated the snapshots). It
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is also non-intrusive, i.e., no modification of the simulation
software is carried out. Still, there are works that use non-
intrusive methods that are not data-driven (see, e.g., [24]).
The original snapshots are projected onto the POD space in
order to reduce their dimensionality. Then the solution mani-
fold is approximated using an interpolation technique. In this
work, we will use a radial basis function (RBF) interpolation
[2]. Several examples of applications based on this so-called
POD with interpolation (PODI) [3] technique can be found
in literature, in a wide range of contexts (see, e.g., [25]).

We are going to briefly describe the method that consists
in two phases.
I. Offline:

Let N denote the number of degrees of freedom, e.g. asso-
ciated to the FV discretization introduced in the previous
section. Let ϕi , with i = 1, 2, . . . , Ns , be the snapshots
related to a generic variable of interest collected by solving
the high-fidelity problem, with different values of the input
parameters π i , resulting in Ns input-output pairs (π i , ϕi ).
The snapshots matrix S is assembled by arranging the snap-
shots as columns, i.e. S = [ϕ1,ϕ2, . . . ,ϕNs

]. By applying
the singular value decomposition to this matrix, we have:

S = U�V ∗ ≈ Uk�kV k
∗, (5)

where U ∈ AN×Ns is the unitary matrix containing the
left-singular vectors, � ∈ ANs×Ns is the diagonal matrix
containing the singular values λi , and V ∈ ANs×Ns , with the
symbol ∗ denoting the conjugate transpose. The left-singular
vectors, namely the columns of U = [φ1,φ2, . . . ,φNs

], are
the so-called POD modes. In order to reduce the dimension-
ality of the problem, we can keep the first k modes to span
the optimal space with dimension k to represent the snap-
shots. By considering that the singular values are returned
in decreasing order, we could truncate the number of modes
simply selecting the first k columns of U . Therefore, the
matrices Uk ∈ AN×k , �k ∈ Ak×k , V k ∈ ANs×k in Eq. (5)
are the truncated matrices with rank k.

After constructing the POD space, we can project the orig-
inal snapshots onto this space. We compute C ∈ Rk×Ns as
C = Uk

T S, where the columns of C are the so-called modal
coefficients. We express the input snapshots as a linear com-
bination of themodes using such coefficients. Then, we have:

ϕi ≈
k∑

j=1

α j (π i )φ j , ∀i ∈ [1, 2, . . . , Ns], (6)

where α j (π i ) are the elements of C. At a given mode φ j ,
the (π i , α j (π i )) pairs sample the solution manifold in the
parametric space. The interpolation of the modal coefficients
α j (π i ) in the parameter space is carried by using RBF func-
tions. It is based on the following formula:

A j (π) =
Ns∑

m=1

w j,mζ j,m
(||π − πm ||L2(RP+1)

)
, (7)

where w j,m are proper weights and ζ j,m are the RBF func-
tions which are chosen to be Gaussian functions, centered in
πm .

For the computation of the weights w j,m , the following
property has to be used:

A j (π i ) = α j (π i ). (8)

The last equation can be rewritten in form of a linear system:

Aζ
jw j = α j . (9)

Thus, one could solve the latter linear system to obtain the
weights w j related to the mode φ j which will be stored to
be then used in the online stage.
II. Online:

We are able, for any new parameter value π� to calculate
the new coefficients α j (π

�), which are given simply by:

α j (π
�) =

Ns∑

m=1

w j,mζ j,m
(||π� − πm ||L2(RP+1)

)
. (10)

Then, we compute the high-dimensional solution by project-
ing back the (approximated)modal coefficients to the original
space:

ϕ(π�) =
k∑

j=1

α j (π
�)φ j . (11)

We remark that the procedure can be repeated for sev-
eral variables of interests. Furthermore, it is not necessary
for such a variable to be an unknown of the original system
(such as velocity and pressure); indeed, wewill use the PODI
technique not only for primal quantities, but also for derived
quantities such as wall shear stress (WSS).

