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Abstract
In rarefied gas dynamics scattering kernels deserve special attention since they contain all the essential information about 
the effects of physical and chemical properties of the gas–solid surface interface on the gas scattering process. However, to 
study the impact of the gas–surface interactions on the large-scale behavior of fluid flows, these scattering kernels need to 
be integrated in larger-scale models like Direct Simulation Monte Carlo (DSMC). In this work, the Gaussian mixture (GM) 
model, an unsupervised machine learning approach, is utilized to establish a scattering kernel for monoatomic (Ar) and 
diatomic ( H

2
 ) gases directly from Molecular Dynamics (MD) simulations data. The GM scattering kernel is coupled to a pure 

DSMC solver to study isothermal and non-isothermal rarefied gas flows in a system with two parallel walls. To fully examine 
the coupling mechanism between the GM scattering kernel and the DSMC approach, a one-to-one correspondence between 
MD and DSMC particles is considered here. Benchmarked by MD results, the performance of the GM-DSMC is assessed 
against the Cercignani–Lampis–Lord (CLL) kernel incorporated into DSMC simulation (CLL-DSMC). The comparison 
of various physical and stochastic parameters shows the better performance of the GM-DSMC approach. Especially for the 
diatomic system, the GM-DSMC outperforms the CLL-DSMC approach. The fundamental superiority of the GM-DSMC 
approach confirms its potential as a multi-scale simulation approach for accurately measuring flow field properties in systems 
with highly nonequilibrium conditions.

Keywords Rarefied gas dynamics · Molecular dynamics · Gas-surface scattering models · Gaussian mixture approach · 
Direct simulation Monte Carlo

1 Introduction

Rarefied gas dynamics is an active research topic in numer-
ous cutting-edge engineering applications ranging from aer-
ospace to biological applications(Karniadakis et al. 2006). 
At the design stage of such applications, numerical modeling 
is required to predict flow field properties and thermal energy 
transport between components to guarantee their optimal 
performance and lifetime. Depending upon the degree of 
rarefaction in the system, determined by the Knudsen num-
ber (Kn), different modeling approaches can be used to study 
the rarefied gas dynamics. In the case of low to moderate 
degree of rarefaction (Kn < 0.1) the continuum approach, 

based on the Navier–Stokes equations, is the most common 
simulation approach. On the other hand, for a highly rare-
fied gas (Kn ≥ 0.1), particle-based simulation techniques, 
such as Molecular Dynamics (MD) (Allen and Tildesley 
2017), Direct Simulation Monte Carlo (DSMC) (Bird and 
Brady 1994), and lattice Boltzmann method (LBM) (Chen 
and Doolen 1998), are typically employed to determine flow 
field properties. Among these techniques, DSMC is the most 
commonly used one that has been successfully applied in a 
broad range of engineering applications (Karniadakis et al. 
2006). Nevertheless, prescribing accurate boundary con-
ditions at the gas–surface interface is a vital parameter to 
achieving reliable results in DSMC. In fact, going toward a 
higher degree of rarefaction, the complex physical interac-
tions at the interface become even more dominant than the 
gas–gas interactions happening at the bulk of the fluid (Shen 
2006; Zhang et al. 2012). Therefore, a detailed understand-
ing of such interfacial nanoscale phenomena is of extreme 
importance in rarefied gas dynamics.
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The diffuse reflection scattering model was the first 
boundary model used to describe the scattering process 
in rarefied gases (Shen 2006). This model assumes that 
the reflected gas molecules are fully accommodated with 
the adjacent solid surface, and their outgoing velocity 
distribution is determined by the Maxwellian distribution 
based on the wall temperature. However, later experimental 
studies (Devienne et al. 1965; Gregory and Peters 1986) 
revealed that the complete diffuse reflection assumption 
is not always valid. For example, at a very clean or high-
temperature surface or under ultra vacuum conditions, 
gas molecules can experience near specular reflection. 
Consequently, to establish more comprehensive boundary 
models, researchers proposed various empirical scattering 
kernels that could anticipate both specular and diffuse 
reflections in specific rarefied gas flow applications (Maxwell 
1878; Epstein 1967; Cercignani and Lampis 1971; Lord 
1989, 1991; Yamanishi et  al. 1999; Yamamoto et  al. 
2006; Yakunchikov et al. 2012; Hossein Gorji and Jenny 
2014; Frezzotti and Gibelli 2008). The performance of 
these scattering kernels normally depends on several 
parameters, known as accommodation coefficients (ACs). 
In these scattering kernels, ACs are applied to quantify the 
accommodating level of different kinetic energy modes 
of gas molecules on a neighboring solid surface. The 
Cercignani-Lampis-Lord (CLL) scattering kernel is one of 
the most employed scattering kernels that can be utilized 
to describe the scattering process for both monoatomic 
and diatomic gas molecules  (Lord 1991). Despite the 
acceptable performance of the classical scattering kernels 
in the systems near equilibrium conditions, it was shown that 
these models are incapable of fully capturing the complex 
physical phenomena, such as a considerable temperature 
jump, happening in systems in a highly non-equilibrium 
situation (Yamamoto et al. 2007; Liang et al. 2013). This 
shortcoming, alongside the lack of generality of such 
scattering kernels, raises the need for more elaborated gas 
scattering kernels.

As the most accurate particle-based simulation 
approach, an MD simulation is a valuable tool for studying 
interfacial nanoscale phenomena. In an MD simulation, 
the interactions between individual gas molecules with 
neighboring solid molecules are modeled deterministically. 
This fact makes MD computationally very expensive. 
Therefore, its application is usually restricted to the 
nanoscale level. Nevertheless, an MD simulation is exploited 
in various approaches for investigating interfacial physics. 
Most commonly, MD is used to compute different ACs 
between a gas-solid pair. These ACs are then fed into one 
of the previously discussed empirical scattering kernels that 
are served as boundary conditions for high scale simulation 
approaches such as DSMC (Watvisave et al. 2015).

Other researchers developed hybrid simulation schemes 
combining the classical MD and DSMC approaches to 
study rarefied gas flow at mesoscale level  (Nedea et al. 
2005; Yamamoto et al. 2006; Liang and Ye 2014; Watvisave 
et al. 2015; Longshaw et al. 2020). In these schemes, the 
simulation domain is decomposed into smaller regions. To 
benefit the precision of MD and the speed of DSMC at the 
same time, the first approach is applied in the vicinity of the 
solid surfaces, while the latter one is utilized in the bulk of 
the domain. Although these hybrid schemes are relatively 
faster than pure MD, since a large number of solid atoms 
must still be simulated in the MD part, these schemes are 
computationally expensive. In addition, there are consider-
able differences in the order of magnitude of time and space 
between MD and DSMC. Therefore, while applying these 
hybrid schemes, special attention must be taken into account 
to ensure particle and energy conservation at the coupling 
interfaces.

