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Abstract
Kinetic theory and modeling have been proven extremely suitable in computing the flow rates in rarefied gas pipe flows, but 
they are computationally expensive and more importantly not practical in design and optimization of micro- and vacuum 
systems. In an effort to reduce the computational cost and improve accessibility when dealing with such systems, two efficient 
methods are employed by leveraging machine learning (ML). More specifically, random forest regression (RFR) and sym-
bolic regression (SR) have been adopted, suggesting a framework capable of extracting numerical predictions and analytical 
equations, respectively, exclusively derived from data. The database of the reduced flow rates W used in the current ML 
framework has been obtained using kinetic modeling and it refers to nonlinear flows through circular tubes (tube length over 
radius l ∈ [0, 5] and downstream over upstream pressure p ∈ [0, 0.9] ) in a very wide range of the gas rarefaction parameter 
� ∈ [0, 103] . The accuracy of both RFR and SR models is assessed using statistical metrics, as well as the relative error 
between the ML predictions and the kinetic database. The predictions obtained by RFR show very good fit on the simulation 
data, having a maximum absolute relative error of less than 12.5% . Various expressions of the form of W = W(p, l, �) with 
different accuracy and complexity are acquired from SR. The proposed equation, valid in the whole range of the relevant 
parameters, exhibits a maximum absolute relative error less than 17% . To further improve the accuracy, the dataset is divided 
into three subsets in terms of � and one SR-based closed-form expression of each subset is proposed, achieving a maximum 
absolute relative error smaller than 9% . Very good performance of all proposed equations is observed, as indicated by the 
obtained accuracy measures. Overall, the present ML-predicted data may be very useful in gaseous microfluidics and vacuum 
technology for engineering purposes.
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1  Introduction

Pressure-driven, rarefied, single-gas flows through cir-
cular tubes of finite length have attracted considerable 
attention, mainly due to their great engineering impact 
in numerous technological fields, e.g., gaseous microflu-
idic devices (Colin 2014), vacuum gas flows and pump-
ing  (Jousten 2016), lubrication  (Breuer 2005), porous 
media (Ho et al. 2019), vacuum metrology (Naris et al. 
2018), high altitude micro-propulsion systems  (Tantos 
and Valougeorgis 2015), and fusion reactors  (Vasilei-
adis et al. 2016). Rarefied gas flows in channels may be 
in the whole range of the Knudsen number and, therefore, 
their theoretical treatment and modeling must be based on 
kinetic theory (Cercignani 1989). The flow setup may be 
computationally investigated via the deterministic solution 
of kinetic model equations (Aristov et al. 2012; Misdanitis 
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et al. 2012; Pantazis and Valougeorgis 2013) or alternatively 
via the stochastic direct simulation Monte Carlo (DSMC) 
method (Lilly et al. 2006; Varoutis et al. 2008, 2009). Both 
numerical approaches are reliable and provide accurate 
results (Sharipov 2012; Aristov et al. 2014).

The flow configuration is relatively simple and consists of 
a tube of radius R and length L, connecting the upstream and 
downstream containers maintained, far from the tube ends, 
at pressures P1 and P2 , respectively, while the tube and con-
tainers’ walls are at uniform temperature T0 . The flow setup 
is fully defined in terms of the following three dimensionless 
parameters (Varoutis et al. 2009):

•	 Tube aspect ratio: l = L∕R

•	 Pressure ratio (downstream over upstream): p = P2∕P1

•	 Gas rarefaction parameter: � = (RP1)∕(�0 v0)

In the definition of the reference gas rarefaction parameter, 
P1 is taken as the reference pressure, while �0 and v0 are 
the gas viscosity and most probable molecular speed at 
reference temperature, respectively. Also, � is proportional 
to the inverse Knudsen number (Kn) and for monatomic 
gases is related to the Reynolds (Re) and Mach (Ma) num-
bers as � = 0.55Re∕Ma (Sharipov 2015). The main output 
quantity of great practical interest is the reduced flow rate 
W = W(p, l, �) . Then, the mass flow rate is readily deduced 
as Ṁ = W Ṁ0 , where Ṁ0 =

√
(𝜋)R2P1∕v0 is the mass flow 

rate through an orifice ( l = 0 ) at the free molecular limit 
( � = 0)  (Varoutis et  al. 2008). Based on these data, the 
derivation of closed-form algebraic expressions approxi-
mating the mass flow rate is very useful in technological 
applications.

