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Abstract
Kinetic equations are crucial for modeling non-equilibrium phenomena, but their computational complexity is a challenge. 
This paper presents a data-driven approach using reduced order models (ROM) to efficiently model non-equilibrium flows 
in kinetic equations by comparing two ROM approaches: proper orthogonal decomposition (POD) and autoencoder neural 
networks (AE). While AE initially demonstrate higher accuracy, POD’s precision improves as more modes are considered. 
Notably, our work recognizes that the classical POD model order reduction approach, although capable of accurately rep-
resenting the non-linear solution manifold of the kinetic equation, may not provide a parsimonious model of the data due to 
the inherently non-linear nature of the data manifold. We demonstrate how AEs are used in finding the intrinsic dimension 
of a system and to allow correlating the intrinsic quantities with macroscopic quantities that have a physical interpretation.

Keywords Model order reduction · Data-driven methods · Kinetic equations · Neural autoencoder networks · Proper 
orthogonal decomposition · Sod shock tube · Boltzmann-BGK

1 Introduction

Kinetic equations are widely used in science and engineering 
(Koellermeier and Torrilhon 2018; Maes et  al. 2023; 
McClarren and Hauck 2010; Struchtrup and Torrilhon 2008). 
They allow the modeling of deviations from an equilibrium 
model which is given by an underlying macroscopic 
equation like the Euler equations, providing detailed 
insight into fundamental physical processes (Torrilhon 
2016). However, kinetic equations are often characterized 
by a large dimensional phase space consisting of physical 
space and the velocity space of gas particles, making them 
computationally expensive to solve and sometimes even 
unfeasible for realistic applications (Torrilhon 2016).

Solving kinetic equations is, therefore, more costly than 
the computation using simpler equilibrium models like the 
Euler equations. Investing in solving kinetic equations is 
thus only beneficial if large deviations from equilibrium are 
present that cannot be predicted by the equilibrium models 
(Torrilhon 2016). Striking a balance between a fast but 
inaccurate equilibrium solver and a slow but accurate non-
equilibrium solver remains an open challenge.

In the field of non-equilibrium gas flows, several standard 
methods to efficiently discretize the high dimensional phase 
space exist. While particle-based Monte Carlo methods 
have recently been used even in the transition and early slip 
regime, they are best suited in the free flight regime and 
typically become more computationally costly in denser 
regions of only moderate non-equilibrium unless special 
techniques are used (Debrabant et al. 2017; Degond et al. 
2011; Garcia et  al. 1999). The straightforward discrete 
velocity method (DVM) uses a pointwise discretization of 
the velocity space, potentially leading to a large number of 
equations (Mieussens 2000; Mieussens et al. 2012; Brull 
and Prigent 2020). Specially tailored moment models are 
based on the expansion of the particle distribution function 
and lead to a set of extended fluid dynamical equations 
(Torrilhon 2016). However, it is by no means clear a-priori 
how many equations are sufficient and which variables 
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are optimal (Torrilhon 2015). Our work aims to address 
this challenge by providing a proof-of-concept for a data-
driven solution model of flows in different non-equilibrium 
regimes.

To tackle the computational complexity of kinetic equa-
tions, recently, other data-driven reduced order models 
(ROM) have been introduced, enabling reductions in com-
putational complexity by orders of magnitudes (Bernard 
et al. 2018; Einkemmer 2019; Einkemmer et al. 2021a, b). 
Two different approaches have been followed in the litera-
ture. The classical offline-online decomposition as used by 
Bernard et al. (2018) involves a two-stage procedure. In 
the offline stage, the full order model (FOM) is assessed 
to create a database, which is then utilized to generate a 
data-dependent basis through proper orthogonal decompo-
sition (POD). This basis allows an efficient description of 
the FOM on a low-dimensional linear subspace during the 
online phase. On the other hand, the online adaptive basis 
method called dynamic low-rank approximation (Koch and 
Lubich 2007) constructs the low dimensional linear basis 
during the online phase itself, eliminating the need to evalu-
ate the expensive FOM. It has been successfully applied to 
kinetic equations in Einkemmer (2019); Einkemmer et al. 
(2021a, b). However, the additional complexity of updating 
the basis during the evolution makes it less online efficient 
than the classical offline-online approach shown in Koeller-
meier et al. (2023) for a shallow water moment model.

In this work, we adopt the same offline strategies as in 
Bernard et al. (2018). Specifically, we sample data for a clas-
sical test case called Sod shock tube using a discrete veloc-
ity model as our FOM and compare the compression of the 
linear reduced subspace created by POD with a non-linear 
description provided by neural autoencoder networks. Neu-
ral networks, based on the universal approximation theorem 
(Pinkus 1999), allow for the approximation of a wide range 
of function classes and appear promising in identifying the 
intrinsic dimension of a system. However, the non-linear 
relation between macroscopic model equations and the 
discrete velocity model hinders the determination of these 
dimensions using linear reduction methods like the POD.

This paper aims to utilize these data-driven model reduc-
tion techniques to reduce the number of describing variables 
and equations and determine how many and which variables 
are useful in specific test cases. For non-vanishing Knud-
sen number, we expect to need more non-equilibrium vari-
ables with corresponding balance laws, while in the limit of 
vanishing Knudsen number, we expect to recover the Euler 
equations, given by conservation laws for mass, momentum, 
and energy. To the knowledge of the authors, this is the first 
paper aiming to bridge the gap between equilibrium and 
non-equilibrium flows using neural networks in this way.

The long-term objective of this line of work is to enable 
dynamically adapting the model by varying the number of 

variables during the online phase, paving the way for more 
efficient and accurate model adaptive simulations of kinetic 
equations.

The organization of the paper is as follows: in Sect. 2, we 
introduce the 1D model problem and the reference data used 
for model reduction. Section 3 describes the two model reduc-
tion techniques used in this study: Proper Orthogonal Decom-
position (POD) and Autoencoder Networks. The results are 
presented in Sect. 4, and the paper concludes with a summary 
in Sect. 5.

2  The Boltzmann‑BGK model and data

This paper considers a proof-of-concept of using reduced mod-
els for the solution approximation of the 1D Boltzmann-BGK 
equation (Bhatnagar et al. 1954) for monoatomic, ideal gasses

which is a potentially high-dimensional equation for the 
unknown probability density function f(t,  x,  c), where 
t ∈ ℝ

+ is the time, x ∈ ℝ is the spatial variable, and c ∈ ℝ 
the microscopic particle velocity. For simplicity we consider 
the one-dimensional case in this paper, but the results can be 
extended to the multi-dimensional case.

Computing solutions and generating data of the Boltzmann-
BGK model is essential for industrial and scientific applica-
tions, but often so computationally prohibitive that a large 
number of test cases is not feasible. To reduce time and cost 
during the data generating process, experiments or numerical 
simulations can be replaced by reduced-order models (ROMs).