Another category of wall scattering kernels is 
nonparametric scattering kernels (Liao et al. 2018; Andric 
et al. 2019; Liu et al. 2021). Unlike the classical empirical 
scattering kernels, no intermediate calibration based on ACs 
is needed, and MD data are used directly to construct these 
scattering kernels. These scattering kernels generally show 
better performance in the highly non-equilibrium situation 
compared to the classical scattering kernels (Andric et al. 
2019). As a first step to constructing these scattering kernels, 
single gas molecules with independent thermal velocities are 
beamed onto a specific solid surface in an MD simulation. 
Then, the discrete gas molecule trajectories, characterized by 
the system’s initial condition, such as gas molecular velocity 
or surface conditions, are gathered in a database. Based on 
the relation between the precollisional and postcollisional 
molecular velocity vectors in the MD dataset, a conditional 
probability density function is derived that can be used for 
sampling the reflected gas molecular velocity depending on 
its initial state. Liu et al. (2021) developed such a scattering 
kernel and coupled it to a DSMC code to model hypersonic 
flow over a rounded wedge. Comparing the simulation 
results with another case study, in which the CLL scattering 
kernel was used as the boundary model, showed that the 
DSMC code based on their proposed model performs better 
in describing different flow properties. Nevertheless, in all 
these scattering kernels, the gas–gas interactions that can 
affect the reflected gas molecules properties in the early 
transition regime (0.1 < Kn < 1) are ignored, and these 
wall models cannot deal with adsorption-related problems. 
Besides, the usual nonparametric approximations of high-
dimensional multimultivariate data can be a complex task 
requiring advanced learning methods (Sung 2004). To avoid 
this problem, before the main fitting step, usually various 
techniques are employed to reduce the dimensionality of the 
dataset (Andric et al. 2019).
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Machine learning is another promising technique that can 
be used to establish a gas scattering kernel directly based 
on the collisional data obtained from MD simulations (Liao 
et al. 2018; Mohammad Nejad et al. 2021, 2022; Wang 
et al. 2021; Wu et al. 2022). As an example, in our previous 
works (Mohammad Nejad et al. 2021, 2022), the Gaussian 
mixture (GM) approach, an unsupervised machine learning 
approach, was employed to construct a scattering kernel 
for monoatomic gases (Ar, He) interacting with the Au 
surface and diatomic gases ( H2 , N2 ) interacting with the Ni 
surface, respectively. In these studies, a two parallel walls 
MD setup was used as the reference system to include the 
impact of both gas–wall and gas–gas interactions on the 
postcollisional behavior of gas molecules. The physical 
and stochastic properties predicted by the GM scattering 
kernel were assessed against the CLL model results and the 
original MD data in the Fourier thermal and the combined 
Fourier-Couette flow problems. It was illustrated that the 
GM model outperforms the CLL model in both benchmark 
systems. The main advantage of the GM approach-driven 
scattering kernel over the empirical scattering kernels is 
that its performance does not rely on a finite number of 
parameters. In fact, we can adjust the number of fitting 
parameters to get the best performance from the scattering 
kernel. Wang et al. (2021) used a data-based scattering 
kernel model for gas-solid interactions. The main advantage 
of our GM scattering approach over this approach is that in 
the case of the GM scattering model the MD results have 
been used as a whole and the velocity components are not 
separated from each other. Therefore, the interplay between 
different velocity components or energy modes (in the case 
of diatomic molecules) will be fully taken into account in the 
case of our GM approach. In addition, unlike nonparametric 
approaches whose extension to higher dimensions is 
limited (Sung 2004), the GM scattering kernel can handle 
high-dimensional data sets rather straightforwardly. To the 
best of our knowledge, the scattering kernel based on the 
GM approach has not been coupled to a DSMC solver before 
to study rarefied gas flow systems.

Knowing the vital importance of the applied scattering 
kernels in rarefied gas modeling, the main objective in this 
work is to develop a robust gas scattering model for higher 
scale simulation techniques. To fulfill this goal, we inves-
tigate the capability of the GM-driven scattering kernels to 
be used as a boundary model in a DSMC solver. Besides, 
we develop a dedicated mechanism which can be used to 
efficiently couple the GM scattering kernel to a DSMC 
solver. Initially, based on a two parallel walls system, the 
interactions of Ar gas with an Au surface and H2 gas with a 
Ni surface are studied using MD simulations. Two bench-
mark problems are considered: an equilibrium gas system 
confined between isothermal walls and a Fourier thermal 
problem. For the Ar–Au system, the pre- and postcollisional 

translational velocities of Ar molecules are used for train-
ing the GM model. Whereas, for the H2–Ni system, both 
translational and rotational velocities are employed for the 
training purpose. Such consideration guarantees the model 
ability to anticipate the possible energy transfer between the 
translational and rotational modes at non-equilibrium condi-
tions. Implementing the GM model on the MD collisional 
data in each case study, a conditional multivariate probabil-
ity distribution is derived that can be used to generate the 
postcollisional velocities of gas molecules based on their 
precollisional states. The GM approach-driven boundary 
models for the Ar–Au and H2–Ni are incorporated in pure 
DSMC simulations based on a one-to-one mapping between 
the corresponding MD and DSMC simulation setups. The 
DSMC simulations coupled to the GM scattering kernel 
(GM-DSMC) results are evaluated against the DSMC simu-
lations coupled to the CLL scattering kernel (CLL-DSMC) 
and the reference MD solutions. The evaluation is performed 
based on different physical and stochastic criteria.

2  Methods

In this section, the most relevant features of MD, the applied 
gas-surface interaction models, and DSMC related to the 
hybrid GM-DSMC approach are addressed. Further details 
of MD, gas-surface interactions models, and DSMC can be 
found in Allen and Tildesley (2017), in Liao et al. (2018), 
Mohammad Nejad et al. (2021), Hossein Gorji and Jenny 
(2014), Sung (2004), and Mohammad Nejad et al. (2022), 
and in Bird and Brady (1994), respectively.

2.1  MD simulation

The exact particle trajectories are calculated in an MD 
simulation based on the interaction potentials and Newton’s 
second law of motion. Thus, MD is considered as the most 
accurate method for modeling the scattering process and 
is used to provide benchmark solutions in this work. Our 
MD setup to study the 1-D Fourier thermal problem in 
a nanochannel consists of two infinite parallel walls at a 
distance, L y , apart from each other and of gas molecules 
confined between these two walls (see Fig. 1). Each wall is 
constructed with five layers of FCC planes. In the case of 
the Ar–Au system, each wall has a cross-sectional area of 10 
nm × 10 nm, while for the H2–Ni system, the cross-sectional 
area is 10.8 nm × 10.8 nm. In each wall, the outermost layer 
is constrained to prevent the translational motion of the wall 
in the normal direction. The distance between the two walls 
is fixed at L y = 20 nm for the Ar–Au system, and at L y = 30 
nm for H2–Ni system.

For the Ar–Au system, the Knudsen number in the bulk 
and the gas reduced density ( � ) are Kn = 0.33 and � = 0.008 , 
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respectively. The reduced density is defined as � = �na3∕6 , 
where n is the number density and a is the particle diam-
eter (Frezzotti 1999). On the other hand, for the H2–Ni sys-
tem Kn = 0.37 and � = 0.003 . In addition, H2 molecules are 
considered as rigid rotors with a fixed bond length of 0.7414 
Å(Atkins and De Paula 2011).

