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Abstract
The response of cells during spreading and motility is dictated by several multi-physics events, which are triggered by
extracellular cues and occur at different time-scales. For this sake, it is not completely appropriate to provide a cell with
classical notions of the mechanics of materials, as for “rheology” or “mechanical response”. Rather, a cell is an alive system
with constituents that show a reproducible response, as for the contractility for single stress fibers or for the mechanical
response of a biopolymer actin network, but that reorganize in response to external cues in a non-exactly-predictable and
reproducible way. Aware of such complexity, in this note we aim at formulating a multi-physics framework for modeling cells
spreading and motility, accounting for the relocation of proteins on advecting lipid membranes.

Keywords Mechanobiology · Receptor dynamics · Cell motility

1 Introduction

Receptors dynamic along cell membrane is a key factor in
several biological phenomena, as for angiogenesis, tumor
metastasis, endocytosis and exocytosis. Angiogenesis is a
multistep process in which endothelial cells are affected by
several extracellular stimuli, including growth factors, extra-
cellular matrix, and parenchymal and stromal cells. In this
process, growth factor receptors aswell as adhesion receptors
convey the extracellular signaling in a coordinate intracellu-
lar pathway promoting cell proliferation, migration, and their
reorganization in active vessels [1]. Integrins are a family of
cell adhesion receptors that support and modulate several
cellular functions required for tumor metastasis. They can
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directly contribute to the control and progress of metastatic
dissemination. During tumor development, changes in this
family of receptors impact upon the ability of tumor cells to
interact with their environment and enable metastatic cells
to convert to a migratory and invasive phenotype. Integrins
regulate each step of the metastasis and affect tumor cell sur-
vival and interaction with changing environments in transit
from the primary tumor to distant target organs [2]. Receptor-
mediated endocytosis is a process by which cells absorb
metabolites, hormones, proteins and, in some cases, viruses
by the inward budding of the plasma membrane (invagina-
tion). This process forms vesicles containing the absorbed
substances and is strictly mediated by receptors on the sur-
face of the cell [3].

Whereas uncountable papers have been published on the
biology of cells spreading, motility and the relocation of pro-
teins on advecting lipid membranes, the mathematical mod-
eling definitely lags behind experiments and overall received
much less attention. Although nowadays a widespread litera-
ture in mechanobiology exists [4], the relocation of proteins
and their interaction with the reorganizing cytoskeleton in
the biological phenomena mentioned above is still an ongo-
ing research topic, let alone the formulation of efficient
algorithms and computational solvers for three-dimensional
simulations [5].

In this note, we attempt at defining amulti-physics scheme
for the modeling of cells spreading, motility and the relo-
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cation of proteins on advecting lipid membranes, framing
the mathematical setting within the mechanics and thermo-
dynamics of continua [6], stemming from seminal works
[7–9] and accounting for recent literature, either connected
to the endocytosis of virus in human and animal cells [10–12]
or ligand-receptor mediated raft formation [13], chemotaxis
[14], surface-associated caveolae mechanotransduction [15].
The general framework illustrated in this note applies to
growth and remodeling, too, falling within the category of
theory of finite growth according to the terminology defined
in [16].

The paper is designed as follows. After a nomenclature
of the main symbols and the definition of operators in a
Lagrangian setting, the paper focuses in Sect. 3 upon the
relocation and reaction of receptors on a lipid membrane
that advects. The topic is purposely presented in a broad
sense, in order to be applicable to several possible receptors-
ligands interactions: specific applications—carried out in
[17,18] and shortly illustrated here in Sect. 7—deals with
the relocation of vascular endothelial growth factor receptors
and integrins during endothelial cell adhesion and spread-
ing. In spite of the generality, Sect. 3 is self-contained and
includes the description of Reynold’s theorem on a surface
that advects, of the equations that rule proteins transport
on an advecting lipid membrane, and eventually of the
receptors-ligand interactions, in form of chemical reactions,
that take place concurrently with relocation. A rather sim-
ilar approach has been taken in Sect. 4, which concerns
the relocation and reaction of actin to form biopolymers
within the cytosol. The mechanical evolution of the cell is
discussed afterwards in Sect. 5: besides stating the clas-
sical balance laws (of linear and angular momentum), the
Sect is accompanied by an extensive discussion on bound-
ary conditions, aimed at showing that Neumann type of
conditions, due to electrostatic interactions, are most likely
not responsible for cell spreading and motion in view of
the modest amount of energy involved in those interac-
tions compared to the bulk energy of a cell. We concluded
therefore that spreading is a result of extensional and con-
tractile forces exerted by pseudopodia and the cytoskeleton
machinery [19]. Those forces have been investigated further
in Sect. 6, where the thermodynamics of receptors motion
on the membrane was studied at first up to the constitu-
tive theory and the receptors-ligand interactions kinetics.
The analysis of the thermo-chemo-mechanics of cells is
the last Sect of this work: in it, we highlight the role of
strain and stress decompositions in order to model cell adhe-
sion, protrusion, and contractility. A bibliographic review is
presented in a rather extensive paragraph, showing various
approaches pursued in the literature to cover the multiscale
scenario of cell viscoelasticity and identifyingmissing pieces
within the theoretical framework that we set in the present
note.

2 Definitions

Denote with Ω(t) a volume that advects, and with ∂Ω(t)
its surface. A point x ∈ Ω(t) is defined as the image of a
point X in a reference configuration ΩR through a smooth
functionχ(X, t) termedmotion. Following [6], wewill name
deformation the snapshot of a motion at a fixed time t :

χt (X) = χ(X, t).

The deformation is assumed to be a one-to-one map. In addi-
tion, denoting the deformation gradient with

F = Grad [χt ],

the requirement J = det [F ] > 0 holds. Define on the sur-
face a part P(t) ⊂ ∂Ω(t) as in Fig. 1, and consider a scalar
function f (x, t) with x ∈ P(t). Denote with

vadv(x, t) = dx/dt

the velocity of advection at location x and time t ; such a
velocity has an arbitrary direction, i.e. it is not necessarily
tangent to ∂Ω(t).

The Frenet-Serret reference frame at a generic point y ∈
∂P(t) is defined as in Fig. 1, in terms of the two unit vectors
t‖(y, t) (tangent) and t⊥(y, t) (normal). The vector n(y, t)
(binormal) is here taken of non-unit length, being the imagine
inΩ(t) of a unit vector nR in the reference configurationΩR ,
by means of the contravariant transformation

n = F−T nR .

