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Abstract Spatial instability waves associated with low-
frequency noise radiation at shallow polar angles in the
chevron jet are investigated and are compared to the round
counterpart. The Reynolds-averaged Navier—Stokes equa-
tions are solved to obtain the mean flow fields, which serve as
the baseflow for linear stability analysis. The chevron jet has
more complicated instability waves than the round jet, where
three types of instability modes are identified in the vicinity
of the nozzle, corresponding to radial shear, azimuthal shear,
and their integrated effect of the baseflow, respectively. The
most unstable frequency of all chevron modes and round
modes in both jets decrease as the axial location moves down-
stream. Besides, the azimuthal shear effect related modes
are more unstable than radial shear effect related modes at
low frequencies. Compared to a round jet, a chevron jet
reduces the growth rate of the most unstable modes at down-
stream locations. Moreover, linearized Euler equations are
employed to obtain the beam pattern of pressure generated
by spatially evolving instability waves at a dominant low fre-
quency St = 0.3, and the acoustic efficiencies of these linear
wavepackets are evaluated for both jets. It is found that the
acoustic efficiency of linear wavepacket is able to be reduced
greatly in the chevron jet, compared to the round jet.
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1 Introduction

Jet mixing noise is a dominant source of commercial air-
craft, the reduction of which can be realized by machining
serrations or chevrons into the nozzle lip, resulting in a
serrated jet flow. Although the effects of chevrons on jet mix-
ing and noise radiation have been extensively studied, e.g.
Refs. [1,2], the influence of chevron parameters and the
reduction mechanisms of dominant low-frequency noise
at shallow polar angles are still poorly understood, which
imposes serious problems on design and optimization of
parameters of a chevron nozzle. The main evaluation meth-
ods, i.e. the large eddy simulation (LES) and experiments,
are expensive in both time and cost. Currently, the design of
the chevron nozzle primarily relies on trial and error, which
needs faster and more effective evaluation methods for noise
radiation.

In the round jet, the dominant low-frequency noise at shal-
low polar angles is believed to be generated by large-scale
coherent structures, which can even be modeled with spa-
tially developing instability waves [3]. Through parabolized
stability equations (PSE) [4-6] or linearized Euler equation
(LEE) [7], the connections among the linear instability waves
inside the potential core, near-field hydrodynamic fluctua-
tions, and far-field noise can be constructed in the linear
regime. Although the far-field noise calculated with the linear
instability wavepackets is not as accurate as LES in subsonic
jets, this approach can still capture some noise emission prop-
erties. Hence, this approach seems be well suited to quickly
evaluate the noise radiation. Recently, this kind of modeling
has been attempted to analyze the noise generation mecha-
nisms of the chevron jet.

The temporal stability of chevron jets was firstly ana-
lyzed by Gudmundsson and Colonius [8], who found that the
chevron jet contains more unstable modes, and the growth
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rate of the most unstable mode is lower than that of the
round jet based on their baseflows. In their subsequent stud-
ies [9], spatial instability waves were analyzed, and they
found that the peak growth rates shift to lower frequen-
cies in the chevron jet. Very recently, Uzun et al. [10] and
Sinha et al. [11,12] further analyzed the spatial stability of
chevron jets at the low frequency and investigated the influ-
ence of the chevron parameters. Additionally, Sinha et al.
[13] studied the instability waves in the downstream region
and found a good match between the instability waves and
the hydrodynamic fluctuations in the near field. Therefore,
there is no doubt that instability waves play an impor-
tant role in flow mixing and noise radiation in the chevron
jet.