In both studied gas-solid pairs, periodic boundary condi-
tions are considered along x and z directions. The interac-
tions between the solid Au and Ni atoms located in the walls 
are models using the corresponding embedded atom model 
(EAM) potentials developed by (Sheng et al. 2011) and 
Foiles et al. (1986), respectively. For the Ar–Au system, the 
non-bonded gas–gas and gas-wall interactions are modeled 
by the Lennard–Jones (LJ) 12-6 potential. However, in the 
case of the H2–Ni system, the non-bonded interactions are 
modeled using COMPASS force field (Sun 1998), in which 
an LJ 9-6 function is applied to describe the interactions. All 
the gas–gas and gas-wall interatomic potential parameters 
utilized in this work are presented in Table 1.

The cutoff distances for gas–gas interactions are set at 
2.5� . Considering the gas-wall interactions, the cutoff 
distances (rc in Fig. 1) is set at 12 Å  and 10 Å  for the Ar–Au 
and H2–Ni systems, respectively. In each MD simulation, 
after deposition of the target number of gas molecules 
between the solid walls, energy minimization is carried out 

by iteratively rearranging atom positions to eliminate the 
possible overlapping of the neighboring atoms. Afterward, 
each plate is connected to a Nose-Hoover (NVT) thermostat 
to maintain its temperature at the desired level. On the other 
hand, gas molecules are modeled in the microcanonical 
ensemble (NVE), and their temperature can change via the 
collision with other atoms in the box. In order to speed up 
the equilibration process, the velocity components of gas 
molecules are initially sampled from a Gaussian distribution 
with a mean value of 0.0 and a standard deviation of 

√
kBTa

2mg

 , 

where Ta is the average value of the bottom and top plates 
temperatures, and mg is the mass of the gas molecule. Each 
MD setup is equilibrated for 3 ns with a time step of 1 and 
0.5 fs for the Ar–Au and H2–Ni systems, respectively. After 
the complete thermalization of the system, the production 
run is started, which is proceeded for 25 ns for each MD 
system. All MD simulations are carried out using LAMMPS 
(Plimpton 1995) package. The overall computational time 
for extracting the required MD data is around 13 h running 
on a computer with 16 cores.

2.2  Gas‑surface interaction models

In rarefied gas flow simulations, gas-surface interaction 
models are used as boundary conditions. Such interactions 
usually are described in terms of scattering kernel, R(v|v′) , 
representing the probability density that an impinging gas 
molecule with velocity v′ is reflected with velocity v . In a 
general form, the boundary condition for the impinging gas 
molecular velocity distribution, f (v′) , can be expressed as 
Shen (2006),

where v′
n
 and vn are the normal components of the impinging 

and reflected gas molecular velocity, respectively. In the case 
of a diatomic gas molecule, in addition to the translational 
velocity components of the center of mass ( v′, v ), the 
rotational velocity vectors ( �′,� ) need to be taken into 
account, as well. Therefore, for a diatomic gas molecules 
the scattering kernel is presented as R(v,�|v′,�′) , and the 
probability density is denoted by f (v,�).

2.2.1  CLL scattering model

Among all the proposed empirical scattering kernels, the 
CLL model is used in this work. We choose this particular 
model since it is one of the most reliable scattering models 
for monoatomic and diatomic gases and implementing 
it in DSMC is rather straightforward (Liang et al. 2013; 

(1)vnf (v) = ∫v�
n
<0

|v�
n
|R(v|v′)f (v′)dv′, vn > 0

Fig. 1  Schematic representation of the simulation model

Table 1  Lennard–Jones 
potential parameters

Atom pair � (eV) � (Å)

Ar–Au 1.14e
−2 3.819

Ar–Ar 1.22e
−2 3.35

H–H 9.29e
−4 1.421

H–Ni 1.19e
−2 2.016
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Hossein Gorji and Jenny 2014; Watvisave et al. 2015). For 
diatomic gas molecules, the CLL scattering kernel is given 
as (Lord 1991):

where �t , �n , and �rot are the accommodation coefficients 
corresponding to the tangential momentum, normal 
translational kinetic energy, and rotational energy, 
respectively. v

t
 represents the tangential velocity vector and 

I0 is the modified Bessel function of the first kind and zeroth 
order. The translational ( v′ , v ) and rotational ( �′,� ) 
velocities are normalized by 

√
2kBTw

mg

 and 
√

2kBTw

I
 , 

respectively. Here, Tw describes the wall temperature and I 
is the mass moment of inertia of the diatomic gas molecule. 
It is noteworthy to mention that monoatomic gases do not 
possess rotational energy. Therefore, the last part in Eq. (2), 
referring to the rotational velocities ( �′,� ), needs to be 
eliminated in the case of the Ar–Au system. As a result, only 
�t , �n are needed in the CLL model for the Ar–Au system. 
The accommodation coefficients needed in Eq.  (2) are 
computed using the approach proposed by Spijker et al. 
(2010), in which the correlation between the corresponding 
impinging and outgoing kinetic properties (e.g., the normal 
translational energy or rotational energy) is applied to derive 
the relevant accommodation coefficients (e.g., �n or �rot).

The impinging and outgoing kinetic properties, known 
as the collisional data, that are required to compute the 
accommodation coefficients and training of the GM 
scattering model (discussed in the following part), are 
recorded at the virtual borders located at the distances r c 
away from the walls (see Fig. 1). The number of data points 
in different gathered collisional datasets varies between 
100,000 and 150,000.

2.2.2  GM scattering model

The Gaussian mixture model, a well-known unsupervised 
machine learning approach, can be exploited to derive a 
formalism describing gas-surface interactions directly based 
on MD simulation results. As it has also been addressed in 
the previous section, the main input required to train the GM 
model is the MD collisional data. From each MD collisional 
dataset, 75% is used for the training and the remaining 25% 
is considered for the verification purpose. The training of 

(2)

RCLL(v,��v′,�′) =
2vn

�2�t(2 − �t)�n�rot
exp

�
−
[v

t
−
√
1 − �tv

′

t
]2

�t(2 − �t)

�

× exp

�
−
v2
n
+ (1 − �n)v

�2
n

�n

�
I0

�
2(
√
1 − �n)vnv

�
n

�n

�

× exp

�
−
(� −

√
1 − �rot�

′)2

�rot

�

the GM scattering kernel for monoatomic and diatomic 
gases have been extensively discussed in our previous 
works (Mohammad Nejad et al. 2021, 2022). However, for 
the sake of clarity, we briefly revisit the main findings in 
this section.