On the other hand, the following covariant transformations
hold:

t‖R = F−1 t‖, t⊥R = F−1 t⊥,

with the obvious implication that t‖R and t⊥R are not unit
vectors. The Frenet formulae holds, namely:

κ t⊥ = −∂t‖/∂s,

τ t⊥ = ∂
n
|n|/∂s,

κ t‖ − τ
n
|n| = ∂t⊥/∂s,

where κ denotes the curvature and τ the torsion.
The projected gradient operator of a scalar field f on a

surface P is defined as follows

∇P [ f ] = ∇ [ f ] − n · ∇ [ f ]

|n|2 n, (1a)
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Fig. 1 Notation. (a) The reference body ΩR and the deformed body Ω(t). Note that x ∈ P(t) impliesX ∈ PR . (b) Frenet frame at point y ∈ ∂P(t)
and the normal vector n at point x ∈ P(t)

in the current configuration, whereas in the reference config-
uration it reads

GradP [ f ] = Grad [ f ] − nR · Grad [ f ] nR, (1b)

The projected divergence operator of a vector field v, which
has an arbitrary direction, on a surfaceP is defined as follows

divP [ v ] = div [ v ] − n · ln
|n|2 , (2a)

DivPR [vR] = Div [ vR ] − nR · Grad [vR]nR, (2b)

in the current and reference configurations, respectively. Ten-
sor l is the gradient of v, l = ∇ [v]. Note that l in Eq. (2a) can
be replaced by its symmetric part d = sym [ l ], since for any
skew-symmetric tensor w it holds n · wn = 0. Alternative
forms for the projected divergence operators are

divP [ v ] = curl

[
n
|n| × v

]
· n
|n| , (3a)

DivPR [vR] = Curl

[
nR

|nR | × vR

]
· nR

|nR | . (3b)

Provided sufficient smoothness, the divergence theorem
holds also for advecting membranes, in the form:

∫
P(t)

divP
[
g

]
da =

∫
∂P(t)

g · t⊥ d�. (4)

The proof of this theorem, as well as for all other theorems
not explicitly stated in this paper, can be found in [20].

3 Relocation and reaction of receptors on a
lipid membrane that advects

3.1 Reynold’s theorem on a surface that advects

Reynold’s theorem on P(t) reads as follows [20]:

d

dt

∫
P(t)

f da =
∫
P(t)

∂ f

∂t
+ divP [ f vadv ] da, (5)

where vadv(x, t) is the velocity of advection at location x and
time t . By taking f = 1, Eq. (5) depicts the area evolution
of P(t)as

d

dt

∫
P(t)

da =
∫
P(t)

divP [ vadv ] da.

It is intuitive that advection with velocity in the tangent plane
has the potential of modifying the surface area, however even
vadv(x, t) ∝ n(x, t) can do so, as for the homothetic expan-
sion of a rubber balloon. Reynold’s theorem (5) can be also
restated as

d

dt

∫
P(t)

f (x, t) da =
∫
P(t)

d f (x, t)
dt

+ f (x, t) divP [ vadv ] da (6)

and is a restriction on surfaces of the classical Reynold’s
transport relation on volumes ( see [6], Sect. 16 among oth-
ers).
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3.2 Mass transport on a surface that advects

3.2.1 Mass balance in the current configuration for a
convecting species

Consider a generic speciesa at a point x on the surface ∂Ω(t).
Species a convects with velocity va(x, t). The latter entails
the dragging, or advection, velocity vadv(x, t) and another
velocity that is due to many possible physics, as for diffusion
or migration. If internalization of species from the membrane
is not allowed, the net velocity va − vadv lays in the tangent
plane of the membrane and

(va − vadv) · n = 0. (7)

Since species are modeled on a membrane, which is a two-
dimensional manifold, the surface density ρa of species a
measures themass of the species per unit surface. The density
flux vector of species a, denoted with h̄a , is the product of
the surface density times the net velocity of species a, i.e.

h̄a = ρa (va − vadv). (8)

Define on the surface a part P(t) ⊂ ∂Ω(t) as in Fig. 1. The
flux of species a across the boundary ∂P(t) is

∫
∂P(t)

h̄a · t⊥ d�

and the mass balance of species a in the advecting configu-
ration P(t) reads

d

dt

∫
P(t)

ρa(x, t) da +
∫

∂P(t)
h̄a · t⊥ d�

=
∫
P(t)

sa(x, t) da, (9)

where sa(x, t) is the surface mass supply1 of species a. By
means of the divergence theorem (4) and of Reynold’s trans-
port theorem in the form (6), balance law (9) becomes

∫
P(t)

[
dρa
dt

+ ρa divP [ vadv ] + divP [ h̄a ]
]
da

=
∫
P(t)

sa(x, t) da. (10)

Since it holds for all P(t), it eventually localizes as

dρa
dt

+ ρa divP [ vadv ] + divP [ h̄a ] = sa(x, t). (11)

1 As an example, in biology cells may produce proteins that move to
the lipid membranes from the cytosol.

This formulation of the mass conservation law has been con-
sidered also in [21]. The mass balance can be finally written
in terms of surfacemolarity ca (inmoles ormolecules per unit
surface), by division by the molar or molecular mass (ma) of
species a. By denoting with ca = ρa/ma , sa = sa/ma , and
ha = h̄a/ma the local balance (11) becomes

dca
dt

+ ca divP [ vadv ] + divP [ha ] = sa(x, t). (12)

3.2.2 Mass balance in the reference configuration for a
convecting species

The mass balance (12) can be rephrased in the reference
configuration at point X and time t . To this aim, define the
reference molarity of species a as

caR (X, t) = ca( x(X, t ), t ) j(X, t), (13)

the reference flux vector haR (X, t) and the reference mass
supply saR (X, t) as

haR = j F−1 ha( x(X, t ), t ),

saR = j sa( x(X, t ), t ), (14)

respectively, where [6,22]:

j = J |F−TnR | = J
√
nR · C−1nR . (15)

The referential form of the mass balance (12) can be derived
from the mass balance in the form (9), and reads

∂caR
∂t

+ DivPR

[
haR

] = saR . (16)

For the sake of brevity, the proof has been here omitted,
interested readers may find it in [20].

3.3 Relocation and reaction

The association and formation of a protein complex follow
a two-steps mechanism; the formation of an encounter com-
plex, in which previously free proteins show few specific
interactions and assumemany orientations, and the evolution
of the encounter complex in the final complex. The binding-
unbinding interaction

R + L
k f

�
kb

C (17)

accounts for both mechanisms [23]. Coefficients k f and kb
are the kinetic constants of the forward and backward reac-
tions, respectively. The rate of reaction (17), denoted with
w(17) and measured in [mol

m2s
], quantifies the net formation of
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Fig. 2 Receptors-ligands interaction on the membrane, modeled via
Eq. (17)

(C) on the advecting membrane as the difference between
the forward and backward reactions. Equation (16) shall be
extended to account for the reaction (17) and tailored to
species a = R, L,C .

Receptors (either free or bound into the complex) are dis-
tributed along themembrane togetherwith other lipid species
and proteins. They are assumed to freely move laterally,
effects due to steric hindrance are not accounted for. The
amount of proteins per unit area that can be placed at a mem-
brane locationx is thus limited by the actual size of the protein
itself. This evidence ushers the definition of a saturation limit
for the species, cmax

a (x, t).
During their life, cells and theirmembranes undergomajor

macroscopic mechanical deformations. Studies on the red
blood cell [24] suggest that the membrane deformation occur
at constant area, but this evidence does not appear to be sup-
ported by experiments in endothelial cells during spreading
[19]. Individual protein andphospholipid can easilymove lat-
erally within themembrane, which results in a very low shear
stiffness. The fluid mosaic model [25] captures this evidence,
adding a questionable high resistance to areal expansion.
Indeed the mechanisms that are in charge of areal expansion
during cell spreading are complex and involve the micro-
structural topology2 of the membrane (as for flattening of
invaginatedmembrane domains [26], i.e. the role of the cave-
olae as membrane surface repository readily made available
for fast geometrical evolution as during filopodia extension).
The structure of the lipid membranes, however, induce to
suppose that the saturation concentration cmax

a (x, t), i.e. the
maximumnumber ofmoles ormolecules per unit area for any
species a, remains unchanged in time in the current config-

