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Abstract Despite dedicated effort for many decades, sta-
tistical description of highly technologically important wall
turbulence remains a great challenge. Current models are
unfortunately incomplete, or empirical, or qualitative. After
a review of the existing theories of wall turbulence, we pres-
ent a new framework, called the structure ensemble dynam-
ics (SED), which aims at integrating the turbulence dynamics
into a quantitative description of the mean flow. The SED the-
ory naturally evolves from a statistical physics understanding
of non-equilibrium open systems, such as fluid turbulence,
for which mean quantities are intimately coupled with the
fluctuation dynamics. Starting from the ensemble-averaged
Navier–Stokes (EANS) equations, the theory postulates the
existence of a finite number of statistical states yielding a
multi-layer picture for wall turbulence. Then, it uses order
functions (ratios of terms in the mean momentum as well
as energy equations) to characterize the states and transi-
tions between states. Application of the SED analysis to an
incompressible channel flow and a compressible turbulent
boundary layer shows that the order functions successfully
reveal the multi-layer structure for wall-bounded turbulence,
which arises as a quantitative extension of the traditional
view in terms of sub-layer, buffer layer, log layer and wake.
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Furthermore, an idea of using a set of hyperbolic functions
for modeling transitions between layers is proposed for a
quantitative model of order functions across the entire flow
domain. We conclude that the SED provides a theoretical
framework for expressing the yet-unknown effects of fluctu-
ation structures on the mean quantities, and offers new meth-
ods to analyze experimental and simulation data. Combined
with asymptotic analysis, it also offers a way to evaluate
convergence of simulations. The SED approach successfully
describes the dynamics at both momentum and energy levels,
in contrast with all prevalent approaches describing the mean
velocity profile only. Moreover, the SED theoretical frame-
work is general, independent of the flow system to study,
while the actual functional form of the order functions may
vary from flow to flow. We assert that as the knowledge of
order functions is accumulated and as more flows are ana-
lyzed, new principles (such as hierarchy, symmetry, group
invariance, etc.) governing the role of turbulent structures in
the mean flow properties will be clarified and a viable theory
of turbulence might emerge.
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1 Introduction

Turbulence is an intensely researched, engaging problem for
over a century, since the time of Osborne Reynolds. However,
rules for identifying turbulent flow structures and ways to
predict mean quantities remain elusive. Wall-bounded turbu-
lent flow has attracted considerable recent attention because
of its relative simplicity and its direct relevance to engi-
neering applications, and its study has engendered notable
physical understanding of turbulence phenomena. Despite

123



848 Z.-S. She et al.

great experimental and computational efforts, theoretical
description of wall turbulence remains greatly wanting. Mean
velocity and Reynolds stress profiles are mostly empirical;
asymptotic laws such as log-law or power-law address, at
most, only limited portions of the flow domain, with lively
controversies; discussions of mechanisms of turbulence
production and vortex generation are remote to quantitative
modeling of mean quantities, and so on. More importantly,
theoretical studies lack a coherent setting to guide experiment
or computation.

Theory devoted to predicting mean properties of flows
is usually called the closure. Three kinds of closure theo-
ries have been developed over the past several decades. The
earliest one advanced by Kolmogorov [1] in 1940s expresses
unknown correlation terms in the ensemble averaged
Navier–Stokes (EANS) equations in terms of correlation
variables (which are being solved) using some “ad hoc”
closure assumptions commonly referred to as Reynolds aver-
aged Navier–Stokes (RANS) modeling. Solutions of RANS
equation, usually obtained numerically, compute the mean
velocity profile. This approach is the core of industrial
computational fluid dynamics (CFD) software. In aero-
space industry, RANS-based CFD tools are widely used,
but empirical constants need to be adjusted using large sets
of experimental database. Drag coefficient prediction using
CFD software can reach an accuracy of 10−3 to 10−4, with
the error larger than experimental data by one order of mag-
nitude. Further improvement seems to require a fundamental
change in the artificial nature of RANS formulation.

Current RANS models for wall turbulence are essentially
based on Prandtl’s boundary layer theory. For flows passing
by a nearly flat plate, RANS models are acceptable because
Prandtl’s theory is qualitatively correct. However, for flow
passing over a complex object such as a wing or flap, turbu-
lent mean flow structures are very little known theoretically.
Consequently, there exists no reliable basis for guaranteeing
accurate CFD computations of flows around a whole airplane.
A theory of mean flow for complex geometries is needed
for making a decisive progress, and for that, a quantitative
turbulent boundary layer theory is a pre-requisite.

How far are we away from such a quantitative theory of
turbulent boundary layer? During the past several decades,
experiments, direct numerical simulations (DNS) and large-
eddy simulations (LES) have provided a huge database about
detailed flow structures both in canonical settings such as
channel, pipe and boundary layer, and in more complex
environments [2–4]. The fact that a quantitative theory is
still out of sight, despite of tons of DNS and LES data, is
proof of missing good concepts or a good framework. A
productive framework would enable us to extract relevant
information from DNS or LES data and to characterize quan-
titative effects of turbulent structures on the means. Once
such a framework is in place, DNS or LES studies would be

better guided and quantitative closure descriptions would be
uncovered.

In this paper, we discuss a new perspective for such a
theoretical framework from a statistical physics and com-
plex system point of view. A key claim of the new approach
is that turbulent flows need to be treated as an “open” prob-
lem, and the effects of fluctuations on the mean should not
be described in a fixed functional form, because a variety of
flow structures in different environments can generate differ-
ent eddy effects, corresponding to different functional forms.
In other words, a viable theoretical framework capable of
describing complex flows ought to be general regarding clo-
sure schema. Specific closure schema for specific flow can
be inspired from DNS results. A framework needs to provide
concepts which enable the extraction of such an appropriate
closure schema for each flow from empirical (DNS or LES)
data, which is unfortunately missing. The new approach pro-
posed here fulfills this need. In the long run, as more flows
are studied under the new framework, universal principles
that govern some aspects of the mean quantities will emerge.

The paper is organized as follows. In Sect. 2, we give
a review of relevant closure theories. The statistical phys-
ics background and main ideas of the new approach are
explained in Sect. 3. In Sect. 4, we present a detailed frame-
work for the study of wall-bounded turbulent flows, including
universal balance principles, order functions and quantitative
models, with several key results of the new approach obtained
for incompressible turbulent channel flows and a compress-
ible turbulent boundary layer. Section 5 contains a discussion
of several applications of the new approach, including a new
second-order closure schema, a guide to DNS study of wall
turbulence in general and a schema to evaluate simulation
data. At the end, the future of turbulence theory is discussed.