In the case of the Ar–Au system, having only the 
translational degrees of freedom, the collisional data is 
a 6-dimensional dataset including the impinging and 
outgoing translational velocities of the center of mass 
(COM) of Ar atoms ( v′

x
, v′

y
, v′

z
, vx, vy, vz ). On the other 

hand, for the H2–Ni system, we must also account for the 
rotational degrees of freedom. Therefore, the impinging 
and outgoing rotational velocities are added to the training 
data. Here, the final training dataset is a 10-dimensional 
matrix ( v′

x
, v′

y
, v′

z
,�′

1
,�′

2
, vx, vy, vz,�1,�2 ). Another parameter 

that directly influences the performance of the GM model 
and the computational cost of the training process is the 
number of applied Gaussian functions (K) in the model. 
This parameter must be specified adequately by the user 
to avoid the probable overfitting or underfitting. Here, a 
sensitivity analysis is performed to ascertain the optimal 
K. The details of it can be found in “Appendix”. From 
this analysis, K = 100 and K = 500 are assigned as the 
number of Gaussian for the Ar–Au and H2–Ni systems, 
respectively. Using these numbers of the Gaussian functions, 
the training of the GM model on a regular laptop computer 
takes around 3 and 40  min for the Ar–Au and H2–Ni 
systems. The GM model manifests its best performance 
when all the components of the training data are normally 
distributed  (Mohammad Nejad et al. 2021). In the case 
of both gas-solid pairs considered in this work, except 
for the normal velocities ( v′

y
,vy ) following the Rayleigh 

distributions, the other components in the training data 
follow a Gaussian distribution. To obtain the same kind of 
distribution for the normal velocity components, initially, 
for each normal velocity pair ( v′

y
,vy ), an implicit pair ( −v�

y

,−vy ) was added to the dataset. Afterward, implementing 
the expression given in Eq.  (3) results in the Gaussian 
distributions for the normal velocity components (Liao et al. 
2018).

where � represents an arbitrary velocity component in one 
of the new created velocity sets, which are ( v′

y
,−v�

y
 ) and ( vy

,−vy ) for the impinging and outgoing velocities, respectively. 
TI refers to the temperature of impinging gas molecules and 
can be calculated based on the average translational kinetic 
energy of the gas molecules. Applying such a transformation 
doubles the size of the data in the normal direction. Thus, to 
be consistent with the number of data points related to the 

(3)T(�) =
√
2�I erf

−1

�
1 − 2 exp

�
−
�2

2�I

��
, �I =

kBTI

mg
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other velocity components, half of the resulted new normal 
velocity components are added to the final training data.

After performing those mentioned above preprocessing 
on the MD collisional data (X), including the impinging 
( x

I
 ) and the outgoing ( x

O
 ) velocity components, the GM 

model is employed to estimate the joint probability density 
of the collisional data. GM employs the superposition of 
multiple multivariate Gaussians to describe the probability 
density of the collisional data as:

where �i, i = 1, 2, ...,K are the mixture component weights 
with the constraint that 

∑K

i=1
�i = 1 , 𝜇i is the mean vector, 

and Σi is the covariance matrix. These model parameters 
are determined using the expectation-maximization (EM) 
optimization algorithm(Dempster et  al. 1977). Each 
component, pi , of the mixture model is a multivariate 
Gaussian function given as:

where M refers to the dimensionality of the dataset. To 
properly incorporate the GM model results into a DSMC 
simulation a conditional PDF, RGM(x

O
|x

I
) , is required. To 

attain such Probability Density Function (PDF), in the first 
step, the obtained mean vector ( 𝜇i ) and covariance matrix 
( 
∑

i ) for each individual i, multivariate Gaussian component 
( ∀i ��{1⋯K} ) are partitioned as follows:

where all the sub-matrices presented in 
∑

i are square 
matrices with the size of ( 3 × 3 ) and ( 5 × 5 ) for the Ar–Au 
and H2–Ni systems, respectively. The GM scattering kernel 
is of the following form:

where the new set of weights �̃�i
(
X
I

)
 can be computed as:

The marginal pi
(
X
I

)
 and the conditional pi

(
X
O
|X

I

)
 

distributions demonstrated in Eqs. (8) and (7) are evaluated 
as (Williams and Rasmussen 2006)

(4)
P
(
x
O
, x

I

)
=

K∑

i=1

𝜌i pi
(
x
O
, x

I

)

pi
(
x
O
, x

I

)
=N

(
X|𝜇i,Σi

)

(5)

N
(
X|𝜇i,Σi

)
=

1

(2𝜋)M∕2|Σi|1∕2
exp

[
−
1

2
(X − 𝜇i)

�Σ−1
i
(X − 𝜇i)

]

(6)𝜇i =

[
�iO

�iI

]
,Σi =

[
ΣiOOΣiOI

ΣiIOΣiII

]

(7)RGM
(
X
O
|X

I

)
=

K∑

i=1

�̃�i
(
X
I

)
pi
(
X
O
|X

I

)

(8)�̃�i
�
X
I

�
=

𝜌i pi
�
X
I

�

∑K

i=1
𝜌i pi

�
X
I

�

and

From each MD collisional dataset, 75 % is applied for the 
training of the GM model, and the remaining data is utilized 
for validation purpose.

Finally, it should be pointed out that all the predicted 
velocity components by the GM model, in accordance 
with the initial distributions of the training data, follow 
Gaussian distributions. Therefore, to compare the GM 
model predictions with the original MD data, the normal 
velocity components need to be transferred back into the 
Rayleigh distribution using the following expression (Liao 
et al. 2018):

where TO refers to the temperature of reflected gas molecules 
from the surface and can be computed based on the 
average translational kinetic energy of the gas reflected gas 
molecules.

2.3  DSMC simulation

DSMC simulation, a stochastic approach suitable 
for rarefied gases ( Kn > 0.1 ), is considered the most 
popular particle-based simulation approach that has been 
successfully applied in a wide range of technological flow 
applications (Karniadakis et al. 2006).

The DSMC method models gases using discrete 
particles which normally represent a large number of 
real molecules. A probabilistic collision method is 
used to solve the Boltzmann equation (Bird and Brady 
1994). The DSMC particles are initially distributed 
randomly in the simulation box. In this work, a one-to-
one correspondence between the DSMC particles and 
MD molecules is established. In addition to particles’ 
locations, their initial velocities are assigned randomly 
from a Maxwellian distribution at the given temperature. 
For H2 particles, their initial rotational energy are 
generated based on equipartition theorem according to the 
prescribed temperature. The DSMC domain is subdivided 
into nbins in the y-direction with dimensions smaller than 
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the particles’ mean free path (see Fig. 1). Within each 
cell, the macroscopic flow properties, such as density or 
temperature, are calculated through sampling the particle 
statistics over a number of independent simulation 
trials, presented by time averaging. Particles can freely 
travel across the DSMC domain and collide with other 
particles. One key difference between the MD and DSMC 
is indeed the essence of the interparticle collisions in 
these approaches. In an MD simulation, the collisions 
are deterministic, described by interatomic potential 
functions. Integrating these functions numerically, one 
can derive the molecules’ exact postcollisional velocity 
and position. On the contrary, in a DSMC simulation, the 
interparticle collisions are stochastic, defined by simplified 
molecular interaction models. In this work, the variable 
hard sphere (VHS) model  (Bird and Brady 1994) is 
employed to describe the gas–gas collisions in the studied 
systems. The viscosity index, � , for Ar and H2 gases is 
set to 0.81 and 0.67, respectively (Bird and Brady 1994). 
Besides, in the case of H2 molecules the Borgnakke-Larsen 
(BL) model  (Borgnakke and Larsen 1975) is applied 
to deal with the possible energy exchange between the 
translational and rotational energy modes. The rotational 
collision number  (Bird and Brady 1994), Zr , required 
in the BL model computed using the empirical relation 
( Zr = 10480∕T�

a
 ) proposed by Boyd et al. (1994) for H2 

gas. Assuming stochastic nature for the intermolecular 
collisions is one of the substantial advantages of DSMC 
over MD simulation that makes it significantly less 
intensive from a computational point of view.