It has long been suspected that noise reduction at low
frequencies in the chevron jet is attributed to lower growth
rates of instability waves. But because PSE are not suited
to capture the noise emission in the far field, direct connec-
tions between the noise emission efficiency and the instability
waves have not yet been presented. Also, we note that the
growth rates of instability waves in chevron jets are higher
than those of round jets in the vicinity of the nozzle in many
cases. Moreover, Jeun et al. [14] in their work addressed that
the growth rate of instability wave is not equivalent to the
acoustic emission efficiency. Hence, the instability wave, and
particularly its efficiency of acoustic emission in the chevron
jet, require further investigation. In this paper, in order to have
a better understanding of instability waves in the chevron
jet, we perform spatial stability analysis at different stream-
wise locations, and the changes of the unstable modes with
respect to streamwise location are examined in detail and are
also compared to the round counterpart. For the purpose of
evaluating acoustic efficiency of instability waves, LEE is
particularly utilized to obtain the linear wavepacket in the
hydrodynamic region and the beam pattern in the far field.
Noise emission efficiency is compared between chevron and
round jets.

The rest of the paper is organized as follows. A detailed
description of numerical procedures is presented in Sect. 2. In
Sect. 3.1, the instability modes in chevron jets are discussed.
In Sect. 3.2, the spatial development of instability waves at
different streamwise locations is discussed. Also, the com-
parisons of the eigenvalues between the round and chevron
jets are presented. In Sect. 3.3, the acoustic efficiency of the
instability waves is investigated by LEE. Finally, some con-
clusions are summarized in Sect. 4.

2 Numerical procedures
This section provides the details of the baseflows and the

numerical schemes employed in linear stability theory (LST)
and LEE.
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2.1 Description of the baseflow

For calculations of LST and LEE, the baseflow is required
as the input. Here, two jets ejected from nozzles des-
ignated SMCO000 (round nozzle) and SMCO01 (chevron
nozzle) [1] are considered in stability analysis, which has
been investigated by experiments [1], Reynolds-averaged
Navier—Stokes (RANS) simulations [15], and large eddy sim-
ulations [16, 17]. The jets are operated at identical conditions
with Mach number Ma = U;/ax = 0.9, Reynolds num-
ber Re = p;U;D;j/p; = 1.35 x 105, where doo, Uj, Dj,
w; are far-field speed of sound, jet exit velocity, diameter,
and viscosity, respectively. The non-dimensional inflow total
conditions Py, Tp and far-field parameters p,, T based on
jet exit pressure p; and temperature 7; are summarized in
Table 1. The SST model [18] was selected for RANS sim-
ulations. Two grids with different resolution were used to
test the grid convergence. The first grid contains about six
million grid cells, while the other contains about eight mil-
lion cells. An in-house, second-order-accurate, finite-volume
structured-grid solver in generalized coordinates is employed
in RANS simulations, where the spatial derivatives are dis-
cretized by Roe scheme and time integrations are advanced
by an implicit approximate-factorization.

Figure 1 presents the centerline axial velocity profiles of
SMCO001, and the iso-contours of i1, at z = r¢ are depicted in
the small figure. The two grids give similar profiles implying
that current grid resolution is sufficient. Compared with LES
and experimental data, the present simulation shows a longer
potential core length and faster decay rate beyond the poten-

Table 1 The flow conditions of the round and chevron jet
Po/pj

1.830

Ma Re To/Tj Pso/Dj T/ T;

0.90 1.35 x 10° 1.188 1.0 1.163

0.8

25 0.6

0.4

(=]
w

10 15 20
z/D;j

Fig. 1 Mean axial velocity along the centerline. Dotdashed line
denotes line 1st mesh, solid line denotes 2nd mesh, open circle from
Bridges and Brown [1], filled square from Engel et al. [15], filled trian-
gle from Xia et al. [16]. The small figure shows the iso-contours of i,
atz =rg
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Fig. 2 Mean axial velocity (i) along the tip-line and valley line. Solid
line denotes tip line, dashed line denotes valley line, filled diamond from
Sinha et al. [13], open circle from Bridges and Brown [1]

tial core. Similar deviations are also found in round jet case
SMCO000. Such discrepancy seems to be common in jet sim-
ulations by RANS [19,20] because the RANS model cannot
simulate the vortex stretching term well [21]. Nevertheless,
the present results match well with RANS solutions of Engel
et al. [15]. Also, the profiles of axial velocities with respect
to z at the lip-line match well with those of Sinha et al. [13]
and Bridges and Brown [1], as illustrated in Fig. 2. As the
rapid growth of instability waves occur primarily inside the
potential core, the current RANS results are still reliable for
the rest of the stability analysis.