2 Multiscale investigations, however, fall out of the scope of the present
work.

uration. This choice in turn entails that the number of moles
or molecules per unit area in the reference configuration is
not constant and evolves in time following Eq. (13), i.e.

cmax
aR (X, t) = cmax

a (x(X, t), t) j(X, t). (18)

Accordingly, the value of the non-dimensional ratio between
the concentration of species a and its amount cmax

a at satura-
tion,

ϑa = ca/c
max
a (19)

in the current configuration remains unchanged in the refer-
ence configuration

ϑaR (X, t) = ϑa(x, t) . (20)

The kinetics of reaction (17) is modeled as for ideal sys-
tems via the law of mass action [27]

w(17) = k f
ϑL

(1 − ϑL)

ϑR

(1 − ϑR)
− kb

ϑC

(1 − ϑC )
. (21)

At chemical equilibrium, as w(17) = 0, the concentrations
obey the relation

k f

kb
= ϑ

eq
C

(1 − ϑ
eq
C )

(1 − ϑ
eq
R )

ϑ
eq
R

(1 − ϑ
eq
L )

ϑ
eq
L

= K (17)
eq (22)

which defines the constant of equilibrium K (17)
eq of reaction

(17).
Far from the saturation limit, (1 − ϑa) ∼ 1 for all a.

Accordingly, the mass action law (21) simplifies as

w(17) = k̃ f cL cR − k̃b cC (23)

once the new constants

k̃ f = k f (c
max
L cmax

R )−1, k̃b = kb(c
max
C )−1

are defined.
The diffusion of receptors and the viscous evolution of the

cell during adhesion and migration appear to be much slower
than the interaction kinetics, i.e. the time required to reach
chemical equilibrium is orders of magnitude smaller than
the time-scale of other processes. For this reason, thermody-
namic equilibrium may be invoked in place of a transient
evolution, thus inferring the constraint w(17) = 0 to the
concentrations of species at all times. Far from saturation,
equating (23) to zero implies that

cC = cR cL
α

, (24)
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having denoted with α the following constant:

α = k̃b

k̃ f
= cmax

R cmax
L

cmax
C

1

K (17)
eq

. (25)

In view of identity (24), the two concentrations cR and cL
describe the problem in full, and the concentration of the
complex can be deduced a posteriori.

In vivo experiments show that the complexmolecules usu-
ally have a much smaller mobility than receptors, perhaps
induced by their size. For in vitro experiments [17,18,28],
ligands are prevented to flow onto the substrate: given that
complexmolecules result from the interactionwith immobile
ligands, they aremacroscopically steady aswell. Since recep-
tors move along the membrane, reaction (17) traps mobile
receptors and vice-versa [29]. In this work, analogously to
[30], ligands and complex are assumed to be motionless, i.e.

hL = hC = 0. (26)

The reaction rate w(17)(x, t), being a mass supply, shall
transform as sa(x, t) according to Eq. (14). The invariance of
ϑa with the configuration and the analysis of the mass action
law (21) imply that the forward and backward “constants”,
which encompass the dimensionality of w(17)(x, t), are not
actually constants in the reference configuration. They rather
change with time and with point X according to

k fR (X, t) = j(X, t) k f , kbR (X, t) = j(X, t) kb, (27)

with j(X, t) as in (15). The equilibrium constant in the ref-
erence configuration, being the ratio of k fR and kbR remains
independent upon the configuration. Eventually, the mass
action law (21) in the reference configuration writes

w
(17)
R = k fR

ϑL

(1 − ϑL)

ϑR

(1 − ϑR)
− kbR

ϑC

(1 − ϑC )
. (28)

In view of all considerations made so far, the local form
(16) of the mass balance specify as follows (omitting the
dependency upon X and t ):

∂cRR

∂t
+ DivPR

[
hRR

] + w
(17)
R = sRR , (29a)

∂cLR

∂t
+ w

(17)
R = 0, (29b)

∂cCR

∂t
− w

(17)
R = 0. (29c)

Equation (29a) is defined on the membrane surface ∂ΩR ,
where the receptors flow. The supply sRR accounts for inter-
nalization or generation of proteins: it is the amount of
receptors that are generated within the cell and reach the

membrane or that internalize. It can be related to the change
in the membrane area through a parameter κRR as

sRR (X, t) = κRR

∂ j

∂t

= κRR

[
|F−T nR | J tr [ l ]

− J

2

1

|F−T nR | nR · C−1 ∂C
∂t

C−1 nR

]
. (30)

At all points atwhich ligands and receptors donot interact, the
reaction rate w

(17)
R vanishes. Equation (29b) is rather defined

in the location where ligands stand. In vitro, a given amount
of ligands (which can be thought of as the initial condition of
Eq. (29b)) are spread upon a microscope slide. Finally, Eq.
(29c) is defined in the contact zone between the cell and the
slide where reaction (17) takes place.

It is convenient to rephrase Eq. (29b) in terms of the “lig-
ands made available for the reaction” in place of the “ligands
spread on the slide”. The former ligands are the ones “felt”
at a point on the membrane as the distance from such a point
and the substrate, where ligands are spread out, becomes suf-
ficiently small.

Such a distance can be understood as a cutoff, within
which the formation of an encounter complex, C∗, becomes
possible as a consequence of diffusion, as made clear in
[23,31–33]. Despite the size of the cutoff distance remains
inaccurately estimated, itwas established to be on the order of
tens nanometers [7,23]. It arises form the interplay of attrac-
tive and repulsive forces between either two cells or a cell
and a substrate. Indeed, negative electrical charge carried by
cells generates repulsive electrostatic forces—repulsive bar-
rier - which is further enriched by an additional resistance
provided by the compression of the glycocalyx proteins.
Rather, electrodynamic van der Waals forces are expected
to be attractive [23]. Both van der Waals and compressive
forces are characterized as non-specific long ranged forces,
whereas cell adhesion is generally mediated by the specific
short ranged receptor-ligand interactions, which can cause
cell adhesion much more tightly than the non-specific elec-
trical forces [23,30]. Cells separated by a distance less than,
or equal to, the cutoff distance should forma zone of adhesion
with the substrate by means of local fluctuations in receptors
density, so that small regions of increased density can pene-
trate through the resisting potential to react with the source
of ligands on substrate [7].

This point of view, which corresponds to the picture of
tight receptor-ligand bond as a set ofweak non covalent phys-
ical interactions [34], is made explicit by a supply function
sLR , that vanishes at long ranges and rapidly reaches the ini-
tial concentration of ligands available for the reaction at short
distances
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∂cLR

∂t
+ w

(17)
R = sLR . (31)

The ligand supply sLR (X, t) becomes available for the reac-
tion during the spreading of the cell. It seems to be logically
related to: i) a gap function between the substrate rich in
ligands and the cell membrane in the current configuration;
ii) a lag in time, namely a point-wise function of an inter-
nal variable that activates when the gap function is below
some threshold and is related to the chemical kinetics of
the binding-unbinding reaction (17). In this form, all three
equations (29a), (29c), (31) can be written on the membrane
X ∈ ∂ΩR .