In general, DSMC is a promising tool for obtaining 
accurate gas transport properties outside the gas-solid 
surface interaction layer, defined by the cutoff distance of 
the interatomic potential (Liang and Ye 2014). In fact, near 
surface effects, such as the presence of the adsorption layer 
caused by the attractive part of the interaction potential, can 
not be captured by the common DSMC tools. To overcome 
this shortcoming, as it was suggested in Liang and Ye 
(2014), the DSMC domain length, L DSMC , is shortened a bit 
and covers only the distance considered between the virtual 
borders in the MD simulation as L DSMC = Ly − 2rc (see 
Fig. 1). As a result, the exact number of DSMC particles, 
NDSMC , is a bit less than the number of particles used in 
the MD simulation since the gas particles adsorbed on the 
surface are not included in the DSMC simulation. This issue 
will be elaborated on more in the following section.

In DSMC, at the gas-solid interface, the velocity vectors 
for the reflected particles are typically determined by 
sampling from a specific distribution function known as a 
scattering kernel. Here, the CLL and GM scattering kernels 
are employed at the virtual borders (see Fig. 1). Periodic 
boundary conditions are applied in the lateral directions 
(x,z).

Another important issue is that in the case of H2 molecules 
the rotational velocity vectors ( �′,� ) are used for the training 
of the GM model. However, in the currently available DSMC 
solvers particles are treated as the point-particles and they do 
not explicitly model rotational velocities but rather accounts 
for a scalar value for the rotational energy. To deal with this 
issue, as it was suggested by Yamamoto et al. (2006), the 
impinging rotational energy is equally decomposed into two 
rotational velocities in the rotational directions 
( ��

1
= ��

2
=

√
Erot−I∕Ig).

In this work, DSMC simulations are carried out using 
dsmcFoam+  (White et  al. 2018) solver, a DSMC solver 
implemented within the Open- FOAM (Weller et al. 1998) 
software framework. More details about integrating the GM 
scattering kernel into the dsmcFoam+ solver can be found in 
the following section.

2.4  Integration of the GM scattering kernel 
into the DSMC solver

This section elaborates further upon integrating of the GM 
scattering kernel with the applied DSMC solver in the case 
of H2–Ni system. The integration procedure for the Ar–Au 
system is not discussed here as it is similar except that it 
excludes the angular velocities.

First of all, considering x
I
= (v�

x
, v�

y
, v�

z
,��

1
,��

2
) as the 

impinging, and x
O
= (vx, vy, vz,�1,�2) as the outgoing 

velocity components obtained from the MD simulation 
the corresponding translational temperatures ( TI , TO ) are 
computed. As addressed in Eq. (3), TI is applied to transform 
the distribution of the impinging normal velocity component 
from Rayleigh to Gaussian distribution. On the other hand, TO 
is utilized to transform the distribution of the outgoing normal 
velocity component produced by the GM scattering kernel 
from Gaussian to Rayleigh distribution (see Eq. 11).

After training the GM model using the the MD collisional 
data X = (x

I
, x

O
) at a specific wall, the model parameters 

( {𝜌
i
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i
,Σ

i
}∀i ��{1⋯K} ) are employed to calculate the 

following constants for each multivariate Gaussian function i:

SA,i and SB,i are used in Eq. (9) to compute pi(XI) . SCi and SD,i 
are applied to sample from a multivariate Gaussian with 
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arguments �iO|I and ΣiO|I . The procedure proposed in 
Williams and Rasmussen (2006) is followed for sampling 
purpose. Assuming ΣiO|I is a positive definitive matrix, the 
Cholesky decomposition (Chol) is used to decompose the 
covariance matrix into the product of a lower triangular 
matrix and its transpose. In practice, adding a small multiple 
of the identity matrix I to the covariance matrix may be 
required for numerical stability. Here, � = 0.0001 is used as 
a small perturbation. Generating data based on the trained 
GM scattering kernel is one of the most crucial steps in the 
GM-DSMC model. As it is shown in Fig. 2, the sampling 

procedure starts with computing the probability, pi , of a 
given transformed impinging velocity, X∗

I,j
 belonging to the 

Gaussian component i (block C1 in Fig. 2). Doing such for 
all K components of the GM model, the accumulated weight, 
� , is computed. Using pi s and � , the new set of weights, �̃�i , 
is computed in block C2. These new weights, alongside 
selecting a random number, R1 , uniformly distributed 
between 0 and 1, are applied to choose the specific 
component i from the mixture model to generate the final 
sample (block C4 in Fig. 2). The arguments of the chosen 

Fig. 2  The steps (C1:C6) followed to generate M samples from a GM model with K components; X∗
I
 and X∗

O
 are the transformed impinging and 

outgoing velocity vectors

Fig. 3  The scheme showing the integration of the GM scattering kernel into the DSMC solver
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Gaussian component ( �iI , �iO , SCi , SD,i ) are used to generate 
the final sample (block C6 in Fig. 2) based on a random 
vector, u, drawn from a normal distribution with the mean 
value of 0 and variance of 1 (block C5 in Fig. 2). This 
procedure is repeated M times to generate the corresponding 
outgoing velocity of all the impinging velocities.

The scheme followed to couple the GM scattering kernel 
into the DSMC solver is shown in Fig. 3. A DSMC particle 
approaching to the system boundary has the translational 
velocity ( v′

x
, v′

y
, v′

z
 ) and the rotational energy Erot−I . Since the 

GM mode is trained based on the rotational velocities, in the 
first step (block E1 in Fig. 3) Erot−I is applied to derive the 
corresponding rotational velocities ( �′

1
,�′

2
 ). In the next step 

(block E2 in Fig. 3), the data preprocessing is carried out, 
which includes transforming the normal velocity distribu-
tion from the Rayleigh into the Gaussian distribution, using 
Eq. (3), and normalizing the translational and rotational 
velocity vectors. The preprocessed impinging velocity, X∗

I
 , 

is used to generate the outgoing velocity vector, X∗
O
 , in block 

E3. Afterward, X∗
O

 is converted back into the initial units, 
and the normal velocity distribution is also transformed back 
into the Rayleigh distribution using Eq. (11) (block E4 in 
Fig. 3). Finally, the rotational velocities are used to compute 
the corresponding outgoing rotational energy value, Erot−O , 
that alongside the outgoing translational velocity compo-
nents ( v′

x
, v′

y
, v′

z
 ) are assigned to the reflected DSMC particle.