2.2 Linear stability analysis
For linear stability analysis, the compressible Navier—Stokes

(N-S) equations in cylinder coordinates (z,r, #) are lin-
earized for a quasi-parallel mean flow described by

gr,0)=p.0,0,i.,T]. (1)

The resulting equations are independent of time (¢) and z,
and the fluctuation variables ¢’ = [p’, uy, uy, u’, T’] can
take the normal modes of the form:

q (z,r0,t)=q(r,0) ell@z—ot) )

The 2-D eigenfunction §(r, 6) can be further expressed in
Fourier expansions:

Ggor.o)= > Gu(re™. 3)

m=—00

Then the linearized N-S equations become:

o0
> (—iw +1L),Gmexp (imb)
m=—0o0

. “)
= Y aKgnexp(imb),

m=—0oQ

where the operator L. and K are the functions of baseflow ¢,
parameters Re, Ma, and Prandtl number Pr.

Different from the round jet, the chevron jet is inhomo-
geneous in the azimuthal direction. Without invoking any
simplifying assumptions, an extremely large matrix must be
solved after discretizing the radial and azimuthal direction. A
simplified method was proposed in Refs. [9,13], and here we
briefly introduce this method. In the current chevron config-
uration, the chevron jet is periodic in the azimuthal direction,
thus the energy is lumarized in azimuthal wavenumbers that
are integral multiples of the chevron count (C). The baseflow
variables and the operators can thus be expanded as

Q="

OO ~ . .
L= Zj?ooLexp (ijCo).

e ijco),
5)

Substituting such expansions into Eq. (4), one can obtain the
following coupled sets of eigenvalue equations:

00
—iwg, + Z (I:)n_jcjén_jc

= ©6)
o
=« Z Ku—jc.jqn-jc
j=—o0

The coupling relationisbasedonn = M+IC, [ € [—o00, o],
where M denotes the lowest azimuthal mode appearing in
one coupling set and also denotes the coupling set.

The coupling equation (6) indicates that to solve the
eigenfunction ¢y (r), one must also solve the eigenfunction
gym+ic(r) with [ € [—o0, 0o]. Because of the limitation of
the computation ability and the mesh resolution, the coupling
equation number and the expansion order in Eq. (5) must be
truncated. After testing for convergence, the baseflow expan-
sion order is truncated to J = 3, while the eigenfunction
coupling number is truncated to N = 5.

In the radial direction, boundary conditions are required.
At the centerline (r = 0), boundary conditions adopted in
Ref. [22] are applied to each azimuthal wavenumber. In the
far-field (e.g. rmax = 10), the fluctuations should decay to 0.
For the coupling set ¢pr477(r), 2-D eigenfunction is recov-
ered by:

N
g™ (r,0) = Z Gu—_ice!M=1D. (7
[=—N
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2.3 Linearized Euler equations

Since the Reynolds number of the examined jet flows is high,
viscosity does not play a key role in instability wave devel-
opment. Linearized Euler equations are used to examine the
downstream development of the instability modes obtained
by linear stability analysis.

2.3.1 Numerical method

The LEE in generalized coordinates are solved using a
finite-difference solver, in which spatial derivatives are
approximated with a seven-point, fourth-order dispersion
relation preserving (DRP) scheme [23]. A four-stage opti-
mized explicit Runge—Kutta scheme [24] is used to advance
the time solution. A seven-point Padé filter with the free
parameter o f = 0.40 [25] is performed every two time steps
at the computational coordinates to eliminate the parasite
waves. The radiation and outflow non-reflecting boundary
conditions [26,27] are used at the inflow, far-field, and out-
flow boundary, respectively. An additional buffer zone with
a damping term [28,29] — o (2) (¢ — ¢;) is added to the right
hand side of LEE to further reduce unphysical reflection at the
outflow boundary and to introduce linear instability waves at
the inflow. The baseflow in the inflow buffer zone is set to
be parallel to avoid introducing unphysical pressure waves,
and the target solutions are updated at each time step with
q: = Re [q exp(i(az — a)t))]. The target solutions in outflow
buffer zone are set to zero. In this study, as the frequency of
fluctuations is constant, Fourier transformation is performed
upon instantaneous flow variables when the transient effects
become negligible.