In the case of very long tubes, as well as of tubes with 
moderate length, the dimensionless flow rate depends only 
on the gas rarefaction parameter, i.e., W = W(�) , and the 
so-called infinite capillary theory supplemented by the end 
effect theory may be employed in a computationally effi-
cient manner (Sharipov 2015; Pantazis et al. 2014). Based 
on these data, many investigators have proposed several sim-
ple and accurate closed-form expressions for the mass flow 
rate. A detailed review on this topic is given in Gallis and 
Torczynski (2012).

However, in the general case of nonlinear flow, where 
the tube aspect ratio and/or the pressure ratio are arbitrary, 
the required computational effort is significantly increased, 
due to the number and range of the involved parameters 
{p, l, �} , as well as the size of the computational domain. In 
addition to the capillary, the domain includes adequately 
large regions upstream and downstream of the capillary 
to properly impose the incoming distributions, adequately 
far from the capillary ends (Tatsios et al. 2019). Thus, 
in this case, owing to the large computational effort, the 
derivation of closed-form expressions for the mass flow 

rate or the conductance (volumetric flow rate) is even more 
important. Several approximate algebraic expressions 
have been proposed, but they behave well within a narrow 
range of the involved parameters. Furthermore, they are 
not always easily applied, since in some cases they must 
be employed in an iterative manner, while in others, they 
are written in terms of a large number of fitting param-
eters that are defined with the aid of auxiliary expressions 
obtained via interpolation techniques.

For example, Fujimoto and Usami (1984) provided an 
equation that involves three fitting parameters and it is 
valid for Re < 2800 and Kn > 0.25 × 10−3 . By combining 
semi-analytical results in the free molecular and contin-
uum limits, Livesey (2004) proposed several equations for 
the gas flow in a tube of arbitrary length that behave well 
in a wide range of pressures (one for each pressure range). 
In both studies, iterative procedures are needed. More 
recently, Hashemifard et al. (2019) developed semi-empir-
ical model equations to calculate the flow rate through 
short tubes, which are valid, as stated by the authors, for 
0 ≤ � ≤ 4 × 103 , 0 ≤ p ≤ 0.7 and 0 ≤ l ≤ 26 . Although an 
iterative procedure is not required, the proposed expres-
sions are not easily employed because they include nine 
fitting parameters. Similarly, Yoshida et al. (2021) pro-
posed a modified Knudsen equation, pointing out that it 
may be used in all flow regimes. As stated, the proposed 
equation shows differences within 20% with respect to 
experimental measurements in tubes with R = [5 − 50] μ 
m and 1.4 ≤ l ≤ 520 . Again, this equation is rather com-
plicated, since it involves the determination of seven flow 
rates corresponding to separate flow regimes.

While all above efforts represent significant advances, 
none of them has yielded relatively simple closed-form 
expressions for the mass flow rate that can describe accu-
rately the whole range of gas rarefaction. It turns out that 
conventional interpolation techniques, such as mean square 
methods, may reproduce well the trend of W = W(p, l, �) for 
each parameter separately, but it is very hard to find general 
equations that work properly for all involved parameters.

Considering that machine learning (ML) has been the 
dominant choice in most prediction-based scientific and 
technological applications (Mohammad Nejad et al. 2021), 
it is reasonable to investigate the feasibility of ML to satis-
factory deduce the dependency of W on the involved param-
eters. Machine learning is a subset of Artificial Intelligence 
(AI), primarily incorporated for complicated data science 
and statistical applications, in supervised, unsupervised, or 
reinforcement learning manners (Kontolati et al. 2022; Jiang 
et al. 2020). It is characterized by its ability to be trained 
on data and derive predictions on unseen data, inside and 
outside the available data range, both in classification and 
regression problems (Chowdhury et al. 2021; Rudy et al. 
2017; Brunton 2021; Karniadakis et al. 2021).
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Classical ML techniques, such as Random For-
est Regression (RFR), Linear Regression (LR), and 
Multi-Layer Perceptrons (MLP), seem to work satisfac-
tory and can recover successfully the correct reference 
results (Karakasidis et al. 2022). Since these approaches 
are focused on estimating complex “black-box” predictive 
models, their predictions are difficult to rationalize and 
reveal any physical meaning behind the data (Lee et al. 
2022). More importantly, their implementation requires 
some programming effort and they do not deduce closed-
form expressions. Alternative ML techniques, such as the 
Symbolic Regression (SR) based on Genetic Programming 
(GP) principles, may be more general, interpretable and 
suggest analytical models that would potentially allow 
the extraction of physics-based descriptions solely from 
data (Koza 1994). In general, SR can result in equations, 
which are explainable to humans, cheaper to evaluate, 
and easier to integrate in existing physical science prob-
lems (Papastamatiou et al. 2022; Sofos et al. 2022; Xiong 
et al. 2020; Udrescu and Tegmark 2021). In addition, there 
is a lack of works on the use of GP-based SR in reduced 
order modeling for kinetic theory, which has motivated 
our study.