For standard continuum flows the widely-used Euler equa-
tions can be applied, but more rarefied regimes require differ-
ent extended fluid dynamical models. Rarefaction levels are 
distinguished with aid of the Knudsen number Kn defined by 
the ratio of the mean free path length of the particles � over a 
reference length l as

The right-hand side of the BGK collision operator Eq. (1) 
models the relaxation with relaxation time � ∈ ℝ

+ toward 
the equilibrium Maxwellian distribution fM(t, x, c) given by

where �(t, x) , v(t, x) and T(t, x) are density, bulk velocity, and 
temperature of the flow, respectively, and R is the universal 
gas constant. In this work, we consider the relaxation time � 
a parameter and set it equal to the Knudsen number, � = Kn , 

(1)�tf + c�xf =
1

�
(fM − f ),

(2)Kn =
�

l
.

(3)fM(t, x, c) =
�(t, x)

(2�RT(t, x))
3

2

exp

(
−
(c − u(t, x))2

2RT(t, x)

)
,
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however, the relaxation time can also be changed, e.g., to 
depend on the gas density and temperature in addition.

For practical computations, we consider macroscopic 
moments of the distribution function, which are given by mul-
tiplying the distribution function with the co-called collision 
invariants (1, c, 1

2
c2) and integrating in velocity space

where E denotes the total energy. The temperature T(t, x) and 
the pressure p(t, x) can be obtained by

Figure 1 illustrates the relation between the macroscopic 
moments and the distribution function f(t, x, c) at a certain 
position in time and space. The density �(t, x) is the integral 
of the distribution function, which is centered around the 
macroscopic velocity u(t, x), and the mean deviation is 
related to the temperature T(t, x).

The Boltzmann-BGK equation Eq. (1) is in equilibrium 
when f = fM . Multiplying the equilibrium solution with the 
collision invariants and integrating in velocity space, one finds 
the Euler equations of classical gas dynamics

(4)�(t, x) =∫ f (t, x, c) dc,

(5)�(t, x)u(t, x) =∫ cf (t, x, c) dc,

(6)E(t, x) =∫
1

2
c2f (t, x, c) dc,

(7)

T(t, x) =
2E(t, x)

3�(t, x)
−

u(t, x)2

3
and p(t, x) = �(t, x)T(t, x).

which are conservation laws for mass, momentum, and 
energy, respectively.

For distribution functions out of equilibrium, for exam-
ple due to a larger relaxation time � and a significantly large 
Knudsen number Kn , the Euler equations do not give accurate 
results. In this case, additional equations can be used, which 
are derived by the so-called method of moments (Torrilhon 
2016). This effectively leads to an extended set of equations, 
called moment model. It is possible to preserve important 
properties like hyperbolicity with moment models (Fan et al. 
2016). The additional equations (for example for the heat flux 
and higher-order moments) add complexity, but allow for more 
accurate solutions (Koellermeier and Torrilhon 2017; Torril-
hon 2015). However, it is often unclear a-priori, how many 
equations are needed for an efficiently accurate and computa-
tionally feasible solution. In this work, we aim to give a proof-
of-concept for a data-based identification of the necessary 
number of variables, called the intrinsic physical dimension.

2.1  Sod shock tube test case and reference data

Sod’s shock tube is a well-established test case in the field 
of rarefied gasses (Koellermeier and Torrilhon 2017). It uses 
discontinuous initial conditions based on equilibrium values

corresponding to a jump in density and pressure at x = 0.5 
due to a diaphragm at that position, which is removed at 
time t = 0.

The problem setup at t = 0 is shown in Fig. 2, which is split 
into two regions left and right of the diaphragm.

While Sod’s shock tube has a seemingly simple setup, it is 
nonetheless challenging due to the discontinuous initial profile 
and the emerging non-equilibrium conditions. In most other 
test cases, the nature of the non-equilibrium flow conditions 
are similar. However, in some test cases without discontinuous 
initial data or shocks like the 2D driven cavity test case, some 
intrinsic variables of Sod’s shock tube might not be relevant 
while others are more important. This could be investigated 
in further work.

For the generation of reference data we employ a discrete 
velocity method (DVM) (Mieussens 2000), which uses a 
pointwise microscopic velocity space discretization

(8)�t� + �x(�u) = 0,

(9)�t(�u) + �x(�u
2 + p) = 0,

(10)�tE + �x(u(E + p)) = 0,

(11)
{

(𝜌L, uL, pL) = (1, 0, 1) if x < 0.5,

(𝜌R, uR, pR) = (0.125, 0, 0.1) if x > 0.5,

Fig. 1  Illustration of the macroscopic moments corresponding to an 
example distribution function
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where a uniform grid in velocity space is considered 
with ck = kΔc to discretize the distribution function 
fk(t, x) = f (t, x, ck) , for some k ∈ ℤ . After a subsequent 
discretization in space, the DVM Eq. (12) leads to a cou-
pled ODE system in time than can be solved with standard 
methods.

For the numerical reference data, we use Nx = 200 spatial 
points xk ∈ [0, 1] , Nc = 40 discrete velocities cj ∈ [−10, 10] 
and Nt = 25 time steps tn ∈ [0, 0.12] summarized in Table 1. 
It is possible to choose another range for the discrete veloc-
ity points, but in typical applications the range of the bulk 
velocity is not known, such that one has to include a safety 
margin. We therefore chose the domain [−10, 10] . The goal 
of the model order reduction is now to reduce the complexity 
of the computation using lower dimensional models. For that 
matter, it is not relevant what the actual error of the numeri-
cal reference data is or if is fully converged. It is fair to say 
that a full reference solution might easily take into account 
more spatial points, time steps, and discrete velocities, which 
makes it even more necessary to reduce the complexity.

For the model order reduction later, we consider two 
different Knudsen numbers for Sod’s shock-tube test case: 
Kn = 0.00001 for a small Knudsen number in the hydrody-
namic regime and Kn = 0.01 for a relatively large Knudsen 
number in the rarefied regime.

To understand the behavior of the reference solutions 
for non-vanishing Knudsen numbers, we first describe the 
solution for vanishing Knudsen number in equilibrium, i.e., 
Kn = 0 , which can be obtained using the method of charac-
teristics and the Rankine Hugoniot jump conditions connect-
ing the states before and after the shocks (LeVeque 2002).

Starting from the initial condition in Fig. 3a, the solu-
tion evolves for t > 0 and five regions are formed that are 
depicted in Fig. 3b (Sod 1978). A rarefaction wave is mov-
ing to the left between x1 and x2 . The contact discontinuity 
is located at x3 , where the macroscopic velocity u and the 
pressure p are continuous in contrast to the density � and the 
energy E. x4 is the position of the shock wave.

(12)�tfk(t, x) = −(ck)�xfk(t, x) +
1

�

(
Mf k

(t, x) − fk(t, x)
)
,

In non-equilibrium, i.e., for solutions evolving with 
Knudsen numbers Kn > 0 , the solution does not have 
discontinuities due to the finite relaxation time � . Figure 3c 
shows the reference solutions f(t, x, c) at t0 = 0 , t1 = 0.06 
and t3 = 0.12 for the two levels of rarefaction considered 
in this paper: Kn = 0.00001 and Kn = 0.01 . Increasing the 
Knudsen number leads to a smoother transition from region 
1 to region 5 with a less pronounced shock front.