Assuming that the time scale of the chemical reaction
is much faster than other processes, the concentrations of
species may be governed by thermodynamic equilibrium at
all times. The concentration of complex cCR relates then to
the others by the equation w(17) = 0, which leads to Eq. (24)
in the current configuration. Making use of mapping (13),
Eq. (24) relates the concentration of complex in the refer-
ence configuration cCR to the concentration of ligands and
receptors in the same configuration cLR , cRR as follows

cCR = cRR cLR

αR(X, t)
, αR(X, t) = α j(X, t), (32a)

with constant α defined in Eq. (25). Transformation (32a) is
consistent with the assumption (18) made on how saturations
transform.

In conclusion, exploiting identity (32a), the two con-
centrations cRR and cLR fully describe the problem in the
assumption of infinitely fast kinetics, whereas the concen-
tration of the complex can be deduced a posteriori. The two
governing equations descend from Eqs.(29) and read:

∂cRR

∂t
+ ∂cCR

∂t
+ DivPR

[
hRR

] = sRR , X ∈ ∂ΩR,

(32b)

∂cLR

∂t
+ ∂cCR

∂t
= sLR , X ∈ ∂ΩR . (32c)

Equations (32), with associated initial conditions

cRR (X, 0) = c0RR
(X),

cLR (X, 0) = 0,

cCR (X, 0) = 0

and Dirichlet-Neumann boundary conditions define the relo-
cation of receptors that undergo binding-unbinding reactions
on the reference configuration of a membrane that advects.
These are balance equations and as such hold for any con-
stitutive behavior for the mass flux. These equations are
coupled to the mechanical evolution of the cell (i.e. adhe-
sion, spreading, migration) through the function sLR (X, t),

which “transfers” ligands on the membrane according to the
geometry of the cell.

4 Relocation and reaction of actin to form
biopolymers

The extensive mathematical description made in Sect. 3 will
guide the modeling of the relocation and reaction of actin to
form biopolymers in the cytosol, which will be summarized
here in a shorter shape.

Biopolymers are composedof actin, a protein termedglob-
ular or G-actin in its monomeric form and F-actin when it
forms filamentous polymers—see Fig. 3(a). In turn, actin fil-
aments can bundle to form stress fibers, or cross-link to form
polymer networks that allow the movement of the cell—see
Fig. 3(b). Polymerization is usually triggered by extracellu-
lar signals. In the case of cell locomotion, for instance, the
cell extends finger-like protrusions by which the cell “feels”
the surrounding surface. As done in [35], the precise details
of the signaling pathways are here ignored. Rather, the level
of signaling is assumed given in the reference configuration
by a function

C(X, t) = γi exp
[−|x(X, t) − yi |

]
exp

[
− t − τi

θ

]
(33)

that accounts for the location of discrete signaling points yi
in the surroundings emitting signals of intensity γi at time
τi ; θ is the decay constant of the signal. This approach in
modeling the external stimulus is similar to the membrane
activator in Ref. [36].

The transduction of the signal results in the polymeriza-
tion of the actin filaments and their cross-linking or bundling.
The formation of single actin filaments can be modeled as
a bimolecular reaction, as in [37]; in this note, the biopoly-
mer turn-over will be described at a larger scale, involving
the interplay between fundamental units and stress-fibers or
pseudopodia, in the form

G
k f

�
kb

F (34)

with F denoting either one of the two biopolymers. The net-
work or fiber formation rate of reaction (34), denoted with
w(34), is influenced by mechanical stresses: stress fibers sta-
bility is favored by tension, for instance. For this reason, the
stress tensor enters the chemical potential and the dissocia-
tion reaction of biopolymers. The kinetics of reaction (34)
is modeled via the law of mass action, properly extended to
account for signaling:

w(34)(X, t) = C(X, t) k f
ϑG

(1 − ϑG)
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Fig. 3 Biopolymers schematics. (a) F actin polymerization, triggered by integrin activity. (b) Schematic of the biopolymer network at the leading
edge of a cell. Polymerization is usually triggered by extracellular signals

−D(X, t) kb
ϑF

(1 − ϑF )
, (35)

having already discussed the meaning of the ratio ϑ in Eq.
(19). Function D accounts for the role of the stress in the
dissociation of biopolymers, see for instance [35].

4.1 Mass transport in the cytosol

Consider a generic species a at a point x in the cytosol Ω(t).
The mass balance of species a in the advecting configuration
localizes as

dρa
dt

+ ρa div [ vadv ] + div [ h̄a ] = sa(x, t), (36)

with h̄a and vadv defined earlier in Sect. 3.2.1, ρa is the den-
sity of species a. Themass balance can be restated in terms of
molarity ca (in moles or molecules per unit volume), by divi-
sion by the molar or molecular mass (ma) of species a. By
denoting with ca = ρa/ma , sa = sa/ma , and ha = h̄a/ma

the local balance (36) becomes

dca
dt

+ ca div [ vadv ] + div [ha ] = sa(x, t). (37)

The latter can be rephrased in the reference configuration at
pointX and time t . To this aim, define the reference molarity
of species a as

caR (X, t) = ca( x(X, t ), t ) J (X, t), (38)

the reference flux vector haR (X, t) and the reference mass
supply saR (X, t) as [6]

haR = J F−1 ha( x(X, t ), t ),

saR = J sa( x(X, t ), t ), (39)

respectively. The reaction rate w(34)(x, t), being a mass sup-
ply, shall transform according to Eq. (39)b. The invariance of
ϑa with the configuration and the analysis of the mass action
law (35) imply that the forward and backward “constants”,
which encompass the dimensionality of w(34)(x, t), are not
actually constants in the reference configuration. They rather
change with time and with point X according to

k fR (X, t) = J (X, t) k f , kbR (X, t) = J (X, t) kb. (40)

The ratio k fR/kbR remains independent upon the configu-
ration. The referential form of the mass balance equations
eventually reads

∂cGR

∂t
+ Div

[
hGR

] + w
(34)
R = sGR , (41a)

∂cFR

∂t
+ Div

[
hFR

] − w
(34)
R = sFR . (41b)

As for the complexmolecules, filaments usually have amuch
smaller mobility than monomers and might be assumed to be
motionless, i.e.

hF = hFR = 0. (42)

The diffusion of monomers appears to be much slower than
the interaction kinetics and the concentrations of species
may be governed by thermodynamic equilibrium at all times
[38]. The concentration of filaments cFR relates then to the
monomers by the equation w(34) = 0, mediated by the local
amount of signaling and stress. Equations (41), with associ-
ated initial conditions

cGR (X, 0) = c0GR
(X), cFR (X, 0) = c0FR

(X)
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and Dirichlet-Neumann boundary conditions define the relo-
cation of monomers that undergo polymerization reactions
in the reference configuration.

5 Mechanical evolution of the cell

Based upon the selection of the mechanisms that are sup-
posed to govern the structural response of the cell, the balance
laws of linear and angular momentum come out. Literature
provides two basic approaches, whether the structural func-
tions are demanded entirely to the cell membrane [39–43] or
to the development of a cytoskeletal structure within the bulk
of the cell [9,35,44–50]. The influence of curvature on the
elastic stiffness of the membrane appears to be related to the
size of the cell [51] and seems to be negligible for endothe-
lial cells of diameter ∼ 10µm. These two evidences lead
to consider the reorganization of the cytoskeleton through a
network of actin and intermediate filaments andmicrotubules
themain responsible for themechanical response of endothe-
lial cells [52], coupled to a passive behavior dictated by the
viscosity of the cytosol as in [9,35,50]. Accordingly, balance
of linear and angular momentum will be formulated for the
bulk of the cell rather than the membrane.