2.3.2 Validation

To validate the LEE solver, axial velocity fluctuations for
a round jet with Ma = 0.83 at the Strouhal numbers (St)
0.5 are compared with the PSE result [30]. The linear solu-
tions have a free amplitude, which can be adjusted using the
inlet amplitude. The LEE solutions and PSE solutions are
both normalized by their solutions at inlet (z = 0). Figure 3a
presents the comparison of the fluctuation profiles along the
centerline. The magnitude of fluctuation energy has been
amplified of two orders between the jet inlet and z ~ 6ry.
Remarkably, in this region, LEE, LST, and PSE results are
in good agreement. However, discrepancies between PSE
and LEE occur in the downstream region beyond the end
of the potential core, which is attributed to truncation errors
in linearized PSE because of a strong non-parallel effect.
Figure 3b shows the comparison of the radial profile of axial
velocity fluctuation at the streamwise location of z = 4ry.
The LEE results also agree well with those of PSE, illus-
trating that the present LEE solver is accurate and robust for
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Fig. 3 Comparison of axial velocity fluctuations (\u/z |) between LEE
and PSE. a Axial profiles on the centerline. b Radial profiles at the
location of z = 4.0r¢

calculating the spatial evolution of instability waves in the
hydrodynamic region.

3 Results and discussion

In previous studies, it is known that the low-frequency
noise at shallow polar angles is mainly contributed by the
axisymmetric Fourier mode [31,32] and mainly produced by
the axisymmetric coherent structures in the hydrodynamic
region [33]. Therefore, we focus on studying the instability
waves associated with the axisymmetric mode. The spatial
structures and their evolution at M = 0 azimuthal mode will
be elucidated in the following section.

3.1 Multiple instability modes of the chevron jet

Here, we first perform linear stability analysis for present
chevron baseflow in the vicinity of inlet (z = 0.5r¢), and
find multiple unstable modes at different frequencies, which
are also identified at a frequency of St = 0.35 in Refs. [9,10].
For simplicity, we only take the frequency St = 0.5 as an
example, in which three types of most unstable modes are
found at z = 0.5r, and the real parts of eigenfunctions of
pressure are plotted in Fig. 4. It is clear that all eigenfunctions
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Fig. 4 Real part of eigenfunctions of pressure at z = 0.5rp, St =
0.5, M = 0 in the chevron jet. a The first mode. b The second mode.
¢ The third mode. The amplitudes are normalized by their maximum
value. Solid line denotes tip-plane, dotdashed line denotes valley-plane
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Fig. 5 Radial and azimuthal derivatives of axial velocities of baseflow
in the chevron jet at z = 0.5r¢. a du;/dr. b du; /96

present a sixfold periodicity, which is consistent with the
sixfold periodicity of the mean flow. It is observed that all
peaks of eigenfunction amplitude locate in the shear layer
region, suggesting that these instability modes are associated
with the shear effects. Nevertheless, unlike the round jet,
there are two kinds of shear effect, i.e. the radial shear and
azimuthal shear effect, in the chevron jet. To further illustrate
this point, we plot the radial and azimuthal derivatives of axial
velocities of baseflow in Fig. 5 for comparison.

