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Abstract
Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and
mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and
extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected
by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod
would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover,
we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central
region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties
of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon
model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that
preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons
why helical shapes in tubular assemblies are so common and persistent in nature and technology.

Keywords Computational mechanics · Helical assemblies · Kirchhoff rod · Sadowsky ribbon · Ensemble response

1 Introduction

Many biological structures can be modeled as tubular assem-
blies of helical rods, such as the tail sheaths of bacteriophage
viruses [1,2], the cellulose filaments in the tendrils of climb-
ing plants [3], the bundles of microtubules and motors in all
eukaryotic flagella and cilia [4,5], the envelopes of shape-
shifting unicellular organisms such as Lacrymaria Olor [6]
and the pellicle of euglenids, a family of unicellular algae
[7–10] (see Fig. 1).

From a technological viewpoint, tubular structures com-
posed of helical fibers exhibit programmable shape-shifting
capabilities. This makes them adaptable to changing func-
tional needs, by varying their conformation and properties.
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Exploiting these features, they have been employed in a broad
range of domains, e.g., deployable antennas in aerospace
engineering [11], tubular vascular stents in biomedical engi-
neering, sheaths of McKibben artificial muscles and, more
generally, helically-arranged fibers in soft robotics and bio-
robotics [12–15]. In all these examples, the system consists
of a tubular network of helical rod-like structures. Under-
standing the mechanical behavior of these systems requires
knowledge of how single helices deform under external
loads, and how they interact with each other to produce the
ensemble response.

In this work, we address these questions by focusing on
the response under compression and extension of a tubu-
lar assembly made of 8 helical rods. The specific geometry
of this assembly, inspired by Ref. [11], is further described
below. The behavior of the assembly is analyzed through
numerical simulations, adopting a Kirchhoff rod model,
that is, an inextensible and unshearable Cosserat rod [16].
For this purpose, the finite element software COMSOL
Multiphysics® v5.4 is used in equation mode. Specifically,
the principle of virtual work is implemented to model the
nonlinear response of interacting helical rods in the large
deformation regime, under prescribed end-displacements.
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Fig. 1 a Neck protrusion with shape changes in the microtubule mesh-
work of Lacrymaria Olor [6]. b Metaboly of Euglena Gracilis [10],
a shape changing mechanism based on sliding helices. Adapted with
permission from Ref. [8]

Helical structures have been studied extensively and, in
particular, their treatment using Kirchhoff rod theory has
been discussed in many textbooks and research papers (e.g.,
seeRefs. [16] and [17] and themany references cited therein).
Recent contributions to the literature on the mechanics of
helical rods include [18–22]. With respect to this recent liter-
ature, the main differences of our research consist in the type
of structure analyzed, and in the generality of the allowed
deformations, i.e., rods are not assumed to remain circular
helices a priori and can deform into helical shapes with non-
constant curvature and torsion. Another relevant source is
the book by Costello [23], where the behavior of wire ropes
made of bundles of helical strands is investigated. The main
novelties introduced in our work are the type of assembly
considered, the presence of large deformations, and the study
of the effect of boundary conditions in structures of finite
length, whose deformed shapes may deviate from that of cir-
cular helices.

Concretely, in this paper we consider a tubular assembly
consisting of 8 rods, arranged in 4 pairs of circular helices

with opposite chirality and same axis, connected by pin-
joints. Friction between the rods, contact and deformations of
the cross sections are not accounted for. Rods are subjected
to boundary constraints only at their edges. We first examine
the response of the assembly in compression and extension
in some specific examples that highlight how the rods in an
assembly deform all in the same fashion, i.e., as a coherent
ensemble. Then, focusing on the behavior in compression,
we analyze how the geometry of the deformed configurations
is affected by different constraints. We find that, depending
on boundary constraints, the rods can either remain circular
helices along the whole length of the assembly, or develop
edge layers with perturbed geometry around a bulk region
where circular helical shapes persist. We then study how the
relation between axial force and axial strain is affected by
different hypotheses on the elastic properties of the individ-
ual rods. In particular, we consider rods that are stress-free
in the initial configuration (as circular helices) and rods that
are stress-free when straight. Finally, we analyze the effect
of modeling the rods as ribbons, and find that this may pro-
duce dramatic changes in the stiffness of the assembly, which
become evident in a numerical extension experiment.

Our results show that, when arranged in tubular assem-
blies, helical rods stabilize each other, and that they respond
collectively in a way that may be very different from the
response they would exhibit if they were loaded individu-
ally. This stable collective response is made possible by the
mutual interactions between rods, represented by the reac-
tions at pin-joints. This is particularly evident in compression
experiments: an individual helical rod typically buckles away
from the helix axis; on the contrary, in the assembly, rods
deform in such a way that the structure remains symmet-
ric with respect to its initial axis. The deformed shapes of
rods with same (opposite) chirality are then identical mod-
ulo rigid rotations (reflections). In other words, the rods of
the assembly deform cooperatively into helical structures
wound around one common axis, that is, the initial axis of
the assembly. This collective behavior promotes the stability
and persistence of helical shapes in a tubular assembly and, in
turn, suggests why these shapes are so commonly observed
in nature and technology.