2 A review of the relevant closure theories

Theoretical study in wall-bounded turbulence mostly focuses
on the prediction of (time-averaged) mean velocity, and other
related mean properties determining drag, lift, heat trans-
fer and other quantities of engineering interest. Here we
review the relevant closure theories, divided into two kinds
as follows.

2.1 Scaling analysis

The first important issue in determining mean velocity is
the choice of right scaling for the velocity at large Reynolds
number (Re). According to Prandtl [5], the law of wall is

U

uτ

= f (y+), (1)
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where uτ is the friction velocity. von Karman [6] and Clauser
[7] proposed the so-called velocity defect law,

Ue − U

uτ

= g(η), (2)

where Ue is the free stream velocity in the outer flow,
η ≡ y/� and � is a characteristic thickness of the boundary
layer.

However, there are different opinions about the scaling of
the outer flow. George and Castillo [8] argued that only Ue

is the right velocity scaling for the outer flow, which is con-
sistent with the similarity solution for the Prandtl’s boundary
layer equation at infinite Re. The criterion is based on an
asymptotic invariant principle (AIP) that all of the coeffi-
cients in the rescaled momentum equation have the same
dependence on x . However, Jones et al. [9] proved that this
criterion can not eliminate uτ scaling, and the wake function,
for example, can be one of the similarity solutions. Neverthe-
less, their claims can not be checked because of the infinite
Re needed. Another outer scaling is the Zagarola and Smits
[10] (hereafter referred to as ZS) scaling, by which the veloc-
ity defect shows a better similarity. Until now, the debate on
the validity of von Karman scaling, George scaling and ZS
scaling is alive. Note that all of these scalings can fit the fric-
tion data quite well by adjusting coefficients [11]. Therefore,
a relevant issue is: Which of the scalings is valid for a wider
range of Re?

Next step is to determine matching conditions. From Eqs.
(1) and (2), Millikan [12] obtained a matching equation

y+ d f (y+)

dy+ = η
dg(η)

dη
. (3)

If each side of this formula is assumed to be constant,
a log-law profile follows. This scale separation assumption
between y+ and η is reasonable when Re → ∞. Millikan
also pointed out that if the velocity defect form Eq. (2) is
taken to be U/Ue = g(η), then

y+

f (y+)

d f (y+)

dy+ = η

g(η)

dg(η)

dη
, (4)

which yields a power law.
Since then, models have been developed in two directions:

log-law and power-law. Nickels [13] and Monkewitz et al.
[14] (hereafter referred to as MCN) are examples of the first
kind (see next subsection), while George et al. suggested a
power law for TBL [8] and a log low for channel [15] (here-
after referred to as WCG). Furthermore, at a finite Re, setting
Re- or y-dependent constants in Eq. 3 gives rise to different
asymptotic formulas.

For channel flow, the WCG theory assumes that a solution
for the overlap region is given by

U

u∗
= 1

κ(Re)
ln[y+ + a+(Re)] + Bi (Re). (5)

Then, they claimed the existence of the asymptotic log-law
for channel and pipe flows, with Re-dependent coefficients
κ and a+; the latter is speculated to be related to a so-called
meso-layer (30 � y+ � 300).

Buschmann and Gad-el-hak [16] suggested that a more
complex functional form is needed to describe the mean
velocity, and proposed a generalized log-law to solve
Eq. 3 at a finite Re. By introducing expansions

f =
∑

i

fi/Rei
τ , g =

∑

i

gi/Rei
τ ,

where i = 0, 1, 2, . . ., they obtain a zeroth order equation as

d f0

d log y+ = c1 + E1/y+,

dg0

d log η
= c1 + e1η.

(6)

With a sophisticated iteration procedure, they cancelled
out high-order terms in 1/Reτ ∼ 1/y+ ∼ η and produce a
so-called generalized log-law form, with a large number of
coefficients to be determined. Although the expansion seems
to extend the domain of description and improves the predic-
tion accuracy on Karman coefficient including the Re-effect,
their analysis, in the absence of any physical explanation,
seems not very helpful. It is also unclear what values these
coefficients have in pipe flow or boundary layer.

While the above discussions focus on the structure of
expansion, others attempt to invoke invariance principles.
Barenblatt and co-workers [17,18] proposed a concept of
incomplete similarity for large Re-limit. It begins with the
dimensionless relationship for the mean-velocity gradient,

� = y+ ∂U+

∂ y+ = f (y+, Re). (7)

In the limit ν → 0, the complete similarity is

y+ ∂U+

∂ y+ = f (∞,∞) = const = 1

κ
, (8)

which indicates the log-law. However, they assumed an
incomplete similarity as

y+ ∂U+

∂ y+ = g(Re)y+α(Re)
, (9)

which gives a power law scaling, with some supporting obser-
vations [19].

According to the Lie group theory, Oberlack [20,21] made
a “maximum symmetry” assumption to determine a unique
transformation of all variables for parallel flows. This trans-
formation maintains four kinds of invariant scaling for U+
versus y+, namely, “linear–linear” scaling identified in the
sub-layer; “linear–log” and “log–log” scaling corresponding
to log-law and power law, respectively; and a newly predicted
“log-linear” scaling in the wake. Since all these local scalings
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are only for parts of the whole profile, a consistent compos-
ite form (valid for the whole domain and for finite Re) is
required.

Note that all the above theories relate the velocity pro-
file to invariance principles in an “ad hoc” way, without any
sound physical justification. This is why the state-of-the-art
involves many stark controversies, some of which should be
resolved with more dynamical information on turbulence.
After fluctuation structures are taken into account, refined
features of the velocity profile will be revealed and meth-
ods of selecting appropriate invariance groups may become
clear. There is no evidence that the near-asymptotic is unique
and hence also the log-law. Indeed, we will show that a bet-
ter alternative exists as we give a wider profile that includes
log-region as a sub-domain (see Sect. 4.3).

2.2 Empirical modeling of mean velocity profile

The second kind of theory describes the entire mean velocity
profile by fitting experimental and numerical results. With
the presence of high-quality data due to the progress of
measurement and computational technologies, this approach
has yielded significant outcomes in recent years, includ-
ing Nickels’s model, MCN model, and L’vov et al. [22]
(heretofore referred to as LPR model).

Nickels employed a three layer model, a polynomial
description of the sub-layer with exponential modulation, a
logarithmic function for the log-layer with high-order modu-
lation, and an exponential decay function for the wake—for
mean velocity profiles of TBL, channel and pipe. An inter-
esting feature of his description is a passage from boundary
layer to channel with slight modification of the wake func-
tion. The model is a parameterization with some effect of
pressure gradient taken into account.