Comparing Figs. 4a and 5a, one can see that the peak loca-
tions of the eigenfunction amplitudes for the first mode in
general match with the locations of peak values of di,/dr,
implying that the first mode should be correlated with the
radial shear effect. Comparing Figs. 4b and 5b, the same
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Fig. 6 Radial variation of eigenfunction amplitude p and radial shear
du,/dr. a The first mode. b The third mode. Solid line du/dr at tip-
plane , dotdashed linediz, /dr at valley-plane, dashed line| p| at tip-plane,
two-dotdashed line| p| at valley-plane

matching is also observed between the eigenfunction of the
second mode and du; /96, which suggests that the second
mode is mainly associated with the azimuthal shear effect.
However, the eigenfunction of the third mode seems to be
much more complicated. The peaks of pressure amplitude
| p| appear around the valley plane, but its variation disagrees
with the change of azimuthal shear du, /96. To identify which
effect is corresponding to the third mode, the radial and
azimuthal variations of the eigenfunction amplitude of |p|,
radial shear du; /dr and azimuthal shear |0u, /00| are further
plotted in Figs. 6 and 7.

In the chevron jet, two azimuthal locations, known as the
tip-plane and valley-plane, are of special concern when inves-
tigating the radial shear effect. The former corresponds to the
location of maximum radial shear, but minimum azimuthal
shear, while the latter is just reversed. Figure 6 shows the pres-
sure amplitude and radial shear as functions of r at tip-plane
and valley-plane for the first and third mode. The eigenfunc-
tions are normalized by their global maximum value. For the
first mode, the peak of pressure amplitude |p| occurs at tip-
plane near r =~ rg, and also the radial position of the peak
is in accordance with the maximum radial shear of baseflow.
However, for the third mode, the peak amplitude of | p| at the
tip-plane is decreased significantly although its radial posi-
tion still matches with that of di, /dr, which is overwhelmed
by the value of | p| at the valley-plane. It is worth mentioning
that there is a plateau of |p| with two peaks in the region
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Fig. 7 Azimuthal variation of eigenfunction amplitude |p| and
azimuthal shear |di;/00| at r = 1.17r¢. a The second mode. b The
third mode; solid line|dit, /36|, dashed line|p|

r € [1, 1.3]rg at the valley plane, and one of the peaks corre-
sponds to maximum du;/dr at the valley-plane. The above
results suggest that the third mode is also influenced by, but
not determined by, the radial shear effect.

In addition, Fig. 7 presents the azimuthal variation of
amplitude of |p| and the azimuthal shear |9ii,/96| at r =
1.17r¢ for the second and third mode, where the azimuthal
shear reaches its maximum. For the second mode, it is
noted that the variation of |p| consists with the variation
of |di;/d60]. This consolidates that the second mode is pri-
marily determined by azimuthal shear effect. As illustrated
in Fig. 7b, although the variation of amplitude of the third
mode generally coincides with the azimuthal shear, it is noted
that the amplitude of pressure fluctuation depends on more
than the azimuthal shear. Significant deviations are observed
around the valley-plane. In other words, from Figs. 6 and 7,
we speculate that the third mode should be determined by
integrated effect of both radial and azimuthal shear.

3.2 Spatial evolution of instability waves

Previously, we have identified that there are more unstable
modes in the chevron jet. However, the phase speeds of cur-
rent instability waves are all subsonic, which means that
they cannot radiate noise directly. The only way for them
to produce noise is to generate spatial pressure wavepackets.
From Fig. 2, one can see that the baseflow spreads rapidly in
the radial direction, which greatly alters the development of
instability waves. In this section, we are devoted to investigate

@ Springer

LU L B e

TTRE TR T T T T T T T T T
. \

0
02 03 04 05 06 07 02 03 04 05 06 07

OSE i e ]