3  Results and discussion

The performance of the GM and CLL scattering kernels 
employed as boundary conditions in DSMC simulations 
are investigated using the MD results as the reference 
solutions. For each gas-solid pair, two benchmarking case 
studies are considered: (i) isothermal Fourier problem, in 
which the temperature of the bottom and top walls are set 
to 300 K; (ii) non-isothermal Fourier problem, in which 
the temperature of the bottom wall is maintained at 300 K, 
while that of the top wall is fixed at 500 K. For each case 
study after performing the MD simulations, the required 
ACs in the CLL scattering kernel are computed. These 
ACs for the Ar–Au and H2–Ni systems are listed in 
Tables  2 and  3 , respectively. Different physical and 

statistical criteria are employed to assess the performance 
of the applied scattering kernels, including the number 
density and temperature profiles between two walls, as 
well as the predicted velocity distributions at the gas-wall 
interfaces. In the case of the predicted number density and 
temperature by DSMC, the accuracy of the simulation 
results is determined by measuring the deviations of the 
DSMC results from the pure MD results. Considering 
xy−DSMC as the predicted number density or temperature in 
a spacial bin by the DSMC approach coupled to the y 
scattering kernel, the deviations are computed by √
(xy−DSMC − xMD)

2∕xMD  ,  where xMD  refers to the 
corresponding property obtained from the MD simulation.

3.1  Isothermal Ar–Au system

Figure 4 shows the density and temperature profiles of the 
isothermal Fourier problem for Ar–Au system obtained 
from the DSMC simulations combined with GM and 
CLL scattering models alongside the pure MD results. 
As indicated in the previous section, gas–wall interaction 
zones need to be excluded to have a fair comparison 
between the MD and DSMC results. The reason is that 
DSMC cannot predict gas transport properties in these 
areas. In all the case studies in this work, looking at the 
number density profile obtained from the MD simulations, 
the number of the adsorbed gas molecules on the surfaces, 
Nads , are excluded from the total number of the MD 
particles, NMD , resulted in NDSMC = NMD − Nads . As an 
example, in the present case study NMD = 800 . Based on 
the number density profile (see Fig. 4a), the total number 
of Ar atoms adsorbed at the bottom and top walls are about 
Nads = 225 , which leads to NDSMC = 575.

From Fig. 4 it is deduced that the DSMC results using 
both the CLL and GM scattering models are in good 
agreement with the original MD results. To be more 
specific, the average deviations of the predicted number 
densities by the GM-DSMC and CLL-DSMC are 0.4% 
and 0.5%, respectively. While for the temperature, the 
deviations are 0.2% on average.

Table 2  Tangential momentum ( �
x
 ) and normal energy ( �

n
 ) accom-

modation coefficients of the Fourier thermal problem for the Ar–Au 
system obtained from MD simulations

System Wall �
x

�
n

Isothermal Bottom/top 0.876 0.910
Non-isothermal Bottom 0.886 0.910

Top 0.775 0.856

Table 3  Tangential momentum ( �
x
 ), normal energy ( �

n
 ), and rota-

tional energy ( �
rot

 ) accommodation coefficients of the Fourier ther-
mal problem for the H

2
–Ni system obtained from MD simulations

System Wall �
x

�
n

�
rot

Isothermal Bottom/top 0.951 0.758 0.656
Non-isothermal Bottom 0.930 0.724 0.596

Top 0.922 0.730 0.600
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Fig. 4  Variation of the macroscopic quantities of the isothermal Fourier problem for Ar–Au system obtained from the pure MD simulation and 
DSMC simulations combined with the GM and CLL scattering models. a Number density, b temperature; rc = 12 Å

Fig. 5  Velocity correlations of impinging (horizontal-axis) and 
reflected (vertical-axis) velocity components in [Å/ps] of the iso-
thermal Fourier problem for Ar–Au system at the bottom wall. The 
dashed horizontal and diagonal lines indicate fully diffusive and 

specular conditions, respectively. Red lines indicate the least-square 
linear fit of the data, its slope infers: 1-AC. In the last column the cor-
responding PDF for the reflecting particles are shown (color figure 
online)
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The correlation between the impinging and outgoing 
velocity components, as well as the PDF of the outgoing 
velocity components obtained from the applied simulation 
approaches for the isothermal Ar–Au system, are depicted 
in Fig. 5. It is seen that in this case study, which resembles 
the fully equilibrium condition in the system, the veloc-
ity distributions predicted by the GM-DSMC and CLL-
DSMC approaches match well the MD data.

3.2  Non‑isothermal Ar–Au system

In Fig. 6, the variation of the local number density and 
temperature observed in the MD simulation and the 
predicted trends by the GM-DSMC and CLL-DSMC of 
the non-isothermal Fourier problem for Ar–Au case study 
are presented. In general, having a higher temperature at 
the top wall causes less number of atoms to be adsorbed at 
the surfaces in this case (i.e., Nads = 222 , NDSMC = 578 ). 
Regarding the number density (see Fig.  6a), similar to 
the previous case study, the predicted results by DSMC 
incorporating both scattering models are consistent with 
the MD data. Here, the average deviations of the predicted 
results are 0.6% for both GM-DSMC and CLL-DSMC 
approaches. In the case of the temperature profile (see 
Fig. 6b), the trend predicted by the GM-DSMC in the bulk 
of the domain matches well the pure MD results. Here, the 
deviations are 0.2%. On the other hand, in most parts of the 
simulation domain, the results predicted by the CLL-DSMC 
method deviate from the MD results, observing the highest 
deviation close to the top wall, which is 4%.

Another observation is the noticeable temperature jump 
between the consecutive bins located at the beginning and 

end of the simulation domain. This observation is in line 
with the previously observed temperature jump adjacent to 
the solid surface induced by the strong gas-wall interactions 
within the potential cutoff distance (Markvoort et al. 2005).

The scattering results obtained from the MD, GM-
DSMC, and CLL-DSMC approaches at the bottom and top 
walls are presented in Figs. 7 and 8, respectively. It is seen 
that the velocity clouds predicted by the GM-DSMC and 
CLL-DSMC approaches are very similar to the MD results. 
Looking at the PDFs of the outgoing velocities in the x and 
z-directions at both walls, some discrepancies between the 
CLL-DSMC and MD results around the peak of the graph 
are seen. Nevertheless, the results from the GM-DSMC 
approach are always in good agreement with the MD results.

3.3  Isothermal H
2
–Ni system

Variations of the number density and temperature in the 
case of the isothermal Fourier problem for the H2–Ni 
system are shown in Fig. 9. Comparing the number density 
profile obtained from the MD simulation with the one for 
the isothermal Ar–Au system (see Fig. 4a), presence of the 
weaker adsorption layer is seen in the current case study. 
This is manifested through the relatively smaller difference 
between the number densities of the consecutive bins near 
the walls in the current case than the isothermal Ar–Au 
system. It is seen that for the isothermal H2–Ni system the 
measured number densities in all bins are in the same order 
of magnitudes, while for the isothermal Ar–Au system the 
number densities near the walls are one order of magnitude 
higher than the ones in the bulk. This outcome is caused by 
significantly higher mass of the Ar atom compared to the 

Fig. 6  Variation of the macroscopic quantities of the non-isothermal Fourier problem for Ar–Au system obtained from the pure MD simulation 
and DSMC simulations combined with the GM and CLL scattering models. a Number density, b temperature, rc = 12 Å (color figure online)
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H2 ( mAr ≈ 20mH2 ). Regarding the number of particles used 
in the MD and DSMC simulations of the H2–Ni system, 
NMD = 900 particles were used in the MD simulation. It 
was observed that around 100 particles were trapped in the 
gas-surface interaction zones during the MD simulation. 
Therefore, NDSMC = 800 particles were considered in the 
DSMC simulation.