The remainder of this paper is organized as follows. Sec-
tion2 introduces the systemunder investigation anddescribes
its model in terms of kinematics and equilibrium equations,
and it delves into the theory of cylindrical deformations; it
then describes the finite element method (FEM) implemen-
tation of our model and it outlines the investigated problems
where different boundary conditions are applied. In Sect. 3,
we discuss the main results of our study: we compare the
solutions for several boundary conditions, and we analyze
cylindrical deformations in the case of zero intrinsic cur-
vatures and torsion, with an example of a zero-stiffness
structure. Moreover, the impact of choosing an alternative
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constitutive model for the rods, namely Sadowsky’s ribbon
model, is examined. Section 4 reports our conclusions and
outlook for future work.

2 Analytical formulation and computational
model

We consider an assembly of initial height h0 composed of
8 helical rods, i.e., they can be described as circular helices
when unloaded. Our goal is to study its equilibrium con-
figurations under compression or extension, enforced by
prescribing its height h, with no other forces applied.

The 8 helices are made of the same material, they have
the same cross-section and length L , initial radius a0, initial
pitch p0, and same axis, as shown in Fig. 2. The rods are
organized in 4 pairs of 2 helices with opposite chirality, that
is, a right-handed and a left-handed one. In each pair, the
terminal ends (tip and base) of the two helices are linked
together, and they initially lie on the circumference given by
the initial radius. Terminal ends of different pairs are distinct.
At crossings, helices are linked to each other by pin-joints,
which allow relative rotations along the cross-sectional axis
with the largest moment of inertia.

Fig. 2 Schematics of the initial configuration of the assembly. The
structure is composed of 8 inextensible helices, 4 right-handed (blue)
and 4 left-handed (red), connected by pin-joints (green dots). All helices
are made of the same material and have the same length, radius a0, and
pitch p0

2.1 Geometry and kinematics

Let {e1, e2, e3} be the global Cartesian reference frame,with
e3 along the axis of the assembly. Following the Kirchhoff
rod theory, each rod is described by a curve and a local
three-dimensional reference frame along it. For all helices,
we choose the curves joining the centroids of their cross-
sections as reference curves. In their initial configurations, a
right-handed and a left-handed helix belonging to the same
pair can be described by the curves

γ R(s; h0) =
[
a0 cos

(
s
c0

+ θ1

)
, a0 sin

(
s
c0

+ θ1

)
, b0
c0
s
]
,

γ L(s; h0) =
[
a0 cos

(
s
c0

+ θ2

)
,−a0 sin

(
s
c0

+ θ2

)
, b0
c0
s
]
,

(1)

respectively. Here, s ∈ [0, L] is the arc-length, a0 =
a(h0) > 0 is the radius of the helix, b0 = b(h0) = p0/(2π),

c0 =
√
a20 + b20, and θ1, θ2 are offset angles with respect to

e1. The 8 helices composing the assembly have the following
offset angles:

θ1 = −θ2 =
{
0,

π

2
, π, −π

2

}
. (2)

We can then define a local orthonormal reference frame for
each helix, given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eRr (s) = cos
(

s
c0

+ θ1

)
e1 + sin

(
s
c0

+ θ1

)
e2 ,

eRφ(s) = − sin
(

s
c0

+ θ1

)
e1 + cos

(
s
c0

+ θ1

)
e2 ,

ez(s) = e3 ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eLr (s) = cos
(

s
c0

+ θ2

)
e1 − sin

(
s
c0

+ θ2

)
e2 ,

eLφ(s) = sin
(

s
c0

+ θ2

)
e1 + cos

(
s
c0

+ θ2

)
e2 ,

ez(s) = e3 ,

(3)

where eRr (s) and eRφ(s) (eLr (s) and eLφ(s)) are the radial and
tangential unit vectors for the right-handed helix (left-handed
helix) at arc-length s, respectively. Using this notation,
Eq. (1) can be simplified as

γ R
0 (s; h0) = a0eRr (s) + b0

c0
s ez ,

γ L
0 (s; h0) = a0eLr (s) + b0

c0
s ez .

(4)

We then define the directors of the Kirchhoff rod, choos-
ing dR,L3 (s; h) equal to the tangent unit vector to the solution
curvesγ R,L(s; h) andwith the generic position r(s; h) recon-
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structed as

r(s; h) = r(0; h) +
∫ s

0
d3(σ ; h) dσ . (5)

In the initial configuration, directors are described by

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dR1 (s; h0) = b0
c0

eRφ(s) − a0
c0

ez ,

dR2 (s; h0) = −eRr (s) ,

dR3 (s; h0) = a0
c0

eRφ(s) + b0
c0

ez ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dL1 (s; h0) = b0
c0

eLφ(s) + a0
c0

ez ,

dL2 (s; h0) = −eLr (s) ,

dL3 (s; h0) = −a0
c0

eLφ(s) + b0
c0

ez ,

(6)

and we can compute initial curvatures and torsion as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κR
1 (s; h0) = κL

1 (s; h0) = d ′
2 · d3 = −a0

c20
,

κR
2 (s; h0) = κL

2 (s; h0) = d ′
3 · d1 = 0 ,

ΩR(s; h0) = −ΩL(s; h0) = d ′
1 · d2 = b0

c20
.