- —
TR AU A A B A A

02 03 04 05 06 07 02 03 04 05 06 07
St St

Fig. 8 The growth rates for the chevron jet SMCO001 and round jet
SMCO000. Solid line denotes, the first mode, dashed line denotes the sec-
ond mode, dotdashed line denotes, the third mode, Dotted line denotes
the unstable mode of SMC000. a z = 0.5r9. b z = rg. ¢ z = 2rp.
dz=3r

the spatial development of these instability waves at perti-
nent frequencies for dominant noise radiation. As addressed
in Refs. [3,16,31], the noise radiation of round and chevron
jets at shallow polar angles is all dominated by low-frequency
components, and thus we here plot the growth rates of insta-
bility waves in the chevron jet SMCOO01 in the frequency
range of St = wD;/U; = 0.2—0.7 at four different stream-
wise locations z/rg = 0.5, 1.0, 2.0, 3.0. Meanwhile, the
growth rates of round jet SMCO000 at the same locations and
frequencies are also presented for comparison.

Close to the nozzle at z = 0.5r¢ in Fig. 8a, in the cur-
rent frequency range, the growth rates (— «;) of the first and
third modes of the chevron jet and the most unstable mode of
round jet increase with frequency. Clearly, the most ampli-
fied frequencies for the first and third mode of the chevron jet
are over the present frequency range. It is noteworthy that the
first mode of the chevron jet has higher growth rates than that
of the round jet at all frequencies. Another important find-
ing is that the most unstable mode has a transition between
St = 0.3 — 0.4 in the chevron jet. At low frequencies, i.e.
St = 0.2, 0.3, the second mode is the most unstable mode,
while at higher frequencies, i.e. St = 0.4 — 0.7, the growth
rates of the second mode are overwhelmed by the first mode.
This type of mode transition is also found at downstream
locations until z = 2rg. As aforementioned, we have shown
that the first and second mode in the chevron jet mainly result
from the radial and azimuthal shear effects, respectively. The
mode transition demonstrates that the radial shear of base-



Instability waves and low-frequency noise radiation in the subsonic chevron jet 427

flow prefers to induce the relatively high frequency instability
waves, while the azimuthal shear tends to amplify the low
frequency instability waves.

Compared with Fig. 8a, the growth rate of the first mode
is decreased greatly due to radial spreading at z = ro. The
growth rates of the first mode are now close to that of the
round jet at all frequencies as illustrated in Fig. 8b. At this
location, the most unstable frequency of the second and third
mode of the chevron jetis St = 0.3, 0.5, respectively. How-
ever, at z = 2rg, the most unstable frequencies of the three
modes of the chevron jet are St = 0.4, 0.2, 0.2, as shown in
Fig. 8c. Basically, as z increases, the most unstable frequency
of all unstable modes decreases in the chevron jet, which is
similar to the round jet [6]. The decrease of the most unstable
frequencies implies that the high frequency modes are mainly
amplified near the nozzle in the linear regime, but the low fre-
quency modes will dominate the development of instability
waves in a wider downstream region in both the round and
chevron jets. At z = 3.0rg in Fig. 8d, we are even unable to
find unstable modes in the frequency range of St = 0.4 —0.7
in the chevron jet. The first and second modes vanish, thus the
third mode becomes the most unstable one at St = 0.2, 0.3.
As z further increases, we also only find the third mode in the
chevron jet, since the inhomogeneity of the baseflow in the
azimuthal direction also decreases with z rapidly. It is well
known that the dominant noise is mainly generated near the
end of the potential core in the turbulent jets [3]; however,
the first and second modes can only be found near the nozzle,
which means that they have little direct influence on noise
generation. Nevertheless, the growth rates of the two modes
are quite high, so they undoubtedly play important roles in
enhancing flow mixing near the nozzle in the chevron jet.

As demonstrated in Fig. 8, there would be no high fre-
quency unstable modes as z 2 3rg. In Fig. 9, we further plot
the phase speeds (¢, = w/a,) and growth rates of the most
unstable mode in the low frequency range of St = 0.2 — 0.4
to show the development of instability waves in a global view.
In Fig. 9a, b, it is shown that the phase speeds of SMC001
are much lower than those of SMC000 at St = 0.2 and
0.3 as z < 2rp, when the most unstable mode of SMCO001
is the second mode. From Fig. 9, the maximum growth
rates clearly indicate that the low-frequency perturbations
(St = 0.2 —0.4) near the nozzle are more likely amplified in
the chevron jet than in the round jet, whereas the reverse is
true as z = 3r¢. Furthermore, it is worth noting that only the
low-frequency third mode is unstable as z 2 3rg, implying
that this mode is most likely related with acoustic emission.