Forces in continuum mechanobiology are described spa-
tially by contact forces between adjacent spatial regions (as
for the forces exchanged by the substrate and the cell dur-
ing adhesion), surface forces exerted on the boundary of the
cell by the environment (as for the receptor-ligand attractive
interaction [23,53] and repulsive electrostatic interactions),
body forces exerted on the interior points by the environ-
ment (as for the gravity or pseudopodia forces that preside
migration). Contact and surface forces, acting on ∂Ω(t) will
be denoted henceforth with t(x, t) whereas body forces will
be denoted with b(x, t). Their referential counterparts will
inherit the subscript R .

Throughout the rest of the paper we will neglect inertia
forces, although some authors [54] pinpointed the role of
inertia forces during migration. Accordingly, the balance of
linear and angular momentum, which are assumed to hold at
each time for all spatial regions Q(t) ⊆ Ω(t), read:

∫
∂Q(t)

t(x, t) da +
∫
Q(t)

b(x, t) dv = 0, (43a)

∫
∂Q(t)

r × t(x, t) da +
∫
Q(t)

r × b(x, t) dv = 0 (43b)

with r denoting the position vectorwith respect to an arbitrary
pole. Classical arguments of continuum mechanics lead to
localize Eqs. (43) in the reference configuration, in terms
of the (first) Piola stress tensor P and of the body forces
measured per unit volume in the reference body

bR(X, t) = J (X, t) b(x(X, t), t).

The referential local form of the balance of linear momentum
reads

Div [P ] + bR = 0, X ∈ ΩR . (44a)

The first Piola stress tensor P must satisfy the local angular
momentum balance

PFT = FPT. (44b)

Contact and surface forces are boundary conditions for prob-
lem (44a). They emanate from electrostatic long or short
range interactions, from receptor-ligand adhesion forces, as
well as from contact tractions after adhesion. A vast literature
[37,55,56] has been devoted to quantify the forces involved in
these interaction mechanisms. It emerges that uncertainties
remain in the establishment of realistic values for attraction
forces, not surprisingly due to the complexity of the required
experimental tasks.

6 Thermodynamics

Thequest of the right thermodynamicprinciples inmechanobi-
ology is, on one hand, far from being understood and, from
a wider perspective, it paves the way to boundless questions
of philosophical and ethical nature, as for the establishment
of a thermodynamics of life [57], which fall completely out
of the scope of present paper. Major accomplishments have
been recently achieved [58] in formulating fresh concepts
that deviate from classical results of thermodynamics of non
equilibrium. In this scientific area, which is nowadays flour-
ishing, new fundamentals assertions are expected in the years
to come.

Being aware that classical formulations of non equi-
librium thermodynamics [27] may not be able to capture
some principles of mechanobiology that rule the dynamic
of receptors—as for the homeostatic constraint [59], we are
prone to deepen our formulation in future studies.

6.1 Thermodynamics of receptors motion on the
membrane

Following [29], receptors motion on the lipid membrane is
thermodynamically described by energy and entropy bal-
ances, imposing as usual that the internal production of
entropy cannot be negative. After the definition of the ref-
erential specific Helmholtz free energy per unit volume
ψR , taken as a function of temperature and concentra-
tions, ψR

(
T , cRR , cLR , cCR

)
the entropy imbalance in the

Clausius-Duhem form is derived. Standard arguments—the
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so called ColemanNoll procedure—finally allow identifying
the following thermodynamic restrictions

μRR = ∂ψR

∂cRR

, μLR = ∂ψR

∂cLR

,

μCR = ∂ψR

∂cCR

, ηR = −∂ψR

∂T
(45)

for chemical potentials μ and entropy ηR . Assuming further
that relocation of receptors take place in thermal equilibrium
conditions, the so called Clausius-Plank inequalities apply:

hRR · GradPR

[
μRR

] ≤ 0, (46a)

A(17)
R w

(17)
R ≤ 0 (46b)

with A(17)
R the chemical affinity of reaction (17). A strategy

to meet the thermodynamic restriction (46a) is to model the
flux of receptors by Fickian-diffusion, that linearly correlates
hRR to the gradient of its chemical potential μRR :

hRR = −MR(cR) GradPR

[
μRR

]
(47)

by means of a positive definite mobility tensorMR . The fol-
lowing isotropic non linear specialization for the mobility
tensor MR is chosen [60]

MR(cRR ) = u| R cmax
RR

ϑRR

(
1 − ϑRR

)
1, (48)

where cmax
RR

is the saturation limit for receptors, and u| R > 0
is the mobility of receptors. Definition (48) represents the
physical requirement that both the pure (cRR = 0) and the
saturated (cRR = cmax

RR
) phases have vanishing mobilities.

Neither themobility u| R nor the saturation concentration cmax
RR

are assumed to change in time. Whereby experimental data
indicate an influence of temperature, stresses, or concentra-
tions, such a limitation can be removed without altering the
conceptual picture. Noting that

GradPR

[
μRR

] = R T

cmax
RR

1

ϑRR (1 − ϑRR )
GradPR

[
cRR

]
,

Fick’s Law (47) specializes as

hRR = −D| R GradPR

[
cRR

]
, (49)

where D| R = u| R R T is the receptor diffusivity.
The chemical kinetics of reaction (17) is modeled via the

law of mass action (28). Experimental evidences [17] show
that: (i) the equilibrium constant (22) is high, thus favoring
the formation of ligand-receptor complex and the depletions
of receptors and ligands; (ii) the diffusion of receptors on
the cell membrane is much slower than interaction kinet-
ics. Accordingly, it can be assumed that the reaction kinetics

is infinitely fast, in the sense that the time required to reach
chemical equilibrium is orders of magnitude smaller than the
time-scale of other processes. For these reasons we assume
that the concentrations of species are ruled by thermody-
namic equilibrium at all times, and the concentration of
complex cCR is related to the others by the equation (32a).
This very same equation could be derived imposing

A(17) = 0.

Simple algebra allows deriving Eq. (32a), provided that to
the equilibrium constant K (17)

eq the alternative definition

K (17)
eq = exp

(
−�G0

R T

)
(50)

is given, where�G0 = μ0
C −μ0

L −μ0
R is the standard Gibbs

free energy.

6.2 Thermo-chemo-mechanics of cells

Cells show two main paradigmatic mechanical attitudes:
active and passive. Active response is related to the abil-
ity of the cell to change, as a result of external cues, its own
cytoskeletal conformation, i.e. to reorganize the morphology
of the biopolymers net that provides the structural resistance
during adhesion (to the ECMor to other cells),migration [61]
(e.g. chemotaxis [62], mechanotaxis, and durotaxis [63]) and
division (eg. mitosis). Passive, instead, refers to the mechan-
ical response that each component of the cell has inasmuch
material bodies, in accordance with their own internal struc-
ture and as a result of external actions.