(7)

2.1.1 Parametrization in terms of quaternions

In numerical simulations, we parametrize directors via
quaternions [24], i.e., q(s) = (q1(s), q2(s), q3(s)), q4(s),
which are four redundant parameters used to avoid singular-
ities. Starting from the identity

{d1(s), d2(s), d3(s)} = R(s){e1, e2, e3} , (8)

the rotation tensor R canbe expressed, according toRodrigues’s
formula, as

R = cosα(I − a ⊗ a) + sin αA + a ⊗ a , (9)

where a and α are the axis and angle of rotation at s, respec-
tively, and A is the skew-symmetric tensor corresponding to
a. Quaternions are then defined as

q = a sin
(α

2

)
, q4 = cos

(α

2

)
, (10)

and are therefore constrained by

q · q + q24 = 1 , (11)

which causes the dependency of one component from the
others. We can then rewrite Eq. (10) as

R = (q24 − q · q)I + 2q · q + 2q4Q , (12)

where Q is the skew-symmetric tensor corresponding to q,
and we finally express directors as

d1 =
[
1 − 2

(
q22 + q23

)
, 2(q1q2 + q3q4), 2(q1q3 − q2q4)

]
,

(13)

d2 =
[
2(q1q2 − q3q4), 1 − 2

(
q21 + q23

)
, 2(q2q3 + q1q4)

]
,

(14)

d3 =
[
2(q1q3 + q2q4), 2(q2q3 − q1q4), 1 − 2

(
q21 + q22

)]
.

(15)

2.2 Balance of forces andmoments

In the absence of external actions, the balances of forces and
moments read

dM(s; h)

ds
+ d3(s; h) ∧ T (s; h) = 0 , (16)

dT (s; h)

ds
= 0 , (17)

where M is the internal moment and T is the internal force.
The internal moment for a pair of rods (one right-handed and
one left-handed) can be written as

MR,L(s; h) = MR,L
1 (s; h) dR,L1 (s; h)

+ MR,L
2 (s; h) dR,L2 (s; h)

+ MR,L
3 (s; h) dR,L3 (s; h) .

(18)

We assume the following constitutive equations:

⎧⎪⎪⎨
⎪⎪⎩

MR,L
1 (s; h) = B1 (κ

R,L
1 (s; h) − κR,L

s1 ) ,

MR,L
2 (s; h) = B2 (κ

R,L
2 (s; h) − κR,L

s2 ) ,

MR,L
3 (s; h) = B3 (ΩR,L(s; h) − ΩR,L

s ) ,

(19)

where κR
s1, κR

s2 , ΩR
s (κL

s1 , κL
s2 , ΩL

s ) are the intrinsic curva-
tures and torsion of each right-handed (left-handed) helix,
i.e., those exhibited in the rest configuration; B1, B2 repre-
sent the bending stiffnesses of each rod along dR,L1 , dR,L2 , and

B3 their torsional stiffness along dR,L3 . According to linear
elasticity, we have that

B1 = EY I1, B2 = EY I2, B3 = GJ , (20)
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where EY represents the Young modulus of each rod,
I1, I2 the principal moments of inertia of its section along
dR,L1 , dR,L2 , G its shear modulus and J its torsional constant.

Since the initial configuration is stress-free, we substitute
the intrinsic curvatures and torsion with the ones calculated
in Eq. (7), that is,

κR
s1 = κL

s1 = κR
1 (s; h0) =: κs ,

κR
s2 = κL

s2 = κR
2 (s; h0) = 0 ,

ΩR
s = −ΩL

s = ΩR(s; h0) =: Ωs .

(21)

2.3 Theory of cylindrical deformations

Given a helical assembly, cylindrical deformations are fam-
ilies of configurations parametrized by the axial strain ε =
h/h0−1,where each rod behaves as a circular helix, i.e., a rod
with constant non-zero torsion, one constant non-zero cur-
vature, and the other one vanishing. For such deformations,
the configurations of a rod can be described by the maps in
Eq. (4) with h replacing h0, that is, γ R,L(s; h) = γ

R,L
0 (s; h).

Moreover, let us assume that

κR
2 = κL

2 ≡ 0 , (22)

so that the energy of each helix reads

E(h) = LB1

2
(κ

R,L
1 (h) − κs)

2 + LB3

2
(ΩR,L(h) − Ωs)

2,

(23)

which is independent of chirality, because of Eq. (7). The
length of each rod can be expressed as

L = 2π n
√
a2 + b2 = 2π nc , (24)

with n the number of turns of the helix, which is constant
because of the symmetry of the problem. Then

c = L

2π n
(25)

and because of the inextensibility, we obtain

c =
√
a2 + b2 = c0 . (26)

Rearranging Eq. (4), we can express b for both right-handed
and left-handed helices as

b(h) = c

L
h = h

2π n
(27)

and exploiting Eq. (26), we obtain

a(h) =
√
c2 − b2 = 1

2π n

√
L2 − h2 . (28)

According to theKirchhoff rod theory andEqs. (27) and (28),
we can write

κR
1 (h) = κL

1 (h) = −2π n

L2

√
L2 − h2 , (29)

ΩR(h) = −ΩL(h) = 2π n

L2 h . (30)