3.3 Acoustic efficiency of linear wavepackets
In Sect. 3.2, we have identified that the growth rates and

phase speeds of the chevron jet are both lower than that
of the round jet as z 2 2rp. It has been argued that the
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Fig. 9 Comparison of the phase speed and growth rate of the most
unstable mode as functions of z between SMCO000 (solid square) and
SMCO01 (hollow square) at different frequencies. a St = 0.2. b St =
03.¢St=04

higher growth rate and closer to sonic of phase speed, the
higher acoustic radiation efficiency of wavepackets [8,10].
This has been suggested as one reason of the low-frequency
noise reduction in chevron jets. Because of strong azimuthal,
inhomogeneous, and non-parallel effect of baseflow in the
chevron jet, we will employ LEE rather than PSE to ver-
ify this argument and to check the global effect of linear
wavepacket in the chevron jet on noise radiation.

Since chevron jets mainly reduce low-frequency noise at
shallow polar angles [16,17,31], we currently select an insta-
bility wave at St = 0.3 as a typical example to investigate
the spatial development and acoustic efficiency. As discussed
before, although the chevron jet has multiple unstable modes,
only the third mode is unstable as z 2 3.0 and related to
acoustic emission. Here, we only consider the third mode
as the inflow forcing implemented in the buffer zone dur-
ing LEE simulations. The instability waves are introduced
in the inflow buffer zone with the same method elucidated
in Sect. 2.3, where the round and chevron jet have the same
small forcing amplitude of 1073, The identical configura-
tions are applied to the round jet case SMCO000. A cubic
computational domain is used in present simulations. The
computational domain size, grid numbers, and mesh sizes
are all summarized in Table 2. Fourier transformation is
performed upon instantaneous flow variables after the pres-
sure fluctuations are full of the entire computational domain.
The following discussions are all based on the Fourier trans-
formed data.
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Table 2 The mesh grid and computational domain in LEE simulation

Case Domain size (x X y X z) Grid (x X y X z) Mesh size (Axmin X AYmin X AZmin)
SMC000 [— 20, 201 x [— 4, 60] 2512 x 244 [0.021% x [0.07]
SMC001 [— 20, 201 x [— 4, 60] 2512 x 244 [0.021% x [0.07]
.
-6E-05 6E-05

y/ro

Fig. 10 Beam patterns of pressure fluctuations at St = 0.3 of the
round and chevron jets at the central plane of x = 0 computed by LEE.
a SMC000. b SMC001

Figure 10 presents the beam patterns of pressure fluctua-
tions obtained by LEE for the round and chevron jets. The
growth and decay for the pressure wavepackets have been
clearly demonstrated. Moreover, it is found that the noise is
produced from the region near the end of the potential core,
and mainly radiates towards shallow polar angles, which are
in agreement with experimental and LES results [2,16]. In
general, the beam patterns produced by the wavepackets in
two jets show no qualitative difference. However, if exam-
ining the wavepackets in the hydrodynamic region carefully,
we can find that the wavepackets in chevron jets saturate a bit
earlier and decay faster, and thus emit less noise. Moreover,
Fig. 11 plots the normalized pressure as a function of z near
the shear layer at r = rp, where the pressure wavepackets are
compared for the two jets. It is clearly shown that the peak
amplitude of the round jet is three times as large as that of
the chevron jet. Additionally, we observe that the pressure
amplitudes keep growing before z < 10r( in both jets, in
agreement with LST analysis that the low-frequency mode
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Fig. 11 The profiles of normalized pressure as a function of z at the
radial position of r = rp, solid line denotes SMCO000, dashed line
denotes SMCO001

is unstable over a wider region and dominate the developing
of instability waves.