Following again [29], the thermo-chemo-mechanics of
endothelial cells can be stated stemming from energy and
entropy balances. The referential specific Helmholtz free
energy per unit volume ψR

(
T , cGR , cFR ,C, ξ

)
is taken as

a function of temperature, strains (either C or E), concentra-
tions cGR , cFR , and of some kinematic internal variables ξ

that compare with the usual meaning in inelastic constitutive
laws [6,22,64–67]. Standard arguments—the so called Cole-
man Noll procedure—finally allow identifying the following
thermodynamic restrictions

S = 2
∂ψR

∂C
, ηR = −∂ψR

∂T
,

μGR = ∂ψR

∂cGR

, μFR = ∂ψR

∂cFR

. (51a)

The internal force, conjugate to ξ , will be denoted with the
symbol χ , i.e.

χ R = −∂ψR

∂ξ
. (51b)
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Equation (51a) yields to theClausius-Plank inequality,which
under the assumptions of Curie symmetry principle [27] and
thermal equilibrium, can be written as

χ R : ξ̇ ≥ 0, (52a)

hGR · Grad [
μGR

] ≤ 0, (52b)

A(34)
R w

(34)
R ≤ 0. (52c)

The flow of actin monomers is linearly related to the
gradient of their chemical potential by Fick’s assumption,
consistently with the thermodynamic restriction (52b):

hGR = −MGR (cGR ) Grad
[
μGR

]
. (53a)

The following positive definite, isotropic non linear special-
ization for the mobility tensor MGR is chosen [60]

MGR (cGR ) = u| GR
cmax
GR

ϑGR

(
1 − ϑGR

)
1, (54)

where cmax
GR

is the saturation limit for receptors, and u| GR
> 0

is themobility of actin monomers. Assuming that the trapped
species F has vanishing mobility is an alternative view of
modeling the absence of their flux.

6.2.1 Decompositions.

The stress field S will be additively decomposed in the sum
of the active and passive contributions, analogously to gen-
eralized Maxwell models

S = Sactive + Spassive. (55)

Active response is related to cytoskeletal reorganization in
stress fibers and pseudopodia, whereas the passive response
reflects the mechanical behavior that each component of the
cell has inasmuch material bodies.

We base the theory for pseudopodia on a multiplicative
decomposition of the deformation gradient

F = Fe Fc. (56)

Tensor Fc, named swelling distortion is the local distortion
of the material neighborhood of a point due to a volumetric
swelling (de-swelling) due to the phase change of actin, from
monomeric to a network of filaments and vice-versa. Its rep-
resentation will be taken as Fc = λc 1, assuming therefore
that a dense network of actin filaments form in pseudopo-
dia. This approach conforms well for lamellipodia filament
networks, although it might result inappropriate for slender
and highly oriented microstructures seen in filopodia, which

might be better captured by the protrusion-contraction uniax-
ial tensors presented in Refs. [54,68] or [69]. The following
identities can be easily assessed:

det
[
Fc ] = J c = λc

3
,

J̇ c/J c = 3 λ̇c/λc,

lc = Ḟ
c
Fc−1 = J̇ c/(3J c)1. (57)

We assume that changes in J c occur because of changes in
filaments J c = J c(cFR ) and define the partial molar volume
of the pseudopodia as

ΩC (cFR ) = dJ c

dcFR

(58)

and it holds

J̇ c = ΩC (cFR )
∂cFR

∂t
. (59)

The decomposition (56) leads to a multiplicative decompo-
sition for the left Cauchy-Green tensor, too:

C = Ce Cc (60)

with the swelling factor Cc = J c2/3 1 and the elastic factor
Ce = J c−2/3 C. A classical [60] specification of J c(cFR ) is
the affine map

J c(cFR ) = 1 + (cFR − c0FR
)ΩC (61)

with a constant partial molar volume ΩC > 0.
In the realm of viscoelasticity, it is also common to

perform a multiplicative decomposition of the deformation
gradient Fe into volumetric Fev

and isochoric Fei factors

Fe = Fev

Fei . (62)

The volumetric factor Fev = J e1/3 1 turns out to be com-
pletely identified by the determinant of Fe, whereas the
isochoric factor Fei = J e−1/3 Fe obeys to the constraint

det
[
Fei

]
= 1. The decomposition (62) leads to a multi-

plicative decomposition for the left Cauchy-Green tensor,
too:

Ce = Cev

Cei , (63)

with volumetric factor Cev = J e2/3 1 and the isochoric
factor Cei = J e−2/3 Ce.
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6.2.2 Constitutive theory

TheHelmholtz free energy densityψR is modeled by decom-
posing it into separate parts: a thermal contribution ψ th

R , a

diffusive contributionψ
di f f
R , an elastic contributionψel

R , and
an inelastic (also called configurational ) counterpart ψ in

R

ψR(T , cGR , cFR ,C, ξ) = ψ th
R (T ) + ψ

di f f
R (cGR , cFR )

+ψel
R (cFR ,C) + ψ in

R (cFR ,E, ξ).

(64)

This splitting is here taken for granted without motivation.
We will not indulge in the description of ψ th

R (see Ref. [29]
in case of interest) and we’ll rather focus on the remaining
parts.

Statistical mechanics depicts the entropy for isolated sys-
tems in terms of the density of states, the number of possible
molecular configurations [70]. Making recourse to Stirling’s
approximation and since the entropy transformswith the vol-
ume by means of J , one finds that the following well-known
expression of the entropy of mixing in the reference config-
uration arises:

η
di f f
βR

= −R J cmax
β

(
ϑβ ln[ϑβ ] + (1 − ϑβ) ln[1 − ϑβ ]) ,

(65)

the universal gas constant R being the product of Boltzmann
constant kB andAvogadro’s number and having denotedwith
β = G, F and with ϑβR the ratio

ϑβR (X, t) = cβR/cmax
βR

. (66)

We argued in Eq. (18) that, in view of the structure of the lipid
membranes, themaximumnumber ofmoles ormolecules per
unit area for any species remains unchanged in time in the
current configuration. The same argument does not seem to
apply for the bulk, hence we take henceforth that

cmax
βR

(X, t) = cmax
β (x(X, t), t) J (X, t) (67)

is constant and write the free energy density for the contin-
uum approximation of mixing [70] as

ψ
di f f
R (cGR , cFR ) = μ0

GR
cGR

+R Tcmax
GR

[
ϑGR ln ϑGR + (1 − ϑGR ) ln(1 − ϑGR )

]
+μ0

FR
cFR

+R Tcmax
FR

[
ϑFR ln ϑFR + (1 − ϑFR ) ln(1 − ϑFR )

]
. (68)

Note that if the saturation is constant in the current configu-
ration, an explicit coupling of the free energy of mixing with

the deformation arises by means of J . A new stress would
come out, in view of the thermodynamic prescription (51a).