3  Methods

In this section, we present two common methods used for 
reducing the dimensionality of high dimensional data: (1) 
the proper orthogonal decomposition (POD) and (2) neural 
autoencoder networks (AE). The methods will be used to 
parameterize the high dimensional data stemming from the 
DVM simulation, using a linear mapping in case of the POD 
and a non-linear mapping in case of AE. Although the clas-
sical POD model order reduction approach shows that linear 
mappings are sufficient to describe the non-linear solution 
manifold of the BGK equation to a good accuracy (Bernard 
et al. 2018), it is in general not sufficient to determine a 
parsimonious model of the full model data, since the data 
manifold can be non-linear. Here, neural autoencoder net-
works can be used as they are capable to find the intrinsic 
dimension of a system.

3.1  Proper orthogonal decomposition

POD (Sirovich 1987) approximates the data with the help 
of dyadic pairs:

The pairs {(f̂k(x, t),𝜓k(ci))}k=1,…,r are the structures in the 
data that contain the most energy and they are chosen to 
minimize the gap between the data and the reconstruction 
Eq. (13). In the following, �k(ci) are termed POD-modes and 
f̂k(x, t) the corresponding reduced variables.

(13)f (x, t, ci) ≈

r∑
k=1

f̂k(x, t)𝜓k(ci) for r ≪ Nc.

Fig. 2  Problem setup for the 1D 
Sod shock tube. A diaphragm at 
the center is initially separating 
the domain in two regions, 
where initial conditions for 
density � , macroscopic velocity 
u, and pressure p are indicated
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Fig. 3  Sod shock tube and reference data. Initial conditions (a); equilibrium solution (b); reference solutions in rarefied and hydrodynamic 
regime (c); macroscopic quantities at t = 0.12 s (d)
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For notation, we define f (i)(x, t) = f (x, t, ci) and 
t h e  v e c t o r s  f (x, t) = (f (1)(x, t),… , f (Nc)(x, t))  a n d 
�k = (�k(c1),… ,�k(cNc

)) . The proper orthogonal decom-
position computes the solution of the minimization problem:

Technically one can solve this optimization problem using a 
singular value decomposition (SVD) of the so-called snap-
shot matrix (Kunisch and Volkwein 1999):

The snapshot matrix collects the time and space discrete 
distribution function in its columns. Each column holds the 
time-spatial values for a different discrete velocity. Perform-
ing an SVD factorizes F as

w i t h  d i a g o n a l  m a t r i x  � = diag (�1,… , �m)  , 
m = min(NxNt,Nc) , containing the singular values 
�1 ≥ �2 ≥ ⋯ ≥ �m ≥ 0 and � ∈ ℝ

NxNt×m,� ∈ ℝ
Nc×m are 

orthogonal matrices containing the left and right singular 
vectors, respectively.

T h e  f i r s t  r  c o l u m n s  o f  t h e  t r u n c a t e d 
�r = [�1,… ,�r] ∈ ℝ

Nc×r contain the POD modes in 
Eq. (13). Together with �r = diag (�1,… , �r) and the r lead-
ing left singular vectors �r ∈ ℝ

(NxNt)×r they yield the rank 
r-term approximation Fr of the snapshot matrix given by

According to the Eckart-Young-Mirsky theorem (Eckart and 
Young 1936; Mirsky 1960) Fr is the best rank r approxima-
tion and the resulting error in the Frobenius norm is rigor-
ously computed from the trailing singular values

(14)

min
�k

‖f (x, t) −
r�

k=1

⟨f (x, t),�k⟩�k‖22 such that ⟨�k,�l⟩ = �kl.

(15)F =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (1)(x1, t1) ⋯ f (Nc)(x1, t1)

⋮ ⋱ ⋮

f (1)(xNx
, t1) ⋯ f (Nc)(xNx

, t1)

f (1)(x1, t2) ⋯ f (Nc)(x1, t2)

⋮ ⋱ ⋮

f (1)(xNx
, tNt

) ⋯ f (Nc)(xm, tNt
)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ ℝ
(NxNt)×Nc .

(16)F = ���
�,

(17)Fr ∶= �r�r�
T
r
.

A common choice for r is to truncate after a certain energy 
percentage is reached in the reduced system compared to 
the full system:

In this paper, POD is used to compare with the autoencoder 
from the next section.

3.2  Autoencoders

Neural networks, particularly autoencoder networks, have 
become widely used tools for dimension reduction (Van 
Der Maaten et al. 2009), image segmentation (Minaee et al. 
2021) and denoising (Tian et al. 2020), time series predic-
tion (Han et al. 2019). A comprehensive introduction to 
autoencoder networks can be found in Goodfellow et al. 
(2016). Here we only summarize briefly the common idea 
of autoencoder networks and give the specific details of our 
implementation.

An autoencoder aims to reproduce the input data while 
compressing it through an information bottleneck. It consists 
of two main components:

• The encoder, denoted as genc , maps the input data 
f to points f̂  in a lower-dimensional latent space: 
genc ∶ ℝ

M
→ ℝ

r, f ↦ f̂ = genc(f ) , r ≪ M.
• The decoder, denoted as gdec , reconstructs the 

input space from the latent representation: 
gdec ∶ ℝ

r
→ ℝ

M , f̂ ↦ gdec(f̂ ) = f̃  , r ≪ M.

Note that the dimension of the latent space is denoted by r, 
to match the rank of the POD approximation.

The autoencoder is defined as the composition of both 
parts: f̃ = gdec

(
genc(f )

)
 . For our purpose, we identify the 

discrete velocity space as the input dimension M = Nc . Thus, 
the autoencoder maps each time-spatial value of the dis-
tribution function f (x, t) ∈ ℝ

Nc onto a smaller latent space 
f̂ (x, t) ∈ ℝ

r , which parameterizes the necessary physical 
information of the system.

The goal of the optimization procedure is to determine 
gdec and genc such that the reconstruction error over a set 
of training/testing data contained in F is minimized. The 
reconstruction error is defined as:

(18)‖F − Fr‖2F =

m�
k=r+1

�2
k
.

(19)Ecum =
‖Fr‖F
‖F‖F =

∑r

k=1
�2
k∑m

k=1
�2
k

.

(20)L =
1

Nc

‖f (x, t) − gdec◦genc◦f (x, t)‖22.