Going back to the predicted trends of the number density 
and temperature obtained based on different approaches 
in this case study, the results of GM-DSMC and CLL-
DSMC agree with MD data. Here, the deviations of the 
predicted number densities by the GM-DSMC and CLL-
DSMC are 0.6% and 0.4%, respectively. On the other hand, 
the temperature results of the DSMC simulations coupled 
with the GM and CLL scattering models on average deviate 
around 0.2% from the MD results.

The correlation plots and PDFs for different translations 
velocity components and energy modes of the isothermal 
Fourier problem for H2–Ni system are presented in Fig. 10. 
It is shown that in this case study, there is a good agreement 
between the correlation plots and PDFs of the partial transla-
tional velocity components, and the rotational energy mode. 
However, Etr and Etot correlation clouds of the pure MD and 

GM-DSMC are narrower than the CLL-DSMC approach, 
which since Etot = Etr + Erot the mismatch in Etr induced the 
mismatch in the results for Etot.

3.4  Non‑isothermal H
2
–Ni system

Figure 11 shows the number density and temperature profile 
in the case of the non-isothermal Fourier problem for the H2

–Ni system. First of all, from the MD simulation it is realized 
that Nads = 94 H2 are adsorbed on the surfaces. Therefore, 
NDSMC = 806 particles are used in the DSMC simulation. 
Regarding the number density variation (see Fig. 11a), it 
is observed that within the bulk of the simulation domain, 
the GM-DSMC approach results match well with the MD 
data. Here, the deviations of the GM-DSMC results are 
around 0.6% on average. However, unlike all the previously 
investigated ones, a notable discrepancy between the density 
profiles obtained from the MD and CLL-DSMC is observed 
in the current case study. In this case, the highest deviation 
is measured near the top wall, which is 8%. In Fig. 11b, it 
is depicted that the predicted temperature profiles based on 
both GM-DSMC and CLL-DSMC approaches deviate from 
the reference MD results. Nevertheless, the GM-DSMC 

Fig. 7  Velocity correlations of impinging (horizontal-axis) and 
reflected (vertical-axis) velocity components in [Å/ps] of the non-
isothermal Fourier problem for Ar–Au system at the bottom wall. 
The dashed horizontal and diagonal lines indicate fully diffusive and 

specular conditions, respectively. Red lines indicate the least-square 
linear fit of the data, its slope infers: 1-AC. In the last column the cor-
responding PDF for the reflecting particles are shown (color figure 
online)
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Fig. 8  Velocity correlations of impinging (horizontal-axis) and 
reflected (vertical-axis) velocity components in [Å/ps] of the non-
isothermal Fourier problem for Ar–Au system at the top wall. The 
dashed horizontal and diagonal lines indicate fully diffusive and 

specular conditions, respectively. Red lines indicate the least-square 
linear fit of the data, its slope infers: 1-AC. In the last column the cor-
responding PDF for the reflecting particles are shown (color figure 
online)

Fig. 9  Variation of the macroscopic quantities of the isothermal Fourier problem for the H2–Ni system obtained from the pure MD simulation 
and DSMC simulations combined with the GM and CLL scattering models. a Number density, b temperature. rc = 10 Å
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Fig. 10  Correlations between incoming (horizontal-axis) and outgo-
ing (vertical-axis) translational velocity components in [Å/ps] and 
energy modes in [eV] of the isothermal Fourier problem for the H2

–Ni system at the bottom wall. The dashed horizontal and diagonal 
lines demonstrate fully diffusive and specular reflection, respectively. 

Solid red lines demonstrate the least-square linear fit of the kinetic 
data, its slope infers: 1-AC. In the last column the corresponding PDF 
of translational velocity components and energy modes for the reflect-
ing particles are presented (color figure online)
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approach still outperforms the CLL-DSMC approach. 
Herein, the highest deviations based on the GM-DSMC 
approach are measured at the first and last bins, which are 
2% and 1%, respectively. On the other hand, using the CLL-
DSMC approach, the deviations on the same bins are 9% 
and 10%, respectively.

The scattering results at the bottom wall of the non-
isothermal Fourier problem for the H2–Ni system are 
shown in Fig. 12. It is seen that the correlations plots of 
the translation velocity components obtained from the 
GM-DSMC and CLL-DSMC are in good agreement with 
the MD results. However, while the correlation graphs for Vx 
and Vz components obtained from the CLL-DSMC resemble 
perfect ellipsoid, the MD results look more skewed around 
the diagonal line. This observation, which can be perfectly 
captured by the GM-DSMC approach, indicates that many 
gas molecules with high velocity experience almost specular 
reflection. In addition, the PDFs of the outgoing velocity 
components predicted by the GM-DSMC approach are a 
perfect match, while the CLL-DSMC predictions deviate 
from the MD results around the peak value of the PDF plots. 
Looking at the scattering results related to the different 
energy modes, except for the rotational energy mode, in 
the other energy modes, the results from the CLL-DSMC 
deviate from the MD results. Nevertheless, the GM-DSMC 
results are in better agreement with the MD results. Except 
for the PDF of rotational energy mode, the peak values of all 
PDFs predicted by the CLL-DSMC approach are higher than 
MD and GM-DSMC results. A higher peak implies a lower 
temperature. Therefore, the CLL-DSMC overestimates the 
degree of H2 accommodation to the surface. This issue is 
also seen in the correlation graphs for Etr and Etot , in which 

the slopes of the red lines, indicating 1-AC, are smaller for 
CLL-DSMC in comparison with the MD and GM-DSMC 
results.

The relatively significant mismatch between the reference 
MD and the CLL-DSMC results in this case study, shown 
in Fig. 11b and the last column of Fig. 12, is caused by 
the small molecular weight of H2 molecules and the small 
size of the channel. In the MD simulation, the light H2 
molecules move very fast between the two plates causing the 
temperature in different parts of the bulk to converge towards 
the average value of the bottom and top plates temperatures 
( Ta = 400K  ). Based on the incoming and outgoing 
collisional data recorded at each wall, we can compute the 
incoming and outgoing gas temperatures adjacent to the 
walls. For the non-isothermal H2–Ni system based on the 
MD results, the incoming and outgoing temperatures at the 
bottom wall are Tin−MD−b = 403 K and Tout−MD−b = 378 K, 
respectively. On the top wall, the incoming and outgoing 
gas temperatures are Tin−MD−t = 385 K and Tout−MD−t = 411 
K. These temperatures are close to the MD values near the 
walls shown in Fig. 11b. Our hybrid GM-DSMC model 
can deal with this, while the CLL scattering model can 
not anticipate such behavior. Next, the performance of the 
CLL model also highly depends on the values of applied 
ACs. As an example, Spijker et al. (2010) computed ACs 
for the Ar-Pt system based on the classical and correlation 
approaches. The obtained ACs from the correlation approach 
were slightly higher than the classical approach. In their 
study, they showed a significant difference in the CLL 
scattering model results, based on the computed ACs. In this 
case study, the obtained ACs (see Table 3), especially the 
tangential momentum AC, are high, indicating a large degree 

Fig. 11  Variation of the macroscopic quantities of the non-isothermal Fourier problem for H2–Ni system obtained from the pure MD simulation 
and DSMC simulations combined with the GM and CLL scattering models. a Number density, b temperature. rc = 10 Å
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Fig. 12  Correlations between incoming (horizontal-axis) and outgo-
ing (vertical-axis) translational velocity components in [Å/ps] and 
energy modes in [eV] of the non-isothermal Fourier problem for H2

–Ni system at the bottom wall. The dashed horizontal and diagonal 
lines demonstrate fully diffusive and specular reflection, respectively. 