For what concerns the loads, substituting Eqs. (19) and (29)
into Eq. (18), and considering Eq. (22), we get

MR(s; h) = B1(κ
R
1 (h) − κs) dR1 (s; h)

+B3(Ω
R(h) − Ωs) dR3 (s; h) ,

ML(s; h) = B1(κ
R
1 (h) − κs) dL1 (s; h)

−B3(Ω
R(h) − Ωs) dL3 (s; h) . (31)

The internal moment at s = L is equal to the external one
applied on the considered helix, and the sum of their internal
moments at s = L corresponds to the external moment Q(h)

applied to the pair, that is,

Q(h) = B1(κ
R(h) − κs)(dR1 (L; h) + dL1 (L; h))

+ B3(Ω
R(h) − Ωs)(dR3 (L; h) − dL3 (L; h)) .

(32)

Since the rods deform as circular helices, the directors are
given by Eq. (6), with h replacing h0. Moreover, due to sym-
metry we have that

eRr (L) = eLr (L) = er (L) , (33)

eRφ(L) = eLφ(L) = eφ(L) , (34)

so that we can rewrite Q(h) into the local reference frame
{er (L), eφ(L), ez} as

Q(h) = 2B1(κ
R(h) − κs)

b(h)

c
eφ(L)

+ 2B3(Ω
R(h) − Ωs)

a(h)

c
eφ(L)

=: Qφ(h)eφ(L) .

(35)

Under the assumptions of circular helices and of a symmetric
structure, only radial rotations are allowed at terminal ends,
so that the external work performed by moments vanishes:

Q(h) · er (L) = Qφ(h)eφ(L) · er (L) = 0 . (36)

Hence, the only external load expending work is the exter-
nal force needed to balance the reaction to height variations.
From the energy balance of the assembly

dEtot = Ftot dh , (37)
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the external force F(h)tot can be computed as

Ftot(h) = dEtot

dh
(h) . (38)

The energy of the system can be written as the one of a single
helix times the number of helices, regardless of chirality.
Therefore, the average force per helix Fz is computed by
differentiating Eq. (23), that is,

Fz(h) = ∂E

∂κ

dκ

dh
+ ∂E

∂Ω

dΩ

dh

= L

[
B1

(
κ(h) − κs

)dκ
dh

(h)

+ B3
(
Ω(h) − Ωs

)dΩ
dh

(h)

]
.

(39)

We differentiate curvature and torsion as

dκR

dh
(h) = 2π n

L2

h√
L2 − h2

, (40)

dΩR

dh
(h) = 2π n

L2 . (41)

We substitute Eqs. (29) and (40) into Eq. (39), which reads

Fz(h) = (B3 − B1)
4π2 n2

L3 h − B3Ωs
2π n

L
+

− B1κs
2π n

L

h√
L2 − h2

.

(42)

Finally, according to

ŝ = s

L
, ĥ = h

L
, M̂ = L

B1
M , F̂z = L2

B1
Fz , (43)

κ̂s1 = κ̂s = L κs , κ̂s2 = L κs2 , Ω̂s = L Ωs , (44)

κ̂1 = L κ1 , κ̂2 = L κ2 , Ω̂ = L Ω , (45)

we non-dimensionalize Eqs. (27)-(30),(42) as

â(ĥ) = a(ĥ)

L
=

√
1 − ĥ2

2π n
, b̂(ĥ) = b(ĥ)

L
= ĥ

2π n
, (46)

κ̂1(ĥ) = −2π n

√
1 − ĥ2 , Ω̂R(ĥ) = 2π n ĥ , (47)

F̂z(ĥ) = 4(K3 − 1)
2
π n2 ĥ − 2π nK3Ω̂s+

− 2π nκ̂s
ĥ√

1 − ĥ2
, (48)

where K3 = B3/B1. By setting the intrinsic curvatures equal
to the initial ones, according to Eq. (47) we have

F̂z(ĥ) = 4
2
π n2

⎡
⎣K3(ĥ − ĥ0) + ĥ

⎛
⎝
√
1 − ĥ20
1 − ĥ2

− 1

⎞
⎠

⎤
⎦ . (49)

2.4 Weak-form of the balance equations

In order to find the equilibrium configuration of the assem-
bly at a prescribed height, we enforce the balance of forces
and moments according to the weak formulation of Eq. (16)
given by

δE = 0, ∀ q̃1, q̃2, q̃3, q̃4 , (50)

where δE is the virtual variation of the internal energy of the
system, and q̃1, q̃2, q̃3, q̃4 are test functions for the quater-
nions. For each rod, using constitutive equations we express
its elastic energy as

E (i)
el =

∫ L

0

[
B1

2

(
κ

(i)
1 − κs1

)2 + B2

2

(
κ

(i)
2 − κs2

)2 +

+ B3

2

(
Ω(i) − Ωs

)2 ]
ds

(51)

and applying the virtual variation operator δ we obtain

δE (i)
el =

∫ L

0

[
B1

(
κ

(i)
1 − κs1

)
κ̃

(i)
1

+ B2

(
κ

(i)
2 − κs2

)
κ̃

(i)
2 + B3

(
Ω(i) − Ωs

)
Ω̃(i)

]
ds ,

(52)

where κ̃
(i)
1 , κ̃

(i)
2 , Ω̃(i) are the curvatures and torsion corre-

sponding to the test functions of the quaternions. The addi-
tional constraint of Eq. (11) can be imposed using a Lagrange
multiplier η(i). Hence, the total energy of the system reads

E =
∑
i

E (i)
el +

∫ L

0
η(i)

(
q(i) · q(i) + q(i)

4
2 − 1

)
ds , (53)

with virtual variation resulting in

δE =
∑
i

δE (i)
el +

∫ L

0

[
2η(i)

(
q(i) · q̃(i) + q(i)

4 q̃(i)
4

)
+

+ η̃(i)
(
q(i) · q(i) + q4

(i)2 − 1
) ]

ds .