Table 1  Problem setup for the Boltzmann-BGK model in Sod’s shock 
tube

Variable Number of 
nodes i

Domain extension Step size (uniform)

x 200 [0, 1] 0.005
c 40 [− 10, 10] ≈ 0.51282051
t 25 [0, 0.12] 0.005
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The reconstruction error is the sum of the two-norm of the 
discrete velocities vector of the difference between the input 
data f and the reconstructed data f̃  that has been squeezed 
through the informational bottleneck. The assumption is, 
that if the original data can be represented well while the 
information went through a smaller latent space, there exists 
a physical law in the latent space that describes the system 
sufficiently. The intrinsic latent dimension r = p∗ which is 
sufficient to describe the data is then called the intrinsic 
physical dimension similar to the intrinsic dimension defined 
in Lee and Carlberg (2020). Such a reduced model is then 
termed parsimonious because it explains the data with a 
minimum number of variables.

In the training procedure, the functions genc and gdec are 
determined by trainable parameters of the network, referred 
to as weights and biases. The networks are constructed using 
a composition of layers genc = L1◦L2◦… ◦LN . Typically, 
each layer Ln ∶ ℝ

i
→ ℝ

o in the network consists of an affine 
linear mapping x ↦ hn(Wnx + bn) , where Wn ∈ ℝ

o,i repre-
sent the weights, bn ∈ ℝ

o denote the biases, and hn are pre-
defined non-linear functions. The configuration of the input 
and output dimensions i and o for each layer, the choice of 
activation function, and the number of layers collectively 
determine the architecture of the network. The choice of 
these so-called hyper-parameters is often difficult and a mat-
ter of trial and error.

Architecture In our studies we have exploited fully 
connected neural autoencoder networks (FCNN) and 
convolutional autoencoder networks (CNN). However, 
in this manuscript, we restrict ourselves to the results of 
the fully connected network, since it gave structurally the 
best results. We note that the poor performance of the 
CNN is most probably attributed to the small input size 
( M = Nc = 40 ), which proves insufficient for the effective 
functioning of a convolutional autoencoder. It is important 
to emphasize that CNNs are typically employed in scenarios 
involving larger input sizes than Nc , especially in the context 
of image processing. Therefore, the results may change if the 
velocity space is finer resolved. We have studied a variety 

of different activation functions, hidden layers, batch sizes 
and depths of the network. The best results concerning the 
validation error and acceptable training time were obtained 
by the network defined in Table 2. A comprehensive study 
of the parameter optimization is attached to the manuscript 
in Sect. 1.

Training Before the training, we initialize the weights of 
the network using the standard initialization implemented 
in pytorch. Thus the weights are randomly uniformly 
distributed between m−1∕2 and m1∕2 with m being the 
number of input nodes in the layer. Our network is trained by 
splitting the data consisting of Nx × Nt samples in a testing 
and training set with an 80/20 split over 3000 epochs using 
a batch size of 4. In each epoch, the network is updated 
using the Adam optimizer with a learning rate of 10−5 . 
More information about hyperparameters and training of 
the network can be found in the “Appendix” section.

4  Results

We reconstruct the full order model (FOM) solution with the 
help of POD and an autoencoder, the FCNN, for which the 
selection of hyperparameters and the training are described 
in the previous section. Note that we apply both model 
reduction techniques to reconstruct both the rarefied refer-
ence data and the hydrodynamic reference data. The goal is 
to later determine the intrinsic dimension of the data for both 
cases. We therefore compare the two dimension reduction 
techniques through different measures. The intrinsic vari-
ables obtained from POD and the FCNN will be referred to 
as h and r, where the former describes the intrinsic variables 
when reducing the hydrodynamic data and the latter when 
reducing the rarefied data.

To compare the results we define the L2-error

where F the reference data is given in Eq. (15) and the recon-
structed data F̃ is either Fr in case of the POD or the FCNN 
predictions with r latent variables for every (x, t, c) in the 
data set.

As computation time is highly dependent on the specific 
implementation and hardware configuration, we refrain from 
providing precise runtime measurements here. Most of the 
computation time is needed for the offline computation and 
training of the autoencoder, as detailed in the “Appendix”. 
The online phase has virtually negligible computational cost 
in comparison to the offline phase as usual in an online-
offline MOR approach, see also Koellermeier et al. (2023).

(21)Erel =
‖F − F̃‖2
‖F‖2 ,

Table 2  Hyper-parameters of fully connected autoencoder network 
(FCNN) for the hydrodynamic and rarefied regime

Parameter Hydrodynamic Rarefied

Layer sizes [Nc , 30, r, 30, Nc] [Nc , 40, r, 40, Nc]
Activation function ELU ReLU
Loss function MSE Eq. (20) MSE Eq. (20)
Optimizer Adam Adam
Learning rate 10−5 10−5

Epochs 3000 3000
Batch size 4 4
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4.1  Singular value decay of reference data

As a first step, we perform a POD with the hydrodynamic 
data and with the rarefied data. The obtained singular val-
ues � , as well as the cumulative energy (cusum-e) defined 
in Eq. (19), are shown in Fig. 4. As expected, more modes 
are necessary in the rarefied regime compared to the 
hydrodynamic regime. With a total of pPOD = 4 intrinsic 
variables, a cumulative energy of over 99% can be achieved 
for the hydrodynamic regime. The cumulative energy of 
the singular values of the rarefied regime only reaches 
above 99% with pPOD = 6 singular values.

For the POD we define the intrinsic dimension pPOD 
as the smallest truncation rank r of the reduced system, 
at which the cumulative energy Ecum defined in Eq. (19) 
reaches 99% . Although this choice is arbitrary it is a com-
mon practice in classical model order reduction to trun-
cate Eq. (13), whenever 99% of the cumulative energy is 
reached.

In Fig. 4, we further see that the rate at which the singular 
values drop is approximately exponential in both regimes, 
which has been also observed by Bernard et al. (2018). 
Consequently, a rapid decay of the Kolmogorov N-width is 
indicated. Note that the singular value decay is similar for 
both domains but not exactly the same, thus leading to an 
expected increase in the number of intrinsic variables in the 
rarefied regime necessary to achieve similar L2-errors.

It is important to note that the parameter pPOD is not 
expected to precisely match the actual intrinsic dimen-
sion p∗ of the solution manifold. The intrinsic dimension 
represents the minimum number of variables required to 
accurately describe the system’s exact solution manifold. 
This discrepancy arises because the solution manifold is 
fundamentally nonlinear, making it challenging to ade-
quately capture with a parsimonious linear approximation.

For the FCNN, the intrinsic dimension is defined as the 
smallest number of intrinsic variables that minimizes the 
error. In well-trained models, the FCNN’s intrinsic dimen-
sion should ideally align with p∗.

From a fluid mechanics perspective, the hydrodynamic 
regime theoretically requires only p∗ = 3 intrinsic 
variables. This is because near-equilibrium flows in 
this regime can be effectively characterized by three 
macroscopic quantities: density � , macroscopic velocity 
u, and total energy E, as outlined in Eqs. (8)–(10), see 
also Bernard et al. (2018) and Koellermeier and Torrilhon 
(2017).