Regarding the technical implementation of the PODI
method, we use the Python package called EZyRB [26].

4 Numerical results and discussion

In order to test the performance of the presented computa-
tional pipeline, we investigate the aortic blood flow pattern
in presence of an LVAD when varying the pump flow rate.
This case study has been thoroughly discussed both at high-
fidelity (or full ordermodel, FOM) andROMlevel inRef. [8].
Here, after summarizing some relevant computational details
related to the clinical data, geometrical model and full order
simulations (Sect. 4.1), we are going to further extend the
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Fig. 2 View of the mesh: a overview, b a section next to the aortic inlet

Table 1 Windkessel coefficients: proximal resistance Rp,k and distal resistance Rd,k , and compliance Ck , for each outlet k [8]

Rp,k [dyne · s/cm5] Rd,k [dyne · s/cm5] Ck [cm5/dyne]

Right subclavian artery 2.56×103 4.32×104 3.26×10−5

Right common carotid artery 1.63×103 2.74×104 5.16×10−5

Left common carotid artery 2.38×103 4.00×104 3.52×10−5

Left subclavian artery 8.96×102 1.51×104 9.35×10−5

Descending aorta 1.08×102 1.83×103 7.72×10−4

ROM investigation with additional tests (Sect. 4.2) and to
provide a brief description of the preliminary web applica-
tion under development (Sect. 4.3).

4.1 Computational details

A real patient-specific aorta model was reconstructed from
computed tomography (CT) images by using the open source
medical image analysis software 3D Slicer® (http://www.
slicer.org). The model is referred to the post-surgery con-
figuration, i.e. after the implantation of the LVAD device
(the Heartmate 3TM Left Ventricular Assist System [27]),
and includes the outflow cannula of the LVAD device (with
inlet in the bottom left of Fig. 2a), the ascending aorta (with
inlet in the center of Fig. 2a, which is observed from below
in Fig. 2b), brachiocephalic artery, right subclavian artery,
right common carotid artery, left common carotid artery,
left subclavian artery and descending aorta, as shown in
Fig. 2. We consider a tetrahedral computational grid with
hmin = 5.83 × 10−4 and hmax = 3.2 × 10−3 for a total of
200k cells. Thequality of thismesh is suitable for aFVsolver:

it features very lowvalues of average non-orthogonality (30◦)
and skewness (around 1). Figure 2 shows the mesh. It should
be noted that such a computational grid has been used in Ref.
[8] where a mesh convergence analysis is carried out.

Bymaking reference toEqs. (1)–(4), the convective term is
discretized by using a first order upwind scheme.On the other
hand, for the diffusive term, a central differencing interpola-
tion scheme with non-orthogonality correction is preferred.
Regarding the pressure gradient, we use a linear interpolation
scheme. For more details about such schemes, the reader can
make reference toRefs. [23,28]. Finally, to discretize Eqs. (1)
and (3) in time, we adopt Backward Differentiation Formula
of order 1 (BDF1), see e.g. [29].

Coefficients values of the Windkessel models used for
the enforcement of the outlet boundary conditions shown in
Table 1 are based on Ref. [8].

Although the high-order simulations are obtained through
time-stepping by solving the governing equations (1)–(4), we
are interested in computing and collecting the steady states,
i.e. solutions where ∂tu vanishes.
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Table 2 Cumulative energy of the eigenvalues for pressure p, wall
shear stress WSS, and velocity components, ux , uy and uz