Solid red lines demonstrate the least-square linear fit of the kinetic 
data, its slope infers: 1-AC. In the last column the corresponding PDF 
of translational velocity components and energy modes for the reflect-
ing particles are presented (color figure online)
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of accommodating the gas molecules to the neighboring 
surfaces. To entirely study the impact of obtained ACs 
on the gas temperature, using the algorithm proposed in 

Hossein Gorji and Jenny (2014), the incoming rotational and 
translational MD velocities captured at the bottom wall are 
utilized to generate post-collisional velocities according to 

Fig. 13  Correlations between incoming (horizontal-axis) and outgo-
ing (vertical-axis) translational velocity components in [Å/ps] and 
energy modes in [eV] of the non-isothermal Fourier problem for the 
H2–Ni system at the top wall. The dashed horizontal and diagonal 
lines demonstrate fully diffusive and specular reflection, respectively. 

Solid red lines demonstrate the least-square linear fit of the kinetic 
data, its slope infers: 1-AC. In the last column the corresponding PDF 
of translational velocity components and energy modes for the reflect-
ing particles are presented (color figure online)
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the CLL scattering model. Based on the obtained outgoing 
velocities, the outgoing gas temperature is Tout−CLL−b = 314 
K. Looking to Fig. 11b, the temperature in the very first 
bin at the left side of temperature profile related to the 
CLL-DSMC case study is 359 K. This temperature is very 
close to the average of incoming and outgoing temperatures 
computed here ( Tin−MD−b = 403 K, Tout−CLL−b = 314 K).

The scattering results at the top wall of the non-isothermal 
H2–Ni system are shown in Fig. 13. Comparing the results 
obtained from the MD, GM-DSMC, and CLL-DSMC, simi-
lar trends to the bottom wall can also be seen here. For Erot , 
the results of GM-DSMC and CLL-DSMC are consistent 
with the MD data. For the other energy modes and trans-
lational velocity components, the GM-DSMC results are 
always in better agreement with MD results than the CLL-
DSMC results. Looking at the PDFs, except for Erot , in the 
other components, the peak value of the PDF predicted by 
the CLL-DSMC is lower than MD and GM-DSMC results. 
It means CLL-DSMC predicts a higher temperature for 
reflected gases. This observation, alongside underestimat-
ing the outgoing temperature at the bottom wall, indicates 
that the CLL-DSMC is not able to predict the actual tem-
perature jump happening at the gas-solid interfaces. Such a 
conclusion can also be derived from Fig. 11b, in which the 
predicted temperatures by the CLL-DSMC near the cold and 
hot walls are respectively lower and higher than the refer-
ence MD results.

4  Conclusions

DSMC simulations, as the most common particle-based 
simulation techniques, can be applied to derive precise 
solutions of gas transport properties outside the gas-wall 
interaction layer based on the accurate velocity distribution 
function of the reflected gas molecules provided by MD 
simulations. In this work, MD simulations on monoatomic 
and diatomic gases-surface interactions under thermal 
equilibrium and non-equilibrium conditions are carried 
out. Using the MD collisional data, including the pre and 
postscattered molecular gas velocities from each case study, 
an unsupervised machine learning approach, called the GM 
model, is employed to construct a gas-surface boundary 
model. The GM boundary model is rewritten in the form 
of a conditional multivariate PDF that can reproduce the 
postscattered gas molecular velocities based on their initial 
imposed velocities and therefore can be used as boundary 
condition in a DSMC simulation.

This new conditional GM scattering kernel is 
successfully incorporated in a pure DSMC simulation 
as a boundary condition to study isothermal and non-
isothermal Fourier problems. In each case study, the 

performance of the proposed model (GM-DSMC) is 
assessed against the DSMC simulations based on the 
CLL scattering kernel (CLL-DSMC) using full MD results 
as the reference solution. Comparing different physical 
(e.g., temperature field) and stochastic (e.g., velocity 
and energy distributions) parameters obtained from the 
applied simulation approaches confirm the superiority 
of the GM-DSMC approach. The hybrid GM-DSMC 
approach demonstrated superior results, particularly in the 
diatomic case  (H2-Ni), surpassing the outcomes obtained 
with the CLL-DSMC approach. The performance was 
closely aligned with the full MD results, highlighting the 
significant potential of this new approach.

These results also pave the way to develop a multiscale 
simulation scheme, which combining an accurate 
generalized scattering model based on MD data with 
DSMC simulation, can accurately measure different flow 
field properties by efficiently including the microscopic 
non-continuum phenomena. To achieve such a scattering 
kernel, an expanded training data set including other 
physical parameters of the system, such as the wall 
temperatures and gas density is required, and this is in our 
plan for future studies.

Appendix: Sensitivity analysis to determine 
the number of Gaussian functions (K) used 
in the GM model

In the case of the GM model a sensitivity analysis is required 
to choose the optimal number of Gaussian functions. In this 
work, for both gas-solid pairs the isothermal Fourier thermal 
problem ( Tb = Tt = 300 K) is chosen as the benchmark 
system. The number of Gaussians, K, is varied in the range 
of K = 1−1000.

For the Ar–Au system, including only the translational 
degrees of freedom, the translational kinetic energy AC 
( �tr ) driven from the GM model is compared with the cor-
responding value obtained from MD simulation. On the 
other hand, for the H2–Ni system the ACs for different gas 
molecule’s energy modes consist of the translational energy 
AC ( �tr ), the rotational energy AC ( �rot ), and the total energy 
AC ( �tot ) driven from the GM model are compared with the 
reference MD results. The results of sensitivity analysis for 
both gas-solid pairs are shown in Fig. 14. In the case of the 
Ar–Au system, for K ⩾ 50 already the difference between 
�tr based on the GM model and the MD data is less than 
5%. Therefore, K = 100 is utilized as the number of Gauss-
ians for training the GM model based on the results from 
the Ar–Au system. For the H2–Ni system for K ⩾ 500 the 
computed ACs become stable and no significant change in 
their values are observed. Therefore, K = 500 is employed 
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as the number of Gaussian functions in the GM model in the 
case of H2–Ni system.
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