Conversely, the rarefied regime demands a larger intrinsic 
dimension, denoted as p∗ . This is due to the need for more 
than only the equilibrium Maxwellian distribution function 
to describe the microscopic velocities adequately. Therefore, 
we initially set p∗ = 3 intrinsic variables (h) for the FCNN in 
the hydrodynamic case and choose p∗ = 5 intrinsic variables 
(r) for the rarefied regime. This choice aligns with extended 
fluid dynamic models as described in Koellermeier and Tor-
rilhon (2017) and Torrilhon (2016).

We note that each FCNN with a different latent space 
dimension r needs to be trained separately. This is different 
from the POD, where the decomposition is only performed 
once. Thereafter the approximation quality is given by the 
truncation rank r.

4.2  Variation of the number of intrinsic variables

The variation of the number of intrinsic variables r in 
Fig. 5 sheds light on the performance of the autoencoder 
with different bottleneck layer sizes. In the case of the 
POD r is the truncation rank of the decomposition Eq. (13) 
and the latent space dimension in case of the FCNN. To 
this end, r is varied for both the POD and the FCNN over 

Fig. 4  Singular value decay � and cumulative energy increase for the number of singular variables k in the hydrodynamic regime (a) and in the 
rarefied regime (b). A black cross marker corresponds to over 99% cumulative energy
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r ∈ {1, 2, 3, 4, 8, 16, 32} for the hydrodynamic case and 
over r ∈ {1, 2, 4, 5, 8, 16, 32} for the rarefied case. We 
note that the loss of information when applying POD 
goes exponentially to zero with increasing r, which is not 
surprising when consulting the Eckard-Young Theorem 
(Eckart and Young 1936). Note that the FCNN is retrained 
for each different r. By changing r, i.e. widening the 
bottleneck layer, a gain or loss of capacity occurs that can 
be connected to stability during training.

Both for the hydrodynamic and the rarefied regime, 
POD initially yields a larger error than the FCNN for a 
small number of intrinsic variables r. Not surprisingly, 
the POD accuracy increases with the number of singular 
values taken into account until the error reaches machine 
precision. The FCNN error decreases as well and then 
reaches a plateau, with a typical remaining error due to 
the network architecture and training. For the previously 
identified values p∗ = 3 in the hydrodynamic case and 
p∗ = 5 in the rarefied case, the FCNN results in a more 
accurate approximation than the POD.

We note that when testing the FCNN against POD and 
fixing r the FCNN is limited by the estimation error of the 
training and performs under its abilities. However, POD 
uses five to six times more parameters than the FCNN 
while the deterministic character enables POD to achieve 
any possible accuracy, which was not observed with the 
neural network.

In the following, we consider the intrinsic variables with 
constant values p∗ = 3 in the hydrodynamic case and p∗ = 5 
in the rarefied case.

This leads to the number of trainable parameters of the 
POD and the FCNN shown in Table 3. We can see that the 
FCNN achieves a relatively small error with a small number 
of parameters in comparison with the POD for this choice of 
the number of intrinsic variables.

Next, a qualitative analysis with the actual reconstruc-
tions is presented. From computations of the L2-error over 
time t , which are not shown due to conciseness, it became 
clear that the time step that contributes most to the error is 
the last time step in the case of POD, while the FCNN dis-
tributes the error more evenly over all time steps.

Fig. 5  The L2-error over the variation of the latent space dimension/truncation rank r using FCNN/POD for the hydrodynamic regime (left) and 
the rarefied regime (right)

Table 3  Amount of parameters used to reconstruct f  , the number of intrinsic variables p and the corresponding L
2
-error for POD and FCNN, 

both for hydrodynamic ( H ) and rarefied ( R ) regimes

Algorithm Parameters θ Int. variables p L
2
-error

H R H R H R

POD 15,129 25,225 3 5 0.0205 0.0087
FCNN 2683 3725 3 5 0.0008 0.0009
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4.3  Reconstruction quality

The reconstructed solutions compared to the full order 
model (FOM) at the final time step t = 0.12s are given 
in Fig. 6. Because of the small overall errors indicated in 
Table 3 both the POD and the FCNN reproduce the FOM 
solution without any visible differences at first sight.

As shown in Fig. 7, the more subtle information loss from 
the model reduction can unfold in actual differences in the 
macroscopic quantities � , �u and E . Overall, Fig. 7 shows 
that the errors are larger for the hydrodynamic regime (top 
row), most notably for the momentum and energy of the 
POD model close to the contact discontinuity. However, 
the position of the shock is well approximated. In con-
trast, the FCNN model yields a very good agreement in the 
hydrodynamic case. For the rarefied regime, both models 
approximate the FOM solution very well. The lack of sharp 
shock structures in the full model and the increased intrinsic 
dimension p∗ = 5 combined seem to notably influence the 
accuracy.

4.4  Conservation properties

The physical consistency of the reduced f̃  , in terms of 
conservation of mass, momentum, and energy, is a critical 
criterion for its validity. Hence, conservation properties 

are analyzed in the following. We note that conservation 
of mass, momentum, and energy is not directly built in 
using a specifically tailored loss function. Even though we 
can expect to recover some conservation properties as they 
are implicitly built into the numerical reference data. The 
investigation of different loss functions to improve upon this 
is left for future work.

We investigate the conservation properties by means 
of the derivative of the cell-averaged conserved quantities 
mass, momentum, and total energy, defined exemplary as

for the mass. Note that a derivative �̇� = 0 denotes conserva-
tion of mass, for example. We expect the conservation of 
mass and total energy, while the momentum increases at 
a constant rate, due to the boundary conditions of the test 
case, featuring a larger pressure on the left-hand side of the 
domain.

Figure 8 shows the evolution of the derivatives of mass, 
momentum, and total energy as a function of time for the 
hydrodynamic regime (top row) and the rarefied regime 
(bottom row).

Indeed, Fig. 8 indicates that conservation of mass and 
energy is achieved with reasonable accuracy for the FCNN, 

(22)
d

dt ∫ 𝜌(x, t) dxΔt = �̇�,

Fig. 6  Comparison of the FOM solutions f  (left column) with reconstructions f̃  obtained from POD (middle column) and FCNN (right column) 
at end time t = 0.12s for x ∈ [0.375, 0.75] in the hydrodynamic regime (top row) and the rarefied regime (bottom row)
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while the error is larger for the POD reconstruction for both 
regimes. Also, the increase in momentum of the full order 
model (FOM) is accurately described by the FCNN with a 
larger error for the POD method for both regimes. Overall, 
the errors are slightly smaller for the rarefied case compared 
to the hydrodynamic case, which might be due to the higher 
capacity of the neural network and more modes for the POD 
using five intrinsic variables in the rarefied regime.

4.5  Physical interpretability

An important question in the context of model reduction 
with neural networks is the interpretability of the results, 
because of the usual black-box nature of neural networks 
(Fan et al. 2020). Especially when benchmarking neural 
networks for model order reduction with POD, evaluating 
the interpretability of the intrinsic variables is important, 
since POD by construction achieves a so-called physically 

interpretable decomposition of the input data (Brunton and 
Kutz 2019) as outlined previously.