N p WSS ux uy uz

1 0.9999 0.9899 0.9834 0.9729 0.9785

2 0.9999 0.9957 0.9949 0.9903 0.9923

4.2 ROM results

To train the ROM, we consider the range of pump flow rate
(i.e., the flow rate at the inlet of outflow cannula) PF ∈ [3, 5]
that covers typical clinical values. Thus, we consider as
parameter π the pump flow rate PF . In particular, we choose
equispaced distributions inside the ranges PF ∈ [3, 3.8]
and PF ∈ [4.2, 5]. The sampling frequency is 0.2 for both
ranges, so that we have a database including 10 snapshots
related to the high-fidelity steady state solutions. It should be
noted that in Ref. [8] we have showed that, for this bench-
mark, the number of snapshots does not affect significantly
the accuracy of the ROM. One new value of PF in which the
ROM has not been trained but which belongs to the range of
the training space, PF = 4, is used to evaluate the perfor-
mance of the parametrized ROM. In Ref. [8] a equispaced
distribution of 11 snapshots inside the range PF ∈ [3, 5]was
used, i.e. the snapshot related PF = 4 was included in the
FOMdatabase, and ROMwas performed for PF = 3.45 and
PF = 4.35. We note that, in Ref. [8], the distance between
the parameter values for which the ROM is performed and
the nearest snapshot is 0.05. On the other hand, here such a
distance is larger, 0.2.

Table 2 shows the cumulative energy of the eigenvalues for
pressure p, wall shear stressWSS, and velocity components,
ux , uy and uz .

In order to retain the 99% of the system’s energy, 1 mode
for p, 1 for WSS, 2 for ux , uy and uz are selected. It has been
verified that considering a larger number of PODmodes does
not increase the accuracy of theROM.To provide some quan-
titative results, the relative error in the L2-norm, calculated
as

EX = 100
||XFOM − XROM ||L2(�)

||XFOM ||L2(�)

%, (12)

where XFOM is the value of a particular field in the FOM
model, and XROM the one that is calculated using the ROM,
is considered. In Table 3, the relative error for all the variables
of interest is reported.

Figure 3 displays a comparison between FOM and ROM
for p and WSS, and for the velocity related to a section of
the ascending aorta next to the anastomosis location. The
comparison indicates that the ROM is able to provide a good
reconstruction for all the variables.

Table 3 L2 norm relative errors for pressure p, wall shear stress WSS,
and velocity components, ux , uy and uz , for PF = 4 l/min

p WSS ux uy uz

0.5% 7.7% 8.5% 12.2% 11.4%

Finally,we comment on the computational costs. TheCPU
time required by a FOM simulation is 9600 s and the one of
the ROM, that is related to the computation of the modal
coefficients and reconstruction of the fields, is 40 s. This cor-
responds to a speed-up of ≈ 240, that demonstrates the fact
that it is possible to use the ROM in the place of the FOM in
order to obtain accurate simulations with a significant reduc-
tion of the computational cost.

4.3 Web application

Due to the aforementioned speedup, research activities based
on techniques (e.g., ROMs) that leads to technological
innovation for real time calculation is acquiring consider-
able relevance and popularity also in the biomedical field.
The combination of ROMs with technological development
through a web interface would allow real time data to
be accessed in hospitals and operating rooms on portable
devices. In this scenario, the web server ARGOS [9] has
been created, which has the task of proposing a platform to
favor a more widespread exploitation of real time computing
through a simple “click”. It is a very intuitive and smooth
web platform, which does not need a strong experience in
numerical analysis, fluid dynamics or scientific computing
field to be used. ARGOS offers a wide variety of applica-
tions related to several problems and in particular it contains
the section ATLAS [10] focused on the cardiovascular field.
Here, we are going to provide a brief description of the web
application under development which has the aim to support
the user (which in this case could either be a scientist involved
in the manufacturing of the pump, or a medical doctor inter-
ested in evaluation the hemodynamics in different operating
scenarios) to set the LVAD device according to the need of
the patient.