Following [64], we will define visco-elastic materials
based on the multiplicative decomposition (63). Specifically,
the free energy for visco-elastic materials will be defined as
follows

ψel
R (cFR ,C) + ψ in

R (cFR ,E, ξ)

= ψ
el,vol
R (cFR ,Cev

) + ψ
el,iso
R (cFR ,Cei )

+ψ in
R (cFR ,Ee − ξ), (69)

with ψ in
R depending upon Ee by means of Cei . The volu-

metric part of the elastic free energy is defined through J e,
highlighting the role of the swelling tensor and of the con-
centration of pseudopodia, since

Cev = J e2/3 1 = J 2/3 J c−2/3
1

=
[

J

1 + (cFR − c0FR
)ΩC

]2/3

1 (70)

in view of Eq. (61). On the other end, it holds

Cei = Ce J e−2/3 = C J c−2/3 J e−2/3 = C J−2/3 (71)

henceCei depends merely upon the state of deformation and
not upon the concentration of species. This outcome rever-
berates upon the energetic contributionsψ

el,iso
R andψ in

R . The
latter is such that

∂ψ in
R

∂E
= −∂ψ in

R

∂ξ
, (72)

a property physically grounded in the rheological model of
Maxwell, for which we refer to [64] or [71].

Provided that the above holds, the selection for ψel
R and

ψ in
R is arbitrary. Their selection shall be different inmodeling

the passive behavior or the active response of pseudopo-
dia and stress fibers. The elastic, reversible behavior that
occurs once the viscous effects vanish (ideally at t → ∞ ) is
captured by ψel

R . The inelastic free energy accounts for the
non-equilibrium response due to viscosity—the so called dis-
sipation potential. By thermodynamic restrictions (51) and
identity (72)

χ R = −∂ψ in
R

∂ξ
= ∂ψ in

R

∂E
(73a)

S = 2
∂ψel

R

∂C
+ χ R . (73b)

According to Eq. (73b), tensorial internal forces χ R can
be interpreted as a non-equilibrium stress tensor of second
Piola-Kirchoff kind, that accounts for the viscous response.
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Inelastic internal entropy production (52a) was described
by the internal flux variables ξ and by their energy-conjugate
forces χ R . A simple way to satisfy constraint (52a) is choos-
ing a positive definite operator L such that

χ R = L ξ̇ . (74)

In case of isotropy, the fourth order operator L restricts to
the scalar viscosity ν times the identity operator. Equations
(73a), (74) provide evolution equations for χ R that allow the
algorithmic integration of the constitutive law once a selec-
tion for the free energy densities ψel

R and ψ in
R is made.

The chemical potential of G-actin monomers and of F-
actin networks descends from thermodynamic prescriptions
(51a), in the form

μGR = ∂ψ
di f f
R (cGR , cFR )

∂cGR

(75a)

μFR = ∂ψ
di f f
R (cGR , cFR )

∂cFR

+ ∂ψ
el,vol
R (cFR ,Cev

)

∂cFR

+∂ψ
el,iso
R (cFR ,Cei )

∂cFR

+ ∂ψ in
R (cFR ,Ee − ξ)

∂cFR

. (75b)

While the chemical potential of actin monomers has merely
an entropic nature, mechanical contributions enter the defini-
tion of the chemical potential of actin networks. Specifically,
mechanics affectsμFR in the volumetric contributionψ

el,vol
R

through the swelling tensor Cev
(70), whereas the isochoric

tensorCei was proven to be independent upon the concentra-
tion of species in Eq. (71). Nonetheless, the parameters of the
viscoelastic loading-unloading law are expected to depend
upon the extent of the polymerization reaction by means of
the network concentration cFR in all terms of the mechanical
free energy.

The mechanical effect on the chemical potential does not
propagate into the mass flux because the mobility of actin
network is assumed to be negligible. Mechanics however
enters the affinity of polymerization reaction (34) : the stress
state is expected to favor polymerization nearby the lipid
membrane and depolymerization towards the nucleus.

6.2.3 Multiscale scenario of cell viscoelasticity

Although the free energy scenario is rather clear, a specializa-
tion of the constitutive equations has not been attempted here
and in many cases (as for the lamellipodia filament network
and microtubules) it has not been attempted in the litera-
ture, to the best of our knowledge. The hindrance stands
in the multiscale scenario of cell viscoelasticity: while the
mechanical behavior and properties of single intermediate
filaments, actin filaments, and microtubules has been nowa-
days quite clarified, at least in terms of relative stiffness and

Fig. 4 Schematic picture of some cytoskeletal biopolymers

strengths, bundles of the filaments, their response, polymer-
ization, shape and time evolution is hard to be captured by
comprehensive models at the “macroscopic” scale through
appropriate free energies. As a consequence, the ability of
models to capture the mechanics of fundamental cellular
processes (as chemotaxis, cell sprouting, junction and dif-
ferentiation [72], endocytosis [73] and exocytosis to cite a
few) still requires abundant research before gaining predict-
ing capabilities in simulations.

The cytoskeleton, an interconnected network of regula-
tory proteins and filamentous biological polymers depicted
schematically in Fig. 4, undergoes massive reorganization
during cell deformation, especially after cell rolling and
adhesion [37,74] and in mediating, sensing and transduc-
tion of mechanical cues from the micro-environment [75].
Homogenized models for the mechanical response of a
cell shall condense in effective properties the: i) poly-
merisation/depolimerisation of filaments; ii) the process of
cross-linking that determine the architecture of cytoskele-
tal filaments; iii) the passive mechanical properties of the
cytosol. The thermodynamics of statistically-based contin-
uum theories for polymers with transient networks [76–80]
appear to be a valuable candidate for the selection of free
energies ψel

R (cFR ,C) and ψ in
R (cFR ,E, ξ). At present how-

ever, such a comprehensive model has not yet been proposed
for the pseudopodia driven cell motion. Classical models as
hyperelastic Saint-Venant [54] or newtonian viscous fluids
[81] eventually surrounded by a hyperelastic, zero-thickness
membrane [82] have been used for the pseudopodia, whereas
a very large amount of literature concerns pseudopod dynam-
ics ( see for instance [83] and the large literature therein ) or
ameboid motion [84]. Different approaches to cell motility,
as for active gel theory coupled to the classical theory of thin
elastic shells, are also widely used [85], but are not discussed
in this work. The framework described herein, including
myosin dynamics, phase transformations between G-actin
and F-actin, has been depicted in a set of publications by the
group of H. Gomez [36,86]. The flow of the F-actin network
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was treated as a Newtonian fluid and directed by its veloc-
ity. A one dimensional yet comprehensive model has been
proposed in [87].

The multiscale scenario is invoked also for cell contrac-
tility. There are evidences [88] that the interaction among
filaments, motors, and cross-linkers is mechanically stim-
ulated. As reported in [75], myosin binding to actin fibers
occurs in a force-dependent manner, as well as the con-
tractile response of actomyosin to extracellular stiffness.
According to [89], force feedback controls motor activity
and increases density and mechanical efficiency of self-
assembling branched actin networks, thus suggesting that
those feedbacks could allow migratory cells adjusting their
viscoelastic properties to favormigration.Mass transport and
cell contractility have been accounted for in several publica-
tions with different degree of complexity [50,69,79]: to the
best of our knowledge, however, the force transmission has
always been modeled stemming from the similarity between
the sarcomeric structure of stress fibers and the actin-myosin
interactions in muscle cells. In [35] a multi-dimensional net-
work of stress fiberswas built on the notion of a representative
volume element, in which stress fibers can form in any direc-
tion with equal probability. An average macroscopic stress is
then recovered from the fiber tension, which in turn is gener-
ated by the cross-bridging cycles and described by a Hill-like
relation [90] of viscoelastic nature. Experimental evidences,
however, seem to show that such a resemblance might be
questionable in the dynamics and mechanics of endothelial
cell spreading [19] and hence that the predictive capability of
this family of models might be poor for this family of cells.