Following the assumption that the hydrodynamic case can 
be fully described in terms of three macroscopic quantities 
and that the rarefied case is reasonably describable in a simi-
lar way with an extended set of five variables, we test the 
intrinsic variables h and r for similarities and investigate if 
they match any macroscopic quantity. Two related macro-
scopic quantities, namely the temperature T and macroscopic 
velocity u , are added to the three macroscopic variables � , 
�u , and E. In Figs. 9 and 12, these are plotted first over the 
whole domain of x and t and for the end time t = 0.12s for 
both regimes. Similarly, we plot both the FCNN’s and the 
POD’s first 3 intrinsic variables h of the hydrodynamic case 
and 5 intrinsic variables r of the rarefied test case

h = [h0(x, t), h1(x, t), h2(x, t)],

r = [r0(x, t), r1(x, t), r2(x, t), r3(x, t), r4(x, t)],

Fig. 7  Comparison of FOM macroscopic quantities � , �u and E with POD and the FCNN for the hydrodynamic regime (top row) and the 
rarefied regime (bottom row) at time t = 0.12s
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depicted in Figs. 10 and 13 respectively.
Strikingly, most intrinsic variables of the FCNN in 

Figs. 10 and 13 and the POD in Figs. 11 and 14 appear to 
be a combination of the five intrinsic variables shown in 
Figs. 9 and 12, respectively. In particular consider FCNN in 
the hydrodynamic case by comparing Figs. 9 and 10. The 
rarefaction wave, shock wave, and contact discontinuity, 
which can be identified in h0 reflect a combination of those 
found in the density � and the total energy E . Furthermore, 
h1 seems to model the negative momentum �u , with different 
boundary values. The temperature T  appears linked to h2 , 
where the same fluctuation appears. Similar results hold for 
the POD variables in Fig. 11, where especially the first two 
variables closely resemble the density � and the momentum 
�u . Interestingly, this does not relate to very good conserva-
tion properties of the POD in comparison with FCNN as 

shown in the previous section and Fig. 8. Considering the 
FCNN in the rarefied case, we compare Figs. 12 and 13. 
Here r3 clearly reflects the shape of the density � . Moreover, 
the peak of the velocity u can be observed in r0 . For the 
other intrinsic variables of r1 , r2 and r4 a clear discernability 
of macroscopic quantities is difficult to observe and might 
require linear or nonlinear combinations. Additionally, those 
intrinsic variables may resemble non-equilibrium variables 
not present among the macroscopic variables. Consider-
ing the POD results in Fig. 14, we again see a very good 
agreement of the first intrinsic variables with density and 
momentum.

For more physical insight into the relation between mac-
roscopic variables and intrinsic variables, the Pearson cor-
relation between all variable combinations is computed in 
Goodfellow et al. (2016) for the FCNN. Note that we expect 

Fig. 8  Comparison of the conservative properties of reconstructions 
obtained from POD and the FCNNs with the conservative properties 
of the FOM solution using the mass, momentum, and energy 

derivative. A value of 0 indicates conservation. FCNN approximately 
conserves mass and energy, while the momentum increases with the 
correct rate of the test case
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similar results for the POD based on the previous results, 
but do not present them here for conciseness. The Pearson 
correlation coefficient rX,Y = rY ,X is a measure of linear 
correlation between two sets of data, here represented by 
a macroscopic variable X ∈ {�, �u,E, T , u} and an intrin-
sic variable Y ∈ {r0, r1, r2, } for the hydrodynamic case and 
Y ∈ {r0, r1, r2, r3, r4} for the rarefied case. It is commonly 
defined as

(23)rX,Y =

∑�
xi − x̄

��
yi − ȳ

�
∑��

xi − x̄
��∑�

yi − ȳ
� .

Note that rX,Y ∈ [−1, 1] , with rX,Y = 0 meaning that there 
is no correlation between both data sets, rX,Y = 1 indicating 
a perfect correlation, and rX,Y = −1 indicating a perfect 
anti-correlation.

The Pearson correlation coefficients for the hydrodynamic 
test case are presented in Fig.  15. As predicted by the 
previous analysis, there appears to be an almost perfect 
correlation of the first intrinsic variable r0 with the density 
� . This means that the FCNN succeeds at identifying the 
density � precisely as an internal variable. Note that r0 also 
correlates almost perfectly with the energy E, as the energy 
depends linearly on � . Additionally, there is a relatively 
strong linear correlation between r2 and both the momentum 

Fig. 9  Macroscopic quantities of the hydrodynamic case obtained by the FOM. Density � , momentum �u , total energy E , temperature T  , and 
velocity u over time t  and space x in the top row and at t = 0.12 in the bottom row

Fig. 10  Intrinsic variables h0(x, t) , h1(x, t) and h2(x, t) of hydrodynamic case obtained by the FCNN. Top row depicts the whole (x, t) domain, 
bottom row is for t = 0.12



 Microfluidics and Nanofluidics (2024) 28:1616 Page 14 of 24

�u as well as the temperature T. The intrinsic variable r2 on 
the other hand seems to be correlated with all variables.

The Pearson correlation coefficients for the rarefied test 
case are presented in Fig. 16. In agreement with the previous 
results, there is no clear correlation of most of the intrinsic 
variables. An exception is r0 , which is anti-correlated with u, 
and r3 , which correlates almost perfectly with the energy E. 
Note that only linear correlations are tested here. For further 
analysis of the disentanglement of the intrinsic variables, it 
might be more suitable to consider nonlinear correlations 
beyond the Pearson correlation coefficients. One option 
that could be explored in future work would be to train 
the functional relation between the intrinsic variables and 

macroscopic variables, for example by means of symbolic 
regression (Cranmer 2023).

We do expect the correlations to change for different flow 
cases provided those are characterized by different physical 
phenomena. Changing the architecture of the neural network 
is not expected to change the correlation of the intrinsic and 
physical variables provided that the expressivity of the neu-
ral network is sufficient and it is well-trained. In this sense, 
the amount of data for the training might need to be adjusted, 
e.g., for larger neural network architectures.

Fig. 11  First three intrinsic variables h0(x, t) , h1(x, t) and h2(x, t) of hydrodynamic case obtained by the POD. Top row depicts the whole (x, t) 
domain, bottom row is for t = 0.12

Fig. 12  Macroscopic quantities of the rarefied case obtained by the FOM. Density � , momentum �u , total energy E , temperature T  , and velocity 
u over time t  and space x in the top row and at t = 0.12 in bottom row
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5  Conclusion

This paper marks the first comparison of velocity space 
model reduction techniques for rarefied flows using proper 
orthogonal decomposition (POD) and a fully connected neu-
ral network (FCNN).

As physically expected, the rarefied regime needs more 
modes than the hydrodynamic regime. Choosing three and 
five intrinsic variables for the hydrodynamic and rarefied 
case, respectively, leads to less than one percent error. The 
FCNN is initially more accurate but has a remaining error 
even for a larger number of intrinsic variables, while POD 
achieves subsequently higher accuracy with increasing the 

number of parameters. The resulting errors of the macro-
scopic variables are small, especially in the smoother rare-
fied case.