(54)

Thus, the final equilibrium equation reads

∑
i

δE (i)
el +

∫ L

0

[
2η(i)(q(i) · q̃(i) + q(i)

4 q̃(i)
4 )

+ η̃(i)(q(i) · q(i) + q(i)
4

2 − 1)
]
ds = 0 , ∀ q̃(i), q̃(i)

4 , η̃(i) .

(55)
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2.5 Constraints and boundary conditions

We investigated the response of the assembly as we vary the
height h of the assembly by imposing the e3-component of
the position vector at the terminal ends of the helices. We
studied four cases, corresponding to the following sets of
boundary conditions applied at the edges s = 0, L of each
rod:

1. displacement components along e1, e2 are set to zero,
rotations are set to zero;

2. displacement components along e1, e2 are set to zero,
only radial rotations (i.e., with axis eRr = eLr ) are allowed
and free;

3. displacement components along e1, e2 are free, only
radial rotations are allowed and free;

4. displacement components along e1, e2 are set to zero,
rotations are free.

Rotations are prescribed by settingDirichlet boundary condi-
tions on the quadruplet q1, q2, q3, q4, specifying appropriate
constants. The components of the position vector are imposed
by choosing integration constants to reconstruct r(s; h) from
the tangent vector, see Eq. (5), or by enforcing weak con-
straints using Lagrange multipliers, i.e., by adding the term

λi (ri (L) − r i ) r̃i (L) + λ̃i (ri (L) − r i ), i = 1, 2, 3 , (56)

to Eq. (55), where λi and r i are the Lagrange multiplier and
the imposed value for i-th coordinate of r(L), respectively. In
particular, r̃(L) is expressed in terms of (q̃, q̃4) by applying
the virtual operator δ to Eq. (5). Since the resulting equation
must hold for every λi , the constraint equation ri (L) = r i is
enforced for every i .

In all cases we imposed no relative translation between
helices at the pin-joints connecting them. Moreover, since
directors dR2 , dL2 must remain aligned at crossings, relative
rotations were allowed only about the axis of the pin-joint.
These constraints were enforced using Langrange multipli-
ers, by imposing zero relative displacement between helices
at pin-joints and the orthogonality of dR2 with respect to
dL1 , dL3 , which corresponds to the parallelism of dR2 , dL2 .

2.6 Numerical aspects

The governing equations of the rodmodel, alongwith bound-
ary conditions, were implemented and solved in COMSOL
Multiphysics® v5.4. In particular, the weak form PDE mode
was adopted, using a custom implementation of the equations
of the model. Regarding the mesh, upon checking that the
numerical solutionwas insensitive to further refinement, each
rod of the assembly was divided into 10 elements. Quadratic
shape functionswere used to discretize the quaternions fields.

In all the boundaryvalueproblems a continuation approach
was followed, so that the position of one boundary point was
varied gradually. Indeed, at each boundary displacement step,
the system of non-linear algebraic equations resulting from
the finite elements procedure was solved by a quasi-Newton
iterative algorithm, taking as initial guess the numerical solu-
tion at the previous step. A direct solver (PARDISO) was
chosen to solve the linearized system obtained at each con-
tinuation step.

3 Results and discussion

We report and discuss the main findings on the response
under compression and extension of the assembly described
in Sect. 2, as extracted from FEM simulations. We com-
pare computational results with analytical predictions, and
we explore the special case of naturally-straight rods, i.e.,
with κs1 = κs2 = Ωs = 0, and the consequences of a differ-
ent constitutive model, that is, the Sadowsky’s ribbon model.
To allow meaningful comparisons, the main variables are
non-dimensionalized according to Eqs. (43)-(45).

Inter-penetration is not explicitly forbidden in our model,
and this is clearly an issue in regimes of extreme compres-
sion. Indeed, our ideal assembly is allowed to degenerate
into a single circular ring while, in the physical system, the
thickness of the rods would put a limit to the minimal height
to which the ensemble can be compressed. To thoroughly
explore these regimes, our model should be extended to take
self-contact into account.