The MCN model obtains a two-layer formula for mean
velocity profile (only) of TBL at high Re, which is a
parameterization of a massive set of experimental data
(IIT & KTH data). They fit the log-law indicator function

 = y+dU+/dy+ for the inner layer and the velocity defect
(U+∞−U+

outer) for the outer layer, each yielding a logarithmic
form limit. The two layers are hence matched at the overlap
region as

U+
composite = U+

inner + U+
outer − U+

log. (10)

However, their formulation is rather complicated (with
dozens of coefficients), and only valid for relatively high Re,
rather than finite Re. Moreover, its empirical nature results
in the inability to describe other flows like channel and pipe
flows.

In contrast to Nickels and MCN, the LPR theory proposes
an alternative physical model of turbulent mean flow over
the whole channel and pipe with a partial inclusion of the

properties of the fluctuation field. They introduce the energy
balance equation and even (remotely) the Reynolds stress bal-
ance equation for defining relevant length scales, giving two
unknown functions: one wall function, rW, and one length
function, �. Both are modeled with inspiration from avail-
able DNS data.

The weak part of the LPR theory is its intuitive nature,
which manifests in three aspects: first its inability in ana-
lyzing and improving the degree of approximation; second,
the form of the two critical functions determining the mean
profile, rW and �, appears to be arbitrary; and finally, the
LPR theory, does not contain a theoretical framework which
allows a possible extension to boundary layer or other flows.

2.3 Challenge

The log-law versus power-law controversies [23–26] have
attracted a great deal of attention in recent years, but the
debate may be interpreted differently. From a mathematical
point of view, either log-law or power-law could be a leading-
order approximation at an infinite Re, depending on which
invariance principle (matching) is used in the derivation. On
the other hand, Oberlack and Rosteck [27] pointed out that
basic invariance principle is valid in only a restricted domain
of the flow, and there may be many other locally valid expres-
sions. Since the asymptotic form in any restricted zone is
not unique, fighting over log-law or power-law seems futile.
Instead, it is more important to find an approximation which
works more accurately at a finite Re.

Another major shortcoming of the existing closure the-
ories is that their discussion is limited to the mean veloc-
ity profile and the associated mean momentum balance, but
hardly involves fluctuation structures. However, studies of
turbulent structures during the past several decades have pro-
duced strong evidence of the non-trivial role of fluctuations in
the mean. In a recent review article, Marusic et al. [28] point
out that it is more promising to move toward theories that
incorporate fluctuation statistics rather than mean. Hence,
constructing a closure description using kinetic energy is the
next challenge.

In summary, we believe that the key challenge for wall tur-
bulence is to construct a finite Re theory of the mean quanti-
ties (beyond mean velocity profile) for the entire flow domain,
from the wall to the outer region. This is what we present now.

3 SED as a closure theory for general non-equilibrium
systems

3.1 Two types of complexity

There are two types of complexity in fluid turbulence:
multi-degree of freedom, and multi-factors from different
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environments like wall, compressibility, pressure gradient,
buoyancy, rotation, etc. The progress in computational tech-
nology has enabled accurate calculation of some simple flows
at restricted sets of physical parameters such as Re and Mach
number (M), but computation of real engineering flows is
generally too costly. Extrapolating computational solutions
to realistic physical conditions represents a major challenge
owing to the lack of a viable theory. Secondly, the complexity
in environments potentially challenges the concept of “uni-
versality”. There is no unified approach yet to address these
complexities.

3.2 Multiple states for non-equilibrium open systems

The complexity in fluid turbulence also manifests in the form
of a variety of flow structures which display intermittent
motions in space and time. When a statistically stationary
state exists, velocity and other fluctuations are said to be
“self-organized”, when a well-behaved probability distribu-
tion function exists and hence a set of well-defined mean
quantities and root-means-square (rms) fluctuation inten-
sities. Indeed, all stationary processes are self-organized,
but complex self-organized turbulent flows are, in addition,
characterized by smooth variations of the statistical means
and rms intensities in space. We believe that the complex-
ity would manifest in spatial variations which display pos-
sibly many, but finite number of, distinct patterns. This
thought can be summarized as Multi-state hypothesis: the
non-equilibrium turbulent flow generally possesses a finite
number of statistical states, and the complexity of the system
manifests in the co-existence of multiple states in the form
of different layers.

Under this hypothesis, a key question to answer before
deriving a viable mean-field theory of turbulence is: How to
determine statistical states and what are universal properties
of the transitions?

The statistical states should flow from first principles such
as conservations of mass, momentum and energy. In the
case of turbulent flow, the Navier–Stokes equations gov-
ern the space-time variation of fluctuating density, veloc-
ity and temperature. Statistical states are thus determined
by the EANS equations—the universal balance principles.
The difficulty is that the EANS equations are not closed; for
example, in the case of incompressible flow, second-order
correlation functions appear in the mean momentum equa-
tion, third-order correlation functions appear in the equations
for the second-order correlation and mean kinetic energy,
and so on. This is the notorious closure problem of turbu-
lence. After many decades of research, it is fair to conclude
that the traditional approach of adopting “ad hoc” closure
assumptions may not be the right way. One needs to find
alternatives!

3.3 SED as a new theoretical framework

The structure ensemble dynamics (SED) attempts to solve the
unclosed EANS equations connecting the mean and fluctua-
tion quantities in the following way. First, it treats the EANS
equations as an open system, for which different kinds of
closure schema can be permitted for different flow systems
or environments. So, it does not forcefully close the EANS
equations with a unique closure assumption. Secondly, the
multi-state assumption implies that different flow systems
are characterized by a distinct set of multi-layer structures.
The SED injects the concept of “order functions” (discussed
below), for representing the distinct multi-states and the tran-
sitions between them. Thirdly, after the order functions are
known, the EANS equations fully determine (algebraically)
the mean quantities.

Thus, an initial phase of study involves the determina-
tion of order functions from empirical (DNS or LES) data.
Then the study of order functions using numerical data offers
a guide for DNS (LES) study of turbulence. Later, as the
properties of the order functions are interpreted in terms of
symmetry and other theoretical concepts, the SED approach
would form a comprehensive theory for describing the mean
quantities and the effects of fluctuation structures on the
means.