Figure 4a displays a screenshot of the application under
development [30]. On the left side, the user can set up the
pump configuration. We have two control panels related to
two different settings denoted as Panel 1 (Figure 4b) and
Panel 2 (Figure 4c). In Panel 1, required input data are the
pressure head�P and pump speed ω, and the corresponding
output is the pump flow rate PF . The target user for this
panel is a scientist involved in the design of the pump (i.e.,
for instance, by changing the pressure head �P). In Panel 2,
the user provides a measured pump speed ω and the corre-
sponding measured pump flow rate PF , and the application
returns the corresponding pressure head �P . Then, for this
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Fig. 3 Comparison of the FOM/ROM pressure (1st row), WSS (2nd row) and velocity steady-state solutions related to a section of the ascending
aorta next to the anastomosis location (3nd row) at PF = 4
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Fig. 4 LVAD web application: a overview, b close-up of Panel 1, c close-up of Panel 2
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Table 4 Constants of the analytical fitting for the pump dynamics
(see Eq. (13)). KA (mmHg·rpm−2), KB (mmHg ·l·min−1·rpm−1), KC
(mmHg· l2·rpm−2)

KA KB KC

3.45×10−6 −5.9 × 10−5 −1.45

Fig. 5 Pressure head (�P) - volume flow rate (PF) curves (continuous
line with circles) and analytical fitting (dashed line) based on Eq. 13
for Heartmate 3TM [27] pump at several pump speed values: ω = 3000
rpm (black), ω = 4000 rpm (red), ω = 5000 rpm (blue), ω = 6000
rpm (green), ω = 7000 rpm (cyan), and ω = 8000 rpm (magenta)

value of �P , it is possible to vary the value of ω to obtain
a different value of PF . The target user for this panel is a
medical doctor, who reads measured values of pump speed
ω and flow rate PF during an LVAD ramp test, and is then
interested in predicting possible hemodynamics outcomes
when changing the pump configuration set during the ramp
test. The relationship between ω, �P and PF used in the
application is given by the following analytical relationship

�P = KA · ω2 + KB · ω · PF + KC · PF2, (13)

where KA, KB and KC are constants which depend on pump
design (Table 4), that provides an acceptable fit as showed
in Fig. 5. The �P − PF analytical curve also is displayed
in the application, below the control panels, and updates in
real time when the pump speed ω is changed by the user.
Currently, the application can be used only for PF ∈ [3, 5]
because the FOM snapshots are collected for such a range
of values. Then, if the values of ω and �P selected are such
that the corresponding PF is outside the range [3,5], an error
messagewill appear. On the right part of the screen, we report
a brief description of the web application, including relevant
references, logos and acknowledgements, and we visualize
in real time the solutions provided by the ROM related to the
PF value corresponding to the pump setting for the variables
of interest: pressure, velocity and wall shear stress.

5 Conclusion and perspectives

In this work, an efficient non-intrusive data-driven reduced
ordermodelling to be usedwithin hemodynamics framework
is presented. The FOM is represented by the incompressible
Navier-Stokes equations discretized byusing aFV technique.
Furthermore, the development of the ROM is carried out
by using the proper orthogonal decomposition with inter-
polation (PODI). The online phase of the ROM results in a
data-driven approach which is based only on data and does
not require knowledge about the governing equations that
describe the system. It is also non-intrusive, i.e. no modifica-
tion of the simulation software is required. For this reason it
is particularly versatile thanks to its capability to be coupled
also with commercial solvers. Moreover, we have presented
a preliminary web application through which one can run
the ROM by using a very user-friendly interface, without
the need of having a specific numerical expertise, and thus
possibly widening the use of numerical tools to practition-
ers. The benchmark we have chosen to test the efficiency of
our algorithm is represented by the aortic blood flow pattern
in presence of a left ventricular assist device (LVAD) when
varying the pump flow rate. We show that the ROM pro-
vides accurate solutions with a significant reduction of the
computational cost, up to at least two orders of magnitudes.

As a follow-up of the present work, we are going to make
further efforts in order to improve the ease of use of the
web application. We are also moving towards geometrical
parametrization in the context of patient-specific geometries,
extending e.g. the work carried out in Ref. [5] to different
problems and different model reduction techniques. Finally,
we are interested in improving the full order model, by con-
sidering turbulence effects (see, e.g., [31,32]), as well as
coupling the fluid model with an elasticity model to sim-
ulate fluid-structure interaction (FSI) (see, e.g., [18,33–35]).
This would make the presented pipeline more complete and
versatile.
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