3.1 Stabilization effect due to ensemble response

Single helical rods are known to be unstable under compres-
sion, with critical loads determined by their slenderness and
material properties. It is then remarkable how helices, when
they form assemblies, tend to stabilize each other through
mutual interactions, which collectively determine the ensem-
ble response of the structure. Indeed, the higher stability of
helical assemblies is arguably a key factor for their recur-
rence in natural and artificial structures. In this regard, Fig. 3
compares the behavior of a single right-handed helix and of
the 8-helix assembly at ε = −0.5, with boundary conditions
corresponding to Case 1. The single helix buckles away from
the vertical axis, that is, its helix axis in the initial configura-
tion; on the contrary, in the assembly, rods deform in such a
way that the structure remains symmetric with respect to its
initial axis. Therefore, because of axisymmetry, the deformed
configuration of rods with same (opposite) chirality can be
obtained from one another via a rotation (reflection). Thus,
the mid-line of each rod remains confined to a surface of rev-
olution around the initial axis of the assembly. The resulting
envelope surface, termed in this way because it represents an
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Fig. 3 Three-dimensional views of a a single right-handed helix and
b the 8-helix assembly under compression (h0 ≈ 0.64 L , ε = −0.5)

Fig. 4 Three-dimensional views of a a single right-handed helix and
b the 8-helix assembly under extension (h0 = 0.01 L , ε = 32.009)

envelope for the deformed shape of all rods, provides a useful
tool to describe the way in which rods deform cooperatively
and collectively, i.e., as an ensemble, into helical structures
wound around a common axis, given by the initial axis of the
assembly.

This type of collective mode of response, in which the
deformed configurations of the individual rods are identical
modulo rigid rotations or reflections, arises also under exten-
sion, as reported in Figs. 4 and 5. In the next subsection, we
examine in detail the impact of different boundary conditions
on the response of the assembly in the case of compression, in
whichwe can observe themost dramatic differences between
the response of a single helix and the one of the assembly
(compare Figs. 3 and 4).

Fig. 5 Three-dimensional views of the 8-helix assembly a under exten-
sion for h0 = 0.01 L , ε = 32.009 and b under compression for
h0 ≈ 0.64 L , ε = −0.5

3.2 Comparison of equilibrium configurations
corresponding to different boundary conditions

Equilibrium configurations in compression corresponding to
the boundary conditions reported in Sect. 2.5 exhibit distinct
height-radius profiles and thus different envelope surfaces, as
shown in Fig. 6. However, all cases have an interesting com-
mon feature: solutions tend to overlap within a bulk region,
while they depart from each other only at boundary layers,
as one can appreciate from the insets in Fig. 6. Notably, the
equilibrium solution for Case 3, corresponding to free radial
displacement and radial rotations at terminal ends, results in
a cylindrical deformation, i.e., a constant radius profile (see
Sect. 2.3), which agrees with computational results in Ref.
[11].

3.2.1 Curvatures and torsion

Curvatures and torsion profiles (Fig. 7) are symmetric with
respect to the arc-length coordinate, consistently with the
symmetry of the problems. They exhibit discontinuities
at pin-joints, which correspond to concentrated moments
exchanged between the helices. Figure 8 illustrates the bal-
ance of moments at pin-joints for the first right-handed helix,
which is consistent with the absence of external couples and
shows a symmetric pattern as well. All cases show a bulk
region in the center of the assembly, where curvatures and
torsion tend to be constant with similar values across cases,
and two boundary layers, where they tend to differ (Fig. 7b)
or to oscillate around the bulk value (Fig. 7a). Remarkably,
Case 3 shows constant curvatures and torsion profiles, with-
out boundary layers. Hence, in this case rods remain circular
helices under compression, while the other cases approach
the helical assembly of Case 3 in their bulk regions, and they
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Fig. 6 Comparison of radius profiles (ε = −0.5) for Case 1 (orange),
Case 2 (green), Case 3 (blue), Case 4 (red). Both axial coordinate and
radius are normalized by current height. Dashed black lines represent
the lateral view and radius profile for the corresponding theoretical
cylindrical transformation. Insets show magnified views of the edge
and bulk regions

a

b

c

Fig. 7 Comparison of a κ̂1, b κ̂2 and c Ω̂ profiles (ε = −0.5) for Case 1
(orange), Case 2 (green), Case 3 (blue), Case 4 (red, dashed). Dashed
black lines are a κ̂s1 , b κ̂s2 , and c Ω̂s

deviate from it as one moves towards the edges, where they
exhibit boundary layers.

Fig. 8 Comparison of internal moments at pin-joints exerted on the first
right-handed helix (blue stems) and on the corresponding left-handed
helices (red stems) at ε = −0.5

Fig. 9 Comparison of normalized axial force-compressive strain pro-
files for Case 1 (orange), Case 2 (green), Case 3 (blue), Case 4 (red,
dashed)

3.2.2 External forces

Figure 9 reports a comparison of the axial force versus com-
pressive axial strain |ε| curves for the four cases treated, with
ε = 0 and ε = −1 corresponding to the initial and a planar
circle-like configurations, respectively. All cases show sim-
ilar trends for the vertical force as a function of |ε|. Indeed,
all force profiles are non-linear and monotonic, with higher
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forces for higher compressions and, for a given strain, they
have similar values. As compression increases, the required
external force grows, since it is balanced by a growing elastic
restoring force.

3.3 Case of zero intrinsic curvatures and torsion with
an example of zero-stiffness structure

In previous cases rods were modeled with linear constitutive
equations, setting intrinsic curvatures and torsion equal to the
initial ones. This choice implies that the initial equilibrium
configuration is stress-free.