The SED theory emphasizes three aspects. First, we
assume the existence of an ensemble or statistical stationa-
rity. The existence of an ensemble has been inspired by the
discovery of the She–Leveque scaling form [29] and explic-
itly postulated recently [30], which implies that the mean
is well-defined, together with the second moment (rms) of
fluctuations, and shows smooth behavior with Re, M , etc.
The turbulence ensemble unambiguously evaluates statisti-
cal averages; and the existence of a solution to EANS equa-
tions and of a set of order functions are implied. These states
are quantitatively described by the balance terms in the mean
momentum and energy equations. Second, the goal of SED
is to describe the statistical effects of fluctuating structures,
which manifest both in smooth spatial variations of the order
functions and in their variations with Re and other phys-
ical parameters. This is the notion of so-called statistical
structure, in terms of multi-states (multi-layers for wall tur-
bulence), which is quite different from geometrical consider-
ations focusing on analyzing instantaneous fields. Theory of
statistical structures will involve concepts from group analy-
sis. Third, the word “dynamics” aims at incorporating various
physical effects (buoyancy, rotation, roughness, pressure gra-
dients, etc.) which act necessarily in a dynamical way in a
non-equilibrium system. Keeping dynamics in mind prevents
over-simplified assumptions about turbulent flows; an exam-
ple of such over-simplification is the mixing length or eddy
viscosity approach. The SED searches for all relevant dynam-
ical mechanisms in physical and parameter space by dealing
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with all terms in EANS equations. Although we initially con-
sider the statistically steady situation, it can address active
development such as transition to turbulence and unsteady
motions.

The three words (ensemble, structure, and dynamics) at
this stage appear to be abstract, but they lay down a theo-
retical framework for pursuing a viable theory of turbulence,
capable of dealing with the two kinds of complexity described
above. Its initial aim is to produce a quantitative theory of
turbulent boundary layer and then a theory for complex flows.

3.4 Order functions

Since multiple statistical states exist in physical and param-
eter spaces, transitions between the states are the key prom-
ises of the theory. In statistical physics, the order parameter
is a concept to describe a transition (in the parameter space).
We thus propose a similar concept—order function—whose
spatial variations describe transitions between different sta-
tistical states in different flow regimes or layers.

At this stage, we define three types of order functions.
The first type is a sensitive indicator, defined by the defect
form of the terms in EANS equations, such as 1 − S+ where
S+ is the normalized mean shear. They can reveal effects
of turbulent structures and can be used to evaluate the accu-
racy and consistency of numerical simulations, because their
near-wall or central asymptotic behaviors can be analytically
obtained. The second is a ratio of any two terms in the EANS
equations, representing different physical actions. This ratio
describes the relative importance of the two actions and hence
physical mechanisms. Locations where specific action terms
crossover are important information of statistical dynamics.
A typical example is the ratio of production to dissipation.
The third type is scaling function defined by dimensional
analysis. They determine the scaling of the terms in the bal-
ance equations, and hence the dependence on Re and other
physical parameters. A typical case is the mixing length �m,
which shows a linear scaling in the logarithmic region.

Generally speaking, the order functions describe the var-
iation of statistical states in space, being effects of fluctua-
tions on the mean. We keep the specific definition of order
function open and do not exhaust all order functions here,
as additional observations may reveal new order functions.
However, how order functions depend on the details of the
flows is unclear yet. We speculate that, as Re increases, they
will exhibit important universal properties, some of which
may even be valid for other flows.

3.5 Multi-layer hypothesis

A multi-layer hypothesis is specifically proposed for wall tur-
bulence, as derived from multiple states for general non-equi-
librium systems. Specifically, we assume that the ensemble

of fluctuating structures displays a finite number of statistical
states, depending on the distance from the wall; these states
define the multi-layer structures as seen in order functions,
resulting in a local similarity statement

φs

φs
0

= hs
(

y

ys
0

)
, (11)

where s donates each local domain, and φ denotes the order
function. φs

0 and ys
0 are the local scalings. The multi-layer

hypothesis suggests that s > 1, and the spatial variation of
φ involves multiple transitions, from one layer to another.
A complete description across the entire domain requires a
composite expression discussed in Sect. 4.3 below.

In summary, the SED suggests development of a more
complete multi-layer description to incorporate all dynam-
ical features at both the momentum and the kinetic energy
balance levels. Traditional two-layer (sub-layer and wake)
or three-layer (sub-layer, log-layer and wake) model, as a
beginning of this description, remains at the empirical level
and applies to the mean velocity only. A composite expres-
sion based on invariance principles, especially for the entire
domain and finite Re, is needed.

4 SED closure theory for wall-bounded turbulence

In this section, we present the SED closure theory for wall-
bounded turbulence, including universal balance principles
(the EANS equations) and the order functions, and a quanti-
tative modeling using hyperbolic transition functions.

4.1 Universal balance principles

The ensemble averaged mass and momentum equations are

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (12)

∂ρui

∂t
+ ∂ρui u j

∂x j
+ ∂ p

∂xi
= ∂ti j

∂x j
, (13)

where

ti j = −2

3
μ

∂uk

∂xk
δi j + μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (14)

Consider wall-bounded stationary turbulent flow with two
inhomogeneous directions: x streamwise and y wall-normal.
Then, the streamwise momentum equation is

∂ p

∂x
=

⎛

⎝
∂μ∂u

∂y

∂y
+ ∂μ∂v

∂x

∂y
+ ∂t11

∂x

⎞

⎠ −
(

∂ρuu

∂x
+ ∂ρuv

∂y

)
.

(15)
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Integrate Eq. 15 over y, we obtain

τ = S + W, (16)

where τ is the total stress, S is the shear stress and W includes
all nonlinear terms defined below. For convenience, we make
the following decomposition

τ = τw − τp,

S = S⊥ + S//, (17)

W = W ⊥ + W //,

where τw = μ∂u
∂y

∣∣∣
y=0

is the wall shear stress and τp =
− ∫ y

0
∂ p̄
∂x dy is the stress defect; ⊥ and // indicate effect

due to variations in the normal and streamwise directions,
respectively

S⊥ = μ
∂u

∂y
,

S// = μ
∂v

∂x
+

y∫

0

∂t11

∂x
dy,

(18)

W ⊥ = −ρuv,

W // = −
y∫

0

∂ρuu

∂x
dy.

(19)

Under the Reynolds decomposition defined by

u = U + u′, v = V + v′, w = W + w′,
p = p0 + p′, μ = μ0 + μ′, ρ = ρ0 + ρ′,

(20)

we obtain

τ = S⊥
0 + S//

0 + S⊥
2 + S//

2 + W ⊥
0 + W //

0

+W ⊥
2 + W //

2 + W ⊥
3 + W //

3 , (21)

where

S⊥
0 = μ0

∂U

∂y
,

S//
0 = μ0

∂V

∂x
+ 2

3
∂x

y∫

0

(
2μ0

∂U

∂x
− μ0

∂V

∂y

)
dy,

S⊥
2 = μ′ ∂u′

∂y
,

S//
2 = μ′ ∂v′

∂x
+ 2

3
∂x

y∫

0

(
2μ′ ∂u′

∂x
− μ′ ∂v′

∂y
− μ′ ∂w′

∂z

)
dy,

W ⊥
0 = −ρ0U V,

W //
0 = − ∂

∂x

y∫

0

ρ0UUdy,

W ⊥
2 = −

(
ρ0u′v′ + Uρ′v′ + V ρ′u′

)
,

W //
2 = − ∂

∂x

y∫

0

(
ρ0u′u′ + 2Uρ′u′

)
dy,

W ⊥
3 = −ρ′u′v′,

W //
3 = − ∂

∂x

y∫

0

ρ′u′u′dy. (22)

The subscript indicates the order of the correlation of fluc-
tuation terms. Note that for the incompressible channel flow,
S = S⊥

0 and W = W ⊥
2 .