Finally, the passive response of the cytosol, provided
mainly by the intermediate filaments attached to the nuclear
and plasmamembranes, has beenmodeled by several authors
by means of classical models as linear elasticity [79], the
finite strain generalization of Hooke’s law [35] or a Neo-
Hookean potential energy

ψel
R (Ce) = G0

2
(I1(Ce) − 3),

ψ in
R (Ee, ξ) = G0 − G∞

G0
ψel

R (Ee − ξ) , (76)

where G0 is the initial shear modulus and G∞ is the shear
modulus at the end of the viscous processes. This classical
choice of Helmholtz free energy is associated to efficient
integration schemes, depicted in [71].

7 Application

Although the focus of the present note stands in the estab-
lishment of a framework, rather than providing a model
for any specific phenomenon, it seems of use introducing

one simple but concrete example of a specific problem, in
which the novelties introduced in the previous section can
be used. Specifically, we will briefly describe the relocation
of vascular endothelial growth factor receptors-2 (VEGFR2)
observed in an in vitro experimental setup and replicated
numerically. Such a problem was discussed in [17,28] in the
framework of small displacements and strains and will be
extensively presented in a companion paper [91] using the
finite strain multiphysics framework developed herein.

VEGFR2 is a pro-angiogenic receptor expressed on
endothelial cells (ECs) and is the main mediator of the
angiogenic response. The interaction between VEGFR2 and
extracellular ligands, produced by tumor cells, is essential
to cancer growth. Specifically, ligand stimulation causes the
relocation of VEGFR2 in the basal aspect in cells plated on
ligand enriched extracellular matrix both in vitro and in vivo,
and ultimately receptors-ligands interactions activate theECs
division and proliferation towards tumor cells. Upon release,
growth factors associate with the extracellular matrix and act
as ECs guidance during neo-vessel formation.

The binding-unbinding interaction (17) was tailored to
describe the interaction between VEGFR2 (R) and VEGF
(L), which produces a receptor-ligand complex (C). Mass
balance equations along the advecting membrane lead to
the chemo-transport problem (29), which comprises the
governing equations for the relocation on the membrane.
The geometrical evolution of the cell (and hence of the
membrane as well, onto which VEGFR2 relocation takes
place) is governed by balance equations (44) coupled to
the thermodynamic restrictions elucidated in Sect. 6. At
present, research on the identification of suitable free ener-
gies ψ

el,iso
R (cFR ,Cei ) + ψ in

R (cFR ,Ee − ξ) for the active
stress Sactive is on going, based on statistical mechanics
of cytoskeletal reorganization in stress fibers and pseu-
dopodia. We thus accounted only for the passive stress
Spassive by means of rubber visco-elasticity (76). Such a
multi-physics initial boundary value problem in the bulk
and on the membrane of the cell, rephrased in a weak
form and further discretized via finite elements, has been
implemented in a high performance computing code with a
staggered Newton-Raphson solver, in the deal.ii framework
( http://www.dealii.org ).

The resulting code has been used to simulate the relocation
of VEGFR2 expressed on endothelial cells on the cell mem-
brane during the mechanical adhesion and spreading of cells
onto a ligand-enriched substrate. A co-designed experimen-
tal and computational campaign unveiled the multiphysics
progression of the process. The geometrical evolution of the
cell was recorded for 2 hours in time-lapse microscopy. Dur-
ing this timespan, three mechanically relevant events could
be identified: the floating and adhesion of the EC on the lig-
and rich μslide, and eventually the spreading onto the latter.
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Fig. 5 Relocation of receptors on the lipid membrane of an EC during cell floating, attachment, and spreading. (a) Color map molecules×µm−2;
(b) t = 0, the cell in suspension; (c) the cell at the beginning of the attachment; (d) the cell at the end of the attachment; (e) t = 120 s, the cell
starts spreading; (f) t = 240 s; (g) t = 360 s; (h) t = 480 s; (i) t = 600 s, the cell at the end of spreading; (l) t = 7200 s, the cell at the end of the
experiment. In (b-d) the (virtual) μslide is depicted for clarity

These three events can be recognized in Fig. 5 , which depicts
with different colors the relocation of VEGFR2 during the 2
hours time span of the simulation.

Three limiting processes characterize the depletion of
VEGFR2. In the first phase, Fig. 5(b)–(d), the VEGFR2
depletion is dominated by the chemical interaction between
receptor and ligands during the adhesion between the cell
membrane and the ligand-reach substrate. The second phase,
up to 600 s, illustrated in Fig. 5(d)–(i), is driven by the
mechanical spreading of the cell: the cell-substrate contact
dynamics stimulates the formations of complexes, since the
mechanical spreading makes new free receptors available for
the binding with the ligands. Eventually, the last phase is
dominated by a lower complex formation rate (from 600
s to 7200 s) and takes place after the EC spreading was
completed, thus resulting transport-dominated, see Fig. 5(i)–
(j). Free VEGFR2, guided by concentration gradients, move
from the apical part of the cell towards the basal one, where
the binding-unbinding interaction (17) occurs. Ultimately
receptors depletion is complete on the cell membrane—see
Fig. 5(j) : such an event is actually unrealistic, since an immo-
bile fraction of VEGFR2 shall be accounted for, as it will be
illustrated further in [91].

8 Concluding remarks

In this note, a multi-physics framework of protein relocation
on the advecting lipid membrane during cells spreading and
motion has been put forward. It sets the (continuum) thermo-
dynamic background for simulations of receptor recruitment
during migration: simulations carried out in [17] stem from a
simplified form of the framework and described the limiting
factors in vascular endothelial growth factor receptors reloca-
tion; similarly,we discussed in [18] the relocation of integrins
on the membrane and their interactions with growth factor
receptors; a companion paper [91] deals with the relocation
of vascular endothelial growth factor receptors on advect-
ing lipid membrane during endothelial cell adhesion and
spreading. Those simulations may have a significant impact
in biology and in the pharmacological treatment of cancer,
either in view of their predictive nature in virtual experi-
ments, or by clearly identifying the sequence of processes
that limit the relocation of targeted proteins during in vitro
experiments.

The present work still has significant limitations, yet by
illustrating a complex and rigorous scenario it might be a
cornerstone to account for several further processes. To cite
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a major phenomenon that has been insufficiently discussed
here, the proteins transport on themembrane is crucially cou-
pled to the cytoskeleton reorganization, which is related to
the motion of integrins on the membrane: the formation of
focal adhesion sites is preliminary to stress fibers genera-
tion and contractility. Internalization of complexes is another
occurence not included in this work. Further publications,
therefore, will be devoted to extend this framework to these
and others challenging tasks.

We also aimed in this paper at recollecting recent pub-
lications from several schools on cell mechanics, encasing
them in a unified framework, being aware that a compre-
hensive account of publications is significantly hard in view
of the broadness of the literature in the field. We clarified
that for some processes, as for contractility and protrusion,
either a thermodynamically consistent formulation has not
been devised yet or it stems upon simplistic models that do
not account for the microstructural evolution of the biopoly-
mers. Even in this fascinating field, the last word is far from
being spoken.
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