A different scenario ariseswhen κs1 = κs2 = Ωs = 0, that
is, for naturally straight rods, since the initial configuration
now requires forces and moments to be in equilibrium. Then,
we can obtain the force-strain curve of a single circular helix
by simplifying Eq. (48) as

F̂R
z (ĥ) = 4(K3 − 1)π 2n2 ĥ . (57)

Figure 10 compares the force profile for an assembly with
κs1 = κs2 = Ωs = 0 and boundary conditions cor-
responding to Case 3 as given by numerical simulations,
with that of Eq. (57), highlighting their perfect match-
ing. Moreover, starting from this model we can envision a
zero-stiffness structure. Indeed, according to Eq. (57), the
vertical force is linear with respect to the normalized height
ĥ with a coefficient proportional to K3 − 1, where K3 is
the ratio of torsional and bending stiffnesses. Therefore, by
setting K3 = 1 we obtain an assembly requiring a con-
stant zero force for any compression ratio, as confirmed
numerically (Fig. 10). Deformed configurations form an
energetic plateau, where bending and torsional energies are
interchangeable.

3.4 Comparison with Sadowsky’s ribbonmodel

Using the constitutive Eqs. (19) and (20) and assuming a
rectangular cross-section, Kirchhoff’s rod model allows for
a maximum stiffness for the force-strain relation (57) given
by

max K3 = max

(
GJ

EY I1

)
= max

(
6β

ν + 1

)
= 2

ν + 1
, (58)

where β is a geometric parameter which increases with
increasing aspect ratio of the cross-section, and that tends
to 1/3 when the aspect ratio tends to infinity [25]. We there-
fore considered an alternative model for the elasticity of the
rods, namely, the model for ribbon-like structures proposed
by Sadowsky [26] and re-examined in Refs. [27–29], in order
to investigate the impact of the choice of different constitu-
tive models on the force-strain response. When the rods are

modeled as narrow elastic ribbons, the energy density of each
rod is described as

W (s) =
⎧⎨
⎩
2BΩ2(s), |κ1| < |Ω|,
B

2
κ2
1 (s)

(
1 + μ2(s)

)2
, |κ1| > |Ω|, (59)

where

B = wt3

12

EY

(1 − ν2)
, μ(s) = Ω(s)

κ1(s)
, (60)

withw the width of the ribbon, t its thickness, EY its Young’s
modulus and ν its Poisson ratio. It is assumed that t 
 w 

L , where L is the length of the rod, and that intrinsic intrinsic
curvatures and torsion are equal to zero [27–29]. The energy
density of Eq. (59) is not strictly convex (see Fig. 12), and this
causes convergence problems in the numerical simulations.
To circumvent this issue, we added a corrective term to the
energy density and defined

Wζ (s) = W (s) + ζ
(
κ2
1 (s) + Ω2(s)

)
, (61)

where ζ > 0 is a regularization parameter. The energy
density of Eq. (61) is strictly convex for all ζ > 0, and
Sadowski’s energy (59) is recovered in the limit ζ → 0. The
choice ζ = 0.2B guaranteed convergence in all the numeri-
cal simulationswe conducted.Given the boundary conditions
of Case 3, we simulated the extension of the assembly from
h = h0 = 0.01 L to h = L and we compared the results with
those for a rod model assuming κs = 0, Ωs = 0, ν = 0.3,
andw � t , which corresponds to K3 ≈ 1.54, i.e., maximum
stiffness according to Eq. (58). Both models adopt the same
material and geometric parameters.

In the case of the ribbon model, to obtain the response of
the assembly in the absence of the regularizing term we need
a procedure to send ζ to zero. This is, however, easy when
considering the boundary conditions of Case 3, because the
equilibrium configurations that we obtain using the regular-
ized energy, Eq. (61), are given by cylindrical deformations
for any imposed height h. At a certain h, the same cylindrical
deformation (modulo rigid bodymotions or change of chiral-
ity) is an equilibrium solution for any ζ > 0, and it is unique
thanks to the convexity of the energy density. The axial forces
experienced by rods are insensitive to ζ because the correc-
tion term in Eq. (61), when evaluated on circular helices,
contributes with zero axial force (see Eq. (57), K3 = 1).
In these configurations, the (constant) internal moments are
given by
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Fig. 10 Normalized axial force-compressive strain profiles for computational results (orange), for theoretical ones of Eq. (57) (blue stars), and for
computational results when κs1 = κs2 = Ωs = 0, K3 = 1 (red). Insets compare the initial geometric configuration with the one for ε = −0.8

M1(h, ζ ) =
{
2ζκ1(h), |κ1| < |Ω|,
κ1(h)

[
B(1 − μ4(h)) + 2ζ

]
, |κ1| > |Ω|,

M3(h, ζ ) =
{
2Ω(h)(2B + ζ ), |κ1| < |Ω|,
2Ω(h)

[
B(1 + μ2(h)) + ζ

]
, |κ1| > |Ω|,

(62)

where we have written only the non-zero components. At
each h, the same cylindrical deformation is an equilibrium
solution also for the non-regularized (ζ = 0) energy density
of Eq. (59), under the same axial force and internal moments
given by M1(h, 0), M3(h, 0). This can be easily verified by
checking that it satisfies the differential equilibrium equa-
tions, Eqs. (16) and (17).