Denoting the ensemble averaged density and viscosity at
the wall as ρw and νw, respectively, the wall scales, namely
the friction velocity uτ and the viscous length scale �s, are

uτ ≡
√

τw

ρw
, �s ≡ νw

uτ

. (23)

Hence, the dimensionless variables are

y+ ≡ y

�s
, u+ ≡ u

uτ

, μ+ ≡ μ

ρwνw
. (24)

Note that for the channel and pipe flow, the dimensionless
outer length scale η is y/� where � is the half height of the
channel or the radius of the pipe. In the following sections,
we also use the center length scale

z ≡ 1 − η, (25)

which represents the normalized distance from the center line
in the channel or pipe.

The mean momentum equation (21) can be normalized
by dividing ρwu2

τ . Inspecting the magnitude and keeping the
leading terms, we obtain an approximate balance equation
(also confirmed by DNS)

(S⊥
0 )+ + (W ⊥

0 )+ + (W //
0 )+ + (W ⊥

2 )+ + τ+
p ≈ 1. (26)

Note that the mean momentum equation (21) takes a uni-
versal form though differing in actual functional forms for
different flows. This manifests in the study of incompressible
versus compressible boundary layers.

Under the Favre decomposition (g = g̃ + g′′), we have a
set of slightly different expressions

S⊥
0 = μ

∂u

∂y
, S//

0 = μ
∂v

∂x
+ ∂

∂x

y∫

0

t11dy,

W ⊥
0 = −ρ ũṽ, W //

0 = − ∂

∂x

y∫

0

ρ ũũdy,

W ⊥
2 = −ρu′′v′′, W //

2 = − ∂

∂x

y∫

0

ρu′′u′′dy. (27)
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The equation for the ensemble averaged kinetic energy
ρk = 1

2ρu′′
i u′′

i , is a balance among energy production P ,
viscous dissipation ε, turbulent transport T , convection C ,
and pressure transport �

P + T + C + � = ε, (28)

where

P = −ρu′′
i u′′

j
∂ ũi

∂x j
,

ε = −∂u′′
i t ′i j

∂x j
− u′′

i
∂ti j

∂x j
+ t ′i j

∂u′′
i

∂x j
,

T = −1

2

∂ρu′′
i u′′

i u′′
j

∂x j
, (29)

C = −∂
(
ρkũ j

)

∂x j
,

� = −∂ p′u′′
j

∂x j
− u′′

j
∂ p

∂x j
+ p′ ∂u′′

j

∂x j
.

For incompressible flows, k ≡ (u′2 + v′2 + w′2)/2 and
the equation terms are

P = −u′
i u

′
j
∂Ui

∂x j
, ε = −ν

∂2k

∂x j∂x j
+ ν

∂u′
i

∂x j

∂u′
i

∂x j
,

T = −1

2

∂u′
i u

′
i u

′
j

∂x j
, C = −∂kU j

∂x j
, (30)

� = − 1

ρ

∂ p′u′
j

∂x j
.

The kinetic energy equations (29) and (30) can also be
normalized in wall units, denoted by +. With this nota-
tion, the order functions are similar in incompressible and
compressible flows.

4.2 Order functions and a multi-layer picture
of wall turbulence

Here, we define a set of order functions, specific to the study
of wall-bounded turbulent flows. Note that the theoretical
framework is universally applicable to incompressible and
compressible flows, although their concrete physics are dif-
ferent. What follows illustrates the application of the concept
to an incompressible turbulent channel flow and a compress-
ible turbulent boundary layer, which clearly reveals a multi-
layer picture of wall turbulence, and which then motivates
a quantitative model for their spatial variations in the next
subsection. The results support the validity of a procedure
for systematically extracting quantitative information from
DNS data.

Fig. 1 Variation of the shear stress and Reynolds stress for the incom-
pressible channel flow and compressible TBL, showing three sections:
near the wall (y+<1), the transition region (1<y+<40) and the outer
region (y+>40) at the mean momentum level. The residue counts for
the contribution of all the neglected terms in Eq. 26. Simulation data
are from Jimenez et al. [31] (Reτ = 950) and Li et al. [32] (M =
2.25, Reθ = 4,000, under the isothermal boundary condition at the
wall)

4.2.1 Sensitive indicators τ+
d and S+

d

The first type of order functions, namely sensitive indicators,
are defined in the defect form—for example τ+

d ≡ 1 − τ+
and S+

d ≡ 1 − (S⊥
0 )+. The two functions are important to

present a global structure of the flow.
Figure 1 shows the stress distribution (including shear

stress and Reynolds stress) for an incompressible channel and
a compressible boundary layer. The two systems show the
similar global structure at the mean momentum level (when
Favre decomposition is used for the compressible boundary
layer), with slight quantitative difference in the outer regions,
as expected. The SED analysis will pay more attention to such
quantitative aspect, and detailed results will be reported later.

An interesting aspect of the sensitive indicators is their
leading asymptotic behavior in Eq. 16, which may indicate
the computational accuracy of DNS or LES. This is discussed
in Sect. 5.2.

4.2.2 Ratio functions σ, ν+
t and �ν

Below, we discuss three order functions of the second type,
in the ratio form. Following Eq. 26,

σ ≡ (W ⊥
2 )+

S+
d

, (31)

we characterizes the importance of turbulent fluctuations
(Reynolds stress) relative to mean viscous shear. As shown
in Fig. 2, a three-layer picture is seen for the channel flow: for
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Fig. 2 The stress ratio σ in an incompressible channel flow and a com-
pressible TBL (M = 2.25), suggesting a two-layer picture at the mean
momentum level for the former and a multi-layer for the latter. Simula-
tion data are from Iwamoto et al. [33] (Reτ = 650), Jimenez et al. [31]
(Reτ = 950) and Li et al. [32] (M = 2.25)

y+ < 1, an asymptotic y+2 is present due to effect of constant
pressure gradient near the wall; for y+ ≈ 10, σ ∼ 1; and for
y+ > 40, σ ≈ 1 − η due to the global stress τ+

p = η. On
the other hand, the compressible TBL has a similar plateau
(σ ≈ 1) near y+ = 10, with similar fall-offs both towards the
wall and the outer region. Clearly, the outer-layer fall-off has
a Re-dependence which needs to be characterized in detail.
Note that the nature of the fall-off towards the wall is also
interesting, because for the zero-pressure-gradient incom-
pressible boundary layer, one expects that the plateau σ = 1
extends all the way to the wall, since τp is very small and can
be neglected. The current SED analysis raises a question: is it
possible that the compressible TBL at M = 2.25 produces an
effective pressure gradient in the flow? Results of this study
will be reported later.