Even though not strictly enforced, the FCNN approxi-
mately exhibits the correct conservation of mass, momen-
tum, and energy, while POD has a slightly larger error.

The correlation of intrinsic variables and macroscopic 
variables is investigated by means of the evolution of the 
reconstructed values and the pairwise correlation for the 
FCNN. The density is directly included in the latent space 
while the relation with other macroscopic variables seems 
to be more complex.

In addition to optimizing the neural network’s perfor-
mance, our research endeavors to enhance its predictive 

Fig. 13  Intrinsic variables r0(x, t) , r1(x, t) , r2(x, t) , r3(x, t) and r4(x, t) of rarefied case obtained by the FCNN. Top row depicts the whole (x, t) 
domain, bottom row is for t = 0.12

Fig. 14  First five intrinsic variables r0(x, t) , r1(x, t) , r2(x, t) , r3(x, t) and r4(x, t) of rarefied case obtained by the POD. Top row depicts the whole 
(x, t) domain, bottom row is for t = 0.12
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capabilities by incorporating fundamental physical proper-
ties such as conservation and interpretability. This objec-
tive includes the exploration of different loss functions and 
regularization techniques. Furthermore, future work can 
utilize the model reduction approach in real-world sce-
narios, including simulations and parameter predictions. 
Lastly, the presented concepts could be applied in related 
fields, such as shallow flows (Kowalski and Torrilhon 
2019) or fusion plasmas (Krah et al. 2023).

Appendix: Hyperparameters for the fully 
connected autoencoder

In this section, we describe the tests that have been con-
ducted to optimize our hyperparameters. The hyperparam-
eters include the number of layers, i.e., depth; the num-
ber of nodes per hidden layer, i.e., width, batch size, and 
non-linear activation functions; the number of epochs for 

training; and the learning rate. Experiments are evaluated 
through: the validation error which estimates the model’s 
ability to generalize; the training error which estimates 
the optimization of training data; and the L2-error, which 
gives an estimate of how well the model performs on the 
whole dataset and hence is applied as a comparative metric 
against POD.

To start with a working model, an estimate over the 
initial hyperparameters is done, which are summarized in 
Table 4. These include a mini-batch size of 16, the width 
of the bottleneck layer is 3 and 5 for the hydrodynamic 
case H and the rarefied case R , respectively, and a learning 
rate of 0.0001. LeakyReLU is applied as an activation 
function for the output, input, and any hidden layer besides 
the output of the bottleneck layer, and is referred to as 
activation hidden. The hyperbolic tangent is applied as an 
activation function for the output of the last hidden layer 
in the encoder which outputs the code, referred to as the 
activation code. Moreover, 2000 initial number of epochs 
are used. This might appear exaggerated but is justified by 
the small amount of input data and the small size of the 
network which yields fast training.

Five designs for finding an optimal number of layers, i.e., 
depth, are explored. These are as follows: 

1. 10 layers with layer widths: 40, 40, 20, 10, 5, 3/5, 5, 10, 
20, 40, 40.

2. 8 layers with layer widths: 40, 40, 20, 10, 3/5, 10, 20, 40, 
40.

3. 6 layers with layer widths: 40, 40, 20, 3/5, 20, 40, 40.
4. 4 layers with layer widths: 40, 40, 3/5, 40, 40.
5. 2 layers with layer widths: 40, 3/5, 40.

The model’s depth is determined in a primary step because it 
determines the model’s representational capacity and there-
fore can initiate over- and underfitting at an early stage in the 
hyperparameter search. The results of the experimentation 
are shown in Fig. 17 and Table 5 for both rarefaction levels.

For the hydrodynamic case H , the lowest validation error 
of 7.74 × 10−8 and an L2 error of 0.0031 is reached with 4 
layers and constitutes the best-performing design. Addition-
ally, as seen in Fig. 17(left), a design that exceeds 4 layers 
results in slight overfitting from the 500th epoch. Less than 
4 layers do not reach the validation error and L2 error of 
the other designs, yielding the conclusion, that the capacity 

Fig. 15  Pearson correlation between macroscopic quantities and 
intrinsic variables for the hydrodynamic case

Fig. 16  Pearson correlation between macroscopic quantities and 
intrinsic variables for the rarefied case

Table 4  The initial selection of batch size, bottleneck size, number of 
epochs, learning rate, and applied activation functions

Mini-batch size Intr. dim Epochs Learn. rate Activ. hidden/code

16 3/5 2000 0.0001 LeakyReLU/Tanh
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is too low. Overfitting occurs with 4 layers only after the 
1000th epoch and is of smaller magnitude compared to the 
other three models that show overfitting.

For rarefied case R , the lowest validation error of 
1.61 × 10−7 is also reached with 4 layers. On the other hand, 
the lowest L2 error of 0.0031 and the lowest training error 
of 1.40 × 10−7 are reached with 6 layers. Contrary to the 
previously discussed hydrodynamic case, the training error 
and L2 errors are of lower magnitude for 6 layers, except 
for the validation error. Looking at Fig. 17(right), it is 
observed that the model with 6 layers starts to overfit after 
the 1500 epochs, yielding a decreasing training error and a 
stagnating validation error. Hence the model improved in 
the optimization task which additionally improves the L2 
error. Its generalization ability, measured by the validation 
error, did not improve and is larger than the validation error 
reached with 4 layers. This concludes a model with 4 layers 
constitutes the best-performing.

Qualitatively, the overall training for both rarefaction 
levels is very stable. Training and validation errors do not 
diverge excessively and converge early in training. Separa-
tion of training and validation error occurs prominently for 
the hydrodynamic solution.

The width of the two remaining hidden layers is 
examined in the following. For both the hydrodynamic 
and the rarefied regime five experiments are conducted, 
lowering the hidden units of the hidden layers from fifty 
to ten. Note that the decoder is chosen to be structurally 
a reflection of the encoder. Therefore only one parameter 

is changed. Results for the hydrodynamic case H and 
the rarefied case R are shown in Table 6. Note that the 
contribution of over-and underfitting is negligible and 
therefore the training error is omitted. A model with 30 
hidden units in encoder and decoder performs best with 
the hydrodynamic case H and reaches a validation error 
of 1.77 × 10−08 . The corresponding L2 error is equal to 
1.5 × 10−3 with a shrinkage factor of 0.015. Overall, the 
loss of each experiment with the hydrodynamic case H is 
quite similar and ranges from 1.77 × 10−8 to 5.11 × 10−8 . 
The L2 error behaves similarly and is even equal for 50 and 
30 layers. A model with 40 hidden units performs best for 
the rarefied case R . The corresponding validation error is 
1.65 × 10−8 with L2 = 1.4 × 10−3 , which is smaller than 
for the hydrodynamic case H . The shrinkage factor here is 
0.125. In all experiments, a model with 10 hidden nodes 
performs worst. Training and validation errors over 4000 
epochs for both experiments can be seen in Fig. 18.