The axial force-axial strain profiles obtained using the two
models are compared in Fig. 11. Since a ribbon is a shell-
like structure with no stretches of the mid-surface allowed,
while no such constraint is present in the rod model, it is not
surprising that the ribbon model leads to a stiffer response
of the assembly. What we find surprising, and do not fully
understand, is the magnitude of the discrepancy in the pre-
diction of the response using the two different models. It
would be interesting to investigate this issue further, and
to compare analytical predictions with experimental results,

obtained for rods of rectangular cross-section with different
aspect ratios w/t . One could then establish which model, if
any, better captures the experimentally observed response,
and in which regime of geometric or material parameters.
Another interesting feature of the ribbonmodel is that it leads
to a discontinuity in the tangent of the axial force-axial strain
profile, i.e., in the axial stiffness of the assembly.

This is caused by a discontinuity of the second derivative
of the energy density, which occurs at |κ1| = |Ω|, as illus-
trated in Fig. 12 (ζ = 0). Indeed, in the region |κ1| < |Ω| the
energy density of a rod becomes degenerate (independent of
κ1) and the energetic landscape is no longer strictly convex.
A signature of this degeneracy is visible in the |κ̂1|−|Ω̂| tra-
jectories traced by evaluating at the pin-joints of one rod the
equilibrium solutions obtained by using Sadowski’s energy
density without regularizing terms, Eq. (59), in a numeri-
cal simulation of extension (h0 = 0.01 L , see Fig. 12). As
long as the solution remains in the strictly convex region
|κ1| > |Ω|, we obtain circular helices (i.e., constant cur-
vature and torsion) represented at each h by a single point
(|κ̂1(h)|, |Ω̂(h)|) along the curve given byEqs. (29) and (30),
namely,

κ̂1(ĥ) = 2π n

√
1 − ĥ2 , Ω̂(ĥ) = 2π nĥ . (63)
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Fig. 11 Normalized axial force-axial strain profiles for a rod model with κs = 0, Ωs = 0, K3 ≈ 1.54, corresponding to maximum stiffness
(orange), and for Sadowsky’s ribbon model (blue). Insets compare the geometric configurations obtained in the two models at a certain level of
axial force; the initial configuration is reported as a reference

Fig. 12 Energetic landscape of Sadowsky’s ribbonmodel (ζ = 0), over
which we drew the |κ̂1|-|Ω̂| curves evaluated at the pin-joints of a rod,
as traced by solutions of the equilibrium problem. The inset highlights
their “fraying” in the non-convex region (|κ̂1| < |Ω̂|)

As soon as the solution crosses the line |κ̂1| = |Ω̂|, the
trajectories “fray” (that is, the single point at each h degen-
erates into a point cloud) indicating that the rod is exploring
zero-energy perturbations, i.e., changes of κ̂1 at constant Ω̂

(see the inset in Fig. 12). After a few steps, the simulation
stops converging.

4 Conclusions and outlook

Focusing on a concrete example, we have shown that, when
arranged in assemblies, helical shapes stabilize each other
thanks to the interactions arising from mutual constraints.
The pin-jointed helices of our example respond collectively
to extension and compression, preserving the axial symmetry
of the initial configuration. They can remain cylindrical, i.e.,
each rod can deformas a circular helix. This is the case of rods
with ends free to displace, yet constrained to radial rotations.
On the other hand, when ends are constrained from mov-
ing, the assembly forms edge layers, where rods behave like
perturbed helices, and a bulk region, where circular helices
are preserved. These circular helix configurations character-
ize the response of an assembly of infinite length [23]. Our
results suggest that, boundary conditions incompatible with
the geometry of a circular helix generate a perturbation in
the form of boundary layers which act as transitions from
imposed constraints to a bulk region where rods deform as
circular helices. In future work, it would be interesting to
study the dependence of the extension of the edge layers
from the geometric and material parameters of the system,
e.g., from the initial height of the assembly.

Moreover, we are interested in considering the use of dif-
ferent models for the prediction of the response of tubular
helical structures, to overcome the limitations of the ones we
have adopted so far. It would be interesting to experimentally
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validate the axial force-axial strain profiles in Fig. 11, in order
to verify which model, and in which regime, best reproduces
the physical behavior of the assembly, as it has been done for
knots in Ref. [29]. Our observation on the ill-posedness of the
Sadowsky’s model, corrected as in Ref. [28], also raises the
question of deriving less degenerate Sadowsky-type energies
for narrow ribbons, in which higher order terms may provide
a physically meaningful correction and lead to a less singular
behavior.

At a more general level, the collective behavior we have
discussed highlights the crucial role of mutual interactions
among the rods in promoting the stability and persistence
of helical shapes in a tubular assembly, hinting at why they
are so recurrent in natural and artificial systems. The pellicle
strips of Euglena shown in Fig. 1b, in which adjacent strips
slide along their common edge, provide another example
of stabilization of helical shapes due to mutual interactions
in a tubular assembly [9,30]. It would be interesting to see
whether this argument can be extended further to other, less
specific types of interactions among the fibers of the assem-
bly, such as in the microtubule meshwork of Lacrymaria
shown in Fig. 1a.
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