The widely used eddy viscosity turns out to be also a ratio
function. Following Eq. 26,

ν+
t ≡ (W ⊥

2 )+

(S⊥
0 )+

. (32)

Detailed studies of this order function will be reported
elsewhere.

Note that Eq. 32 is a normalized version of the usual eddy-
viscosity. In fact, in the SED definition of order functions,
we frequently make dimension-like arguments on quantities
normalized using the wall shear stress or wall velocity. The
reason is that we attempt to extract additional symmetry prop-
erties beyond elementary dimensional transformation, which
are important to govern the rules behind spatial variations.
A complete theoretical justification for this has to await a

Fig. 3 β�ν = β P+/ε+ = (S⊥
0 )+(W ⊥

2 )+/ε+ reveals multi-layers in
the kinetic energy equation. Data are the same as in Fig. 2

Lie-group analysis of the Navier–Stokes equations, to be
reported elsewhere.

Finally, we report a ratio function which is most relevant to
the energy dynamics, namely the ratio of turbulent production
P+ to dissipation ε+

�ν ≡ P+

ε+ , (33)

which represents the main balance in the fluctuations. This
function reveals a new set of layers in EANS equations, as
fluctuation structures are key to energy dissipation. For the
compressible flow, we define a ratio factor β to describe the
relation between the mean shear and Reynolds stress with
the turbulent production term in the kinetic energy equation

β(y+) ≡ (S⊥
0 )+(W ⊥

2 )+

P+ . (34)

It equals unity in the incompressible flow and is a function
of y+ in the compressible flow.

Figure 3 shows five layers in β�ν in the channel flow,
transiting at y+ = 2, 15, 45; outside y+ = 45, the “quasi-
equilibrium” region �ν ≈ 1 begins; �ν eventually goes to
zero. It is remarkable that the compressible TBL shows multi-
layer structures similar to the channel flow, which are even
quantitatively very close to each other. The quantification of
these layers are critical to a more accurate description of the
velocity, Reynolds stress distribution of the wall turbulence,
as will be reported later.

4.2.3 Scaling functions �+
m and �+

ν

The third type of order function, i.e. scaling function, will be
introduced for incompressible flow first, and then extended
to compressible flow.
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On the mean momentum level, the mean shear and
Reynolds stress are the most important physical effects. The
only dimensional expression for a length function with the
two quantities is the mixing length

�+
m ≡

√
(W ⊥

2 )+

(S⊥
0 )+

. (35)

A more interesting length function involves energy
dynamics, in particular, the viscous dissipation ε+. Consider-
ing a dimensional expression for the dissipation ε+ in terms
of (S⊥

0 )+, (W ⊥
2 )+, and a length �+, a general form is

ε+ = (W ⊥
2 )+(1+n/2)

(S⊥
0 )+(1−n)

�+(−n)
, (36)

where n is an arbitrary integer. Note that as n → ∞, the
dissipative contribution vanishes and we recover the mixing
length �+

m. Inspecting DNS data of incompressible channel
flow, we found that �+

m and other choices of n show a diver-
gence at the channel center. If and only if n = 4, does �+
saturate to a nonzero limit which can be analytically proved.
Hence we define a characteristic dissipative length scale �+

ν

�+
ν =

[
(W ⊥

2 )+3

(S⊥
0 )+3

/ε+
]1/4

= (ν+
t

3
/ε+)1/4, (37)

which converges to a constant at the channel center. Indeed,
a general relationship between �+

m and �+
ν is

�+
m = �+

ν (β�ν)
1/4. (38)

Figure 4 shows the variation of �+
ν for the two flows.

Interestingly, a specific 1 − z4 structure layer is discovered
for �+

ν in the channel flow. Note that it can be written as
(1 − z)(1 + z + z2 + z3) ∼ y+, which indicates a consis-
tency of the bulk flow to an universal logarithmic constraint
near the wall. On the other hand, we find a critical location
for compressible TBL at y+ = 800, which is used to define
outer layer location zT

zT ≡ 1 − y+

800
. (39)

The zT coordinate helps one to identify a similar 1 − z3
T

structure in the compressible TBL.

4.3 Hyperbolic function modeling of multi-layer structures

The results shown above clearly demonstrate a multi-layer
picture of wall turbulence. We now propose a method for its
quantitative modeling. The newly generated function has a
hyperbolic-like structure, which we will call the SED base
function.

Fig. 4 The eddy dissipation length scale �+
ν . Data are the same as in

Fig. 2. The two flow systems again show the same structure near the
wall, but a slightly different outer-layer structure. The incompressible
channel flow shows a 1 − z4 bulk flow structure, and the compressible
TBL shows a 1 − z3

T structure

4.3.1 SED base function

In Sect. 2.1, it is explained that the log-law or power-law
can be derived from a matching (invariance) equation (3) or
(4). However, neither log-law nor power-law holds for the
entire domain of the flow. A function capable of describing
the multi-layer structure must exhibit transitions from one
state to another. Therefore, we need to extend current invari-
ance analysis to describe multi-layer structures displayed by
the order functions.

In order to permit a transition, we propose a generalized
invariance equation

y1−β

(φ/yγ )1−α

d(φ/yγ )

dy
= C, (40)

where φ denotes an order function, and α, β, γ and C are
parameters. Several special cases are noteworthy. When
γ = 0, α = 1 and β = 0, Eq. 40 yields a log-law; when
α = 0 and β = 0, it yields a power low; when α = 0, β = 1,
it yields an exponential solution. These are solutions obtained
by Oberlack [21]. However, more general cases involves
αβ 
= 0; in this case, direct integration of equation (40)
yields a generalized solution

φ = c1 yγ

(
1 + yβ

c2

)1/α

, (41)

where c1 and γ are parameters and c2 = cα
1 β/(Cα). The

formula (41) indicates that φ displays a transition from one
power-law state of exponent γ , to another state of exponent
γ + β/α, as y varies from zero to infinity. Hence, the gen-
eralized invariance equation (40) is capable of describing a
two-state with a transition. We can rewrite Eq. 41 in the form
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of a hyperbolic-like equation for y and φ

(
φ

c1 yγ

)α

− yβ

c2
= 1, (42)

which may be important for the discussion of the geometry of
invariant surfaces related to multi-layer structures. Further-
more, when a series of transitions occur, we simply develop
a multiplicative description

φ = φ0

n−1∏

0

[
1 +

(
y

yi

)pi
]ni /pi

, (43)

as a complete prescription for φ in the entire domain. An
interesting feature of Eq. 43 is that it can be approximated
by Eq. 41, when y is near c2 (location relevant to a particular
layer). This makes Eq. 43 adequate for describing complex
multi-layer structures.