In the present case, only the linear wavepacket is con-
sidered, and therefore, the baseflow can be regarded as an
amplifier, which amplifies the fluctuations at inflow and emit
far-field noise as output. In order to quantify the acoustic
emission of wavepackets, the acoustic efficiency is defined
as the ratio of output energy of acoustics and input energy of
fluctuations, i.e.

&7 P2z rm, 0)d0
Or o [p (u% + a2 + u%) + 1617 + |J/P|2]z=0 dodr
(®)

o(z) =

where r,, = 15 is a selected radial location for measuring
far-field noise.

Figure 12 indicates the acoustic efficiency factor o as a
function of z. Apparently, the acoustic emission factor in the
chevron jet is one order smaller than that in the round jet. In
the linear regime, this point means that if we perturb the flow
at inlet with the same energy, the chevron jet will emit much
lower noise than the round jet. Here, we should also mention
that only the noise radiation in the linear regime is studied
without consideration of nonlinearity or intermittency effect,
which is also important in noise generation [3,6]. In other
words, LEE has been proven to be a robust tool for evaluating
the linear wavepackets in the hydrodynamic region and far-
field noise simultaneously in a convenient way.
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Fig. 12 The profiles of relative pressure amplitude o (z) as a function
of z at aradial position of r = 15rp, solid line denotes SMC000, dashed
line denotes SMCO001

4 Conclusions

In this paper, instability waves and the acoustic efficiency
of the unstable wavepackets are investigated in the chevron
jet, which are compared to those of round jet. The RANS
is utilized to obtain the baseflow produced by the round and
six-chevron nozzles. Spatial stability analysis is performed at
different frequencies and streamwise locations, and then LEE
is employed to evaluate the wavepacket in the hydrodynamic
region and acoustic efficiency.

By performing spatial linear stability analysis, it is
observed that there are multiple unstable modes in the
chevron jet, while just one unstable mode can be found in the
round jet. In the chevron jet, due to the strong azimuthal inho-
mogeneous of the baseflow, three types of unstable modes
are identified in the vicinity of the nozzle, which are closely
related with the radial shear effect, azimuthal shear effect,
and integrated effect of both, respectively. Near the nozzle,
the azimuthal shear effect related modes are more unstable
than radial shear effect related modes at low frequencies,
while the latter have much more higher growth rates at high
frequencies. By investigating the eigenspectra at different
streamwise locations, it is found that the high frequency
modes grow much faster than low-frequency modes near
the nozzle, while the latter dominates the development of
instability waves in the downstream region in both the round
and chevron jet because high frequency modes are stabilized
quickly as the increase of z. In general, the most unstable fre-
quency of all chevron modes and round modes in both jets
will decrease. Moreover, we find that the first and second
unstable modes in the chevron jet can only be identified near
the nozzle (z < 3rg), which means that they would mainly be
responsible for faster radial spreadings and have less influ-
ence on noise generation. Far away from the nozzle, only the
low-frequency third mode is unstable in the chevron jet, the
growth rate of which is reduced compared to the round jet.

For a dominant low frequency St = 0.3, linearized Euler
equations rather than PSE are solved to obtain the wavepacket
in the hydrodynamic region, as well as beam patterns of pres-
sure in the two jets. The comparison of the acoustic emission
efficiency o (z) demonstrates that the chevron jet has reduced
an order of magnitude of the acoustic efficiency in the lin-
ear regime. The present results prove that in combination of
LST analysis and LEE based on RANS baseflows, one can
evaluate the acoustic efficiency and beam patterns conve-
niently at dominant low-frequencies in the linear regime for
turbulent jets even with complex geometry at high Reynolds
numbers, which will be helpful for quick evaluation of acous-
tic efficiency when designing the chevron nozzle. It is also
important to point out that an efficient evaluation method for
noise radiation including nonlinearity and some other turbu-
lent effects is still desired, which is a work in progress.
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