Next, the mini-batch size is analyzed. Results are dis-
played in Table 7. Experiments are conducted with mini-
batch sizes of 2, 4, 8, 16, 32. The smallest batch size of 2 
yields the lowest validation error of 1.15 × 10−8 with cor-
responding L2 = 0.0012 at epoch 4956 for the hydrody-
namic case H . The lowest validation error with 6.30 × 10−9 
is achieved for the rarefied case R at epoch 4534 with a 
batch size of 4. The corresponding L2 error equals 0.001 . 
Small batch sizes have a regularizing effect on the training 
and therefore are beneficial to generalization. At the same 
time, the lower the batch size is, the more unstable is the 

Table 5  Results for the 
variation of the depth

Given are minimum values of training and validation error as well as the L2 error. The minima were 
reached around the last 50 epochs of the training. The L2 error is evaluated with the model at the last epoch

Depth Minimum training error Minimum validation error L2 error

H R H R H R

10 1.53 × 10−7 5.96 × 10−7 2.22 × 10−7 5.19 × 10−7 0.0048 0.0091
8 1.17 × 10−7 2.05 × 10−7 1.58 × 10−7 2.32 × 10−7 0.0041 0.0054
6 9.76 × 10−8 1.40 × 10−7 1.49 × 10−7 1.72 × 10−7 0.0038 0.0045
4 6.29 × 10−8 1.52 × 10−7 7.74 × 10−8 1.61 × 10−7 0.0031 0.0048
2 1.29 × 10−6 3.29 × 10−6 1.37 × 10−6 3.42 × 10−6 0.0136 0.0217

Table 6  Results for the 
variation of the width

Given are the minimum value of the validation error as well as the L2 error. The minima were reached 
around the last 50 epochs of the training, the L2 error is evaluated with the model at the last epoch

Hidden units Validation error L2 Shrinkage factor

H R H R H R

50 1.91 × 10−8 5.05 × 10−8 0.0015 0.0025 0.06 0.01
40 2.65 × 10−08 1.65 × 10−8 0.0018 0.0014 0.075 0.125
30 1.77 × 10−08 3.40 × 10−8 0.0015 0.0021 0.015 0.0167
20 2.50 × 10−08 5.25 × 10−8 0.0017 0.0027 0.1 0.25
10 5.11 × 10−08 3.97 × 10−7 0.0025 0.0077 0.3 0.5
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training as seen in Fig. 19. The oscillations that begin with 
batch sizes of 8 and lower, which make the training unstable, 
can be cured with a lower learning rate as soon as training 
starts to tremble. Additionally, small batch sizes drastically 
increase training time, thus a batch size as low as 2 is not 
used for the experiments. In conclusion, a batch size of 4 is 
chosen. Furthermore, a reduction of the learning rate from 
1 × 10−4 to 1 × 10−5 is applied after the 3000th epoch.

Eight experiments with different activation functions, 
ReLU, ELU, Tanh, SiLU, and LeakyReLU, are performed. 
The experiment designs and results are given in Table 8 
for hidden and code activations. With the hydrodynamic 
case H , combining ELU and ELU for hidden and code 
activation, respectively, yields the best result for the 

validation error with 4.44 × 10−9 and a corresponding L2 
error of 0.0008. These values are achieved at the last epoch. 
For the rarefied case R , a combination of ReLU and ReLU 
for hidden and code activation, respectively, produces a 
validation error of 7.18 × 10−9 and a corresponding L2 
error of 0.0009. Both are reached close to the last epoch. 
Note that all models reach their lowest loss at or very 
close to the last epoch. The reason is the stable training 
after the 3000th epoch, where the learning rate is lowered 
to 1 × 10−5 as seen in Fig. 20. This measure shows in all 
experiments an immediate success for learning. Both 
validation and training errors fall at the 3001st epoch and 
only decrease slightly thereafter. This behavior clearly 
shows that the updates to the free parameters θ were too 

Table 7  Results for the 
variation of the batch sizes

Given are the minimum value of validation error as well as the corresponding epoch. Additionally, the L2 
error is given but evaluated with the model at the last epoch

Batch size Validation error L2 Epoch

H R H R H R

32 5.40 × 10−8 2.17 × 10−8 0.0024 0.0017 4998 4992
16 1.95 × 10−8 2.06 × 10−8 0.0015 0.0016 4999 5000
8 2.25 × 10−8 1.03 × 10−8 0.0017 0.0012 4965 4961
4 1.52 × 10−8 6.30 × 10−9 0.0013 0.0010 3956 4534
2 1.15 × 10−8 9.18 × 10−9 0.0012 0.0013 4956 4872

Table 8  Results for the 
variation of the activation 
functions for the hidden-/code 
layers

Given are the minimum value of validation error as well as the corresponding epoch and the L2 error. The 
L2 error is evaluated with the models saved when the minimum validation error was achieved during train-
ing

Activ. hidden/code Validation error L2 Epoch

H R H R H R

ReLU/ReLU 9.79 × 10−9 7.18 × 10−9 0.0010 0.0009 5000 4998
ELU/ELU 4.44 × 10−9 1.11 × 10−8 0.0008 0.0012 5000 5000
Tanh/Tanh 7.83 × 10−9 2.58 × 10−8 0.0011 0.0018 5000 5000
SiLU/SiLU 7.69 × 10−9 1.37 × 10−8 0.0011 0.0013 5000 5000
LeakyReLU/LeakyReLU 1.86 × 10−8 9.39 × 10−9 0.0015 0.0010 5000 4997
ELU/Tanh 5.49 × 10−9 1.87 × 10−8 0.0008 0.0014 5000 5000
LeakyReLU/Tanh 1.00 × 10−8 1.42 × 10−8 0.0010 0.0012 4997 4992
ELU/SiLU 8.11 × 10−9 1.93 × 10−8 0.0011 0.0015 5000 5000
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Fig. 17  Five experiments over the different depths with the hydrodynamic case H left and the rarefied case R right. The number of layers used 
for every experiment is given. Training and validation loss are shown over 2000 epochs
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Fig. 18  Five experiments over different widths with the hydrodynamic case H left and the rarefied case R right. The number of nodes used for 
every experiment is given. Training and validation loss are shown over 4000 epochs
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Fig. 19  Five experiments over different batch sizes with the hydrodynamic case H left and the rarefied case R right. The batch size used for 
every experiment is given. Training and validation loss are shown over 5000 epochs
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big, which prohibitively slowed down or even prevented 
the learning process. Small updates to θ made all models 
quickly reach a minimum.

The final hyperparameters for both input data are 
summarized below in Table 2. From the initial models to 
the final models, the decrease in the validation error gained 
≈ 1.5 × 10−7 for hydrodynamic case H and ≈ 7.2 × 10−8 for 
rarefied case R which amount to 93% of the initial values for 
both models.
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