The most important part of Eq. 41 is

φ = c1

(
1 + yβ

c2

)1/α

, (44)

which describes a transition from 1 to a power-law state of
exponent β/α, and is the solution of the following invariance
equation

y1−β

φ1−α

dφ

dy
= C. (45)

Because of its importance in describing transition between
states, we will call Eq. 44 an SED base function. Note that
Eq. 44 has been widely used previously in turbulence
research, such as the Batchelor interpolation formula [34],
the von Karman energetic-range correction for energy spec-
trum model [35], the wall function τw in LPR model [22],
and so on.

In Fig. 5, we show schematically a function displaying a
four-layer structure at critical locations y+ = 5 and 40, and
z = 1 − y+/Reτ = 0.5

f (y+, z) = y+
[

1 +
(

y+

5

)4
]−2/4 [

1 +
(

y+

40

)4
]3/4

×
[

1 +
( z

0.5

)−4
]−2/4

. (46)

This type of function is used for modeling the behavior of
the order functions such as �+

m in the next subsection.

4.3.2 A multi-layer quantitative model for �+
m

To illustrate the use of SED base function for quantita-
tive modeling of order function, we give an expression for
�+

m, in incompressible channel flow, which is derived from

Fig. 5 Schematic of a function displaying a four-layer structure

Fig. 6 Comparison of Eq. 47 with DNS data of channel flow, at Reτ =
300, 950. DNS data are from Iwamoto [33] and Jimenez et al. [31]

inspection of DNS data at several Re [33]

�+
m =

√
b√

0.27
(1 − z4)

[
1 +

(
y+

10

)−4
]1/8

×
[

1 +
(

y+

42

)−6
)−1/6 [

1 +
( z

0.27

)−5/2
)1/5

, (47)

where b is a limiting value of �+
m at the center

b = lim
z→0

z(W ⊥
2 )+/[Reτ (S⊥

0 )+]2 ≈ 0.003 6. (48)

This model shows that the mixing length displays four
layers, with three transitions taking place at y+ = 10 where
production peaks, y+ = 42 where log-layer begins and z =
0.27, the crossover of production and turbulent transport.

In Fig. 6, we show the comparison of Eq. 47 with DNS data
at several Re. The agreement is excellent. Note that for chan-
nel flow, knowing �+

m, the mean momentum balance equation
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fully determines the mean shear, hence the mean velocity
profile. Note that this four-layer model is constructed with-
out taking into account the energy dynamics, and a more
sophisticated model involving �+

ν and �ν (using Eq. 38,
hence accounting for the energy dynamics) leads to a further
improved accuracy. Detailed comparison will be reported
elsewhere.

The fact that Eq. 47 is a multiplicative form shows an
important feature of the SED modeling: it covers the whole
flow domain. A consequence is the ability to predict a link
between Karman coefficient (a local property near y+ =
45 and the limiting constant b at the channel center. For
y+ ≈ 45, Eq. 47 yields, for Karman coefficient κ , defined as
�+

m = κy+,

κ ≈
√

b√
0.27

× 4 × 2−1/6 ≈ 0.41. (49)

This quantitative agreement strengthens our assertion that
the multi-layer picture can give a precise quantitative model
which connects the logarithmic law with the bulk structure
in the channel.

5 Application and further development of SED

5.1 Building a second-order closure model

An SED-based second-order closure model is built for
incompressible channel flow using four order functions [36].
The first is

α = W +

u′2+ , (50)

which was introduced earlier by Bradshaw et al. [37] in
an one-equation closure model. The second is an expanded
Taylor microscale

λ+2
ν = 2u′2+

ε+ . (51)

The third order function λp accounts for the fluctuating
pressure effects, similar to Taylor scale

λ+2
p = 2u′2+

−�+ . (52)

Finally, the fourth order function β describes the convec-
tive effects

β = u′2v′+

u′2+3/2 . (53)

Given the above four order functions, the momentum and
energy equations are closed for the mean velocity U+ and the

Fig. 7 Steady solution of the SED closure equations for the mean
velocity U+ and kinetic energy starting from zero initial condition,
compare with DNS solutions by Iwamoto et al. [33]. Results are taken
from Ref. [36]

Table 1 Comparison of wall friction coefficients for a channel flow
with Reτ = 300 between the predictions of various closure models
(from Wilcox [38]) and DNS

Model C f /10−3 Error (%)

DNS 7.045 –

SED model 7.026 −0.26

Stress-ω model 7.096 0.73

Cebeci–Smith model 7.365 −2.8

k-ω model 7.254 3.0

Baldwin–Lomax model 6.803 −3.4

Spalart–Allmaras model 6.781 −3.7

Johnson–King model 6.338 −10.0

Baldwin–Barth model 8.007 13.7

The SED model shows a significantly higher accuracy. Table is taken
from Ref. [36]

mean streamwise kinetic energy u′2+
. She et al. [36] demon-

strate that this system of equations, starting from zero initial
condition, converges to the DNS result with high accuracy in
Fig. 7. A further comparison of the friction prediction with
various engineering models is presented in Table 1, with SED
offering the highest accuracy. Since this result is obtained
from order functions determined from the DNS data, such
a high accuracy is not unexpected. Nevertheless, this result
strongly supports the SED concept.

5.2 Evaluating numerical simulations

The SED is a theoretical framework which enables one to
evaluate DNS or LES results when analytical results are avail-
able asymptotically (near the wall or far from the wall). In
this subsection, we introduce a procedure for evaluating the
convergence of numerical simulations. This procedure first
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Fig. 8 Defect strain rate 1 − S+ derived from DNS data of channel
flows at several Re (Moser et al. [39], Iwamoto et al. [33], and Jimenez
et al. [31]). Note insufficient near-wall statistical convergence for two
data sets of higher Reτ (Moser, Reτ = 590 and Jimenez, Reτ = 2,003)

involves an asymptotic analysis of EANS equations, which
must be satisfied by any numerical simulation results. An
example is the scaling at the wall and the channel center. We
illustrate this procedure by examining a few DNS databases
of turbulent channel flow.

Consider the defect stress S+
d at the wall. Asymptotic anal-

ysis for channel flow yields a y+ scaling very close to the
wall, as a result of the mean pressure gradient 1/Reτ , and a
y+3 scaling away from the wall due to the contribution of the
Reynolds stress W + ∼ y+3. Figure 8 plots a series of DNS
results. Relative to the theoretical constraint, the Reτ = 590
data of Moser et al. [39] and Reτ = 2,003 data of Jime-
nez [31] show large scatter near the wall, indicating insuffi-
cient resolution or a lack of computational convergence. It
is entirely possible that the statistical convergence and the
near-wall resolution are not satisfactory. Higher resolution
and longer computation seem to be needed.

Another indicator is z − W + which is sensitive at the
channel center. Asymptotic analysis indicates that z − W ∼
z/Reτ , hence plotting (z − W +)Reτ for several DNS data
(Fig. 9), allows us to verify whether the computation has con-
verged. It is clear from the graph that the Reτ = 2,003 data
display an anomaly, which appears to be an indication of the
lack of statistical convergence in the outer region. Note that
the fluctuations u′ and v′ do not vanish at the center while
W + goes to zero. Therefore, the statistical convergence is
critical to the accuracy of W +. On the other hand, the outer
region takes longer to converge, because the turnover time for
outer eddies is longer. These two factors combine to increase
the difficulty for the center convergence. Nevertheless, sev-
eral other DNS data seem to have converged, for which the
quantitative relation z − W + ∼ z/Reτ seems to be valid.

Fig. 9 A sensitive indicator of the central channel dynamics: τ+ −
W + = S+ in coordinate z = 1 − y+/Reτ . Note Reτ = 2,003 data
exhibit obvious anomaly, due to possibly the lack of statistical conver-
gence, which takes typically longer at the center of the channel and at
higher Reτ

Here, we summarize the concrete steps in carrying out an
evaluation of simulations (DNS or LES):

1. Compute and examine the spatial variations of order
functions, especially the sensitive indicators.

2. Derive asymptotic expression near the wall or other com-
putational boundary, and compare with the simulation
data.

3. Compare behavior of the order functions of new simula-
tions with prior simulations in similar regions.

4. Explain the discrepancy in terms of statistical conver-
gence, grid resolution, or other factors.

5.3 Guiding DNS study of inhomogeneous turbulence

The SED is also a theoretical framework which enables one to
systematically retrieve quantitative information from DNS or
LES data. The prevailing closure models (like scaling argu-
ment, empirical description of velocity profiles, etc.) offer
little guidance for analyzing numerical or experimental data.
Typical theoretical measures like energy spectra, correlation
functions, skewness, flatness, etc. do not help understand-
ing of the relation between the mean and the fluctuations. In
contrast, the order functions in SED promise to reveal this
connection, and hence provide a guide to DNS study of wall
turbulence.

Here, we summarize the concrete steps in carrying out
such a quantitative DNS study:

1. Carry out EANS (balance) equation calculation.
2. Compute relevant order functions to identify multi-layers

and dominant actions in each layer.
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3. Identify scaling and transition parameters in each layer
and examine their Re dependence.

4. Achieve a quantitative description, using the SED base
functions, of a set of mean profiles for a range of Re.

5. Develop interpretations of the observed variations of the
order functions.

The merit of performing these steps is clear, if the multi-
layer structure is the essence of turbulent mean flows.
We believe that it is not only for canonical channel or
boundary-layer flows (as shown above), but also for a variety
of wall-bounded turbulent flows in the presence of pressure
gradient, roughness, buoyancy, rotation, compressibility, etc.
We thus suggest a framework based on accurate descrip-
tion of multi-layer structures, for physical understanding and
computational modeling of complex flows. The usefulness of
the framework needs to be tested.

Note that the above procedure can be carried out for LES
study as well. Although the balance equations may change
due to the presence of the subgrid scale term, the way of
defining the order functions remains the same. It is particu-
larly interesting to study how some fluctuation budgets are
distorted by the subgrid modeling terms, which will then
inspire new models for improvement.

6 Conclusion

Here, we have established a platform for analyzing the struc-
ture of wall-bounded turbulent flows using DNS data. In par-
ticular, we have presented a new perspective for deriving
quantitative theory of wall-bounded turbulence. Based on a
multi-state assumption, we develop a multi-layer picture of
wall turbulence, and the SED analysis of DNS data supports
its validity. The preliminary results reported above represent
the first phase of the SED approach, that is, to use DNS
empirical data to evaluate the order functions and to inter-
pret in terms of multi-layer structures. We have also described
the beginning of the second phase, namely, using symmetry
consideration in forms of generalized invariance equation to
develop quantitative models expressing the multi-layer struc-
ture. This leads to a new parameterization of empirical data,
which is hopefully more accurate since the multi-layer struc-
ture is physically closer to the nature of wall turbulence.
While details results are deferred to later publications, the
theoretical foundation is presented for both incompressible
and compressible wall-bounded flows.

Note that the general framework of SED makes two par-
allel emphases. One is to develop a set of universal con-
cepts adaptable to general non-equilibrium systems (and to
offer a solution to the closure problem), and the second is to
extract relevant quantitative knowledge from DNS studies.

The progress in the former lays the foundation for the latter.
The usefulness of the framework depends critically on the
reliability of the DNS data; thus, it is important to apply the
theory to well-resolved simulation data. On the other hand,
it is important to note that the knowledge drawn from mod-
erate Re simulations is insightful for the prediction at high
Re, since the variation of mean flow property with Re is
governed by symmetries. This is the essence of the SED the-
ory, though it needs to be tested by further studies. Note also
that the SED approach rejects the proposal of a universal
mathematical model for turbulent mean flows (such as k – ε

or k–ω or any of its variants), which are currently the basis
for industrial fluid dynamics modeling and which seem to
become increasingly complicated, rendering CFD increas-
ingly more artistic with compromising accuracy. The SED
approach proposes a new line of thinking: using DNS infor-
mation to derive simple and physically sound CFD models.
The latter will be a research target in the near future.

In addition to developing an analysis platform for guid-
ing DNS studies, we are also interested in deriving a rational
theory of turbulence, for such canonical flows as channel,
pipe, or boundary layer. We believe that, after an extended
SED analysis of DNS data, mechanisms that connect the
fluctuations to the mean would be quantitatively character-
ized, and then a consistent model and theory using phys-
ically sound assumptions (starting from EANS equations),
may arise. Such a theory would explain the behavior of the
order functions in DNS data, and make predictions for other
Re. Examination of the models for several flows would allow
us to identify universal components in the theory. Only then,
a viable theory will emerge. We end this paper with a state-
ment reflecting a century’s fight behind turbulence research:
Law is not universal, but the way of searching is!
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