Based on all above, in the present work, ML techniques 
are employed in the pressure driven rarefied gas flow 
through a circular tube in order to accurately predict the 
dimensionless flow rate in terms of the parameters charac-
terizing the flow. The investigation refers to nonlinear flows 
through tubes and is based on corresponding data devel-
oped by kinetic theory and modeling. Relatively simple 
and accurate closed-form expressions, easily accessible in 
design and optimization, are derived via the SR method. 
To have a more complete view on the topic, a classical ML 
technique, namely the RFR method, is also considered. 
Closing the introductory section, it is noted that other ML 
techniques could possibly have been used as well. One alter-
native option is the gradient descent method on a predefined 
equation up to some depth, parametrized with a neural net-
work instead of genetic algorithms (Sahoo et al. 2018) or 
on a latent embedding of an equation (Kusner et al. 2017). 
Another potential ML technique is the Monte Carlo Tree 
Search method, in which an asymptotic constraint is used as 
input to a neural network, guiding the search for symbolic 
representations of the underlying equation (Li et al. 2019). 
Furthermore, there are several algorithms for SR of partial 
differential equations (PDEs) on gridded data based on a 
genetic algorithm or sparse regression of coefficients over 
a library of PDE terms (Both et al. 2021; Rackauckas et al. 
2021; Chen et al. 2021; Vaddireddy et al. 2020) or algo-
rithms based on neural operator networks (Lu et al. 2021; 
Li et al. 2021; Patel et al. 2022). These would also be inter-
esting options to apply when the problem is described by 
gridded PDE data.

2 � Methods

The adopted computational framework is outlined in 
Sect. 2.1 and the utilized dataset is described, in detail, in 
Sect. 2.2. The employed ML approaches, namely the RFR 
and SR methods, are presented in Sects. 2.3.1 and 2.3.2, 
respectively.

2.1 � Computational framework

The general flow diagram of the computational framework 
followed here is shown in Fig. 1. Kinetic based simula-
tions construct a database of the reduced flow rate W as the 
dependent (target) variable and {p, l, �} as the three inde-
pendent (input) variables. The dataset is divided into train-
ing and testing subsets and it feeds the RFR and SR models, 
which, in turn, extract numerical predictions and analytical 
expressions, respectively, to fully describe the data behavior. 
In order to have a more complete view on the performance 
and accuracy of the proposed methods, an additional step 
towards validation is also considered by comparing the RFR 
and SR models with kinetic results, not included in the origi-
nal testing and training datasets. The final outcomes of the 
current framework include (i) computationally cheaper RFR 
models relative to the intense kinetic simulations and (ii) 
SR-based analytical equations, that are, in both cases, capa-
ble of providing predictions of W vs {p, l, �} not yet tabulated 
in the database. All components of Fig. 1 are discussed in 
the next sections.

2.2 � Dataset description

The dataset refers only to rarefied nonlinear flows and more 
specifically it consists of 22,344 dimensionless flow rates 
W computed for 0 ≤ l ≤ 5 , 0 ≤ p ≤ 0.9 , 0 ≤ � ≤ 103 . For 

Fig. 1   Computational framework with preprocessing, RFR, SR, and 
validation stages
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parameters {p, l, �} outside the specific ranges, the dimen-
sionless flow rate may be computed employing other kinetic 
type approaches (Valougeorgis et al. 2017), such as the 
fully developed methodology with the end effect correction 
( l > 5) (Pantazis et al. 2014) and linear kinetic modeling 
( 0.9 < p < 1) (Pantazis and Valougeorgis 2013), as well as 
hydrodynamic type approaches with slip and jump boundary 
conditions ( 𝛿 < 103 ). In the latter case, hybrid modeling may 
also be needed (Docherty et al. 2014).

The specific dataset is based on the deterministic solu-
tion of kinetic model equations and has been originally 
developed to accommodate modeling and simulation of gas 
distribution networks of arbitrary complexity in the exhaust 
systems of fusion reactors (Vasileiadis et al. 2016; Vasilei-
adis and Valougeorgis 2020). Various statistical properties 
of the dataset, such as the mean, minimum and maximum 
values and the standard deviation, are given in Table 1, while 
the complete dataset is available in the supplementary mate-
rial. The dataset and the scripts implementing the RFR and 
SR methods are also available on Github https://​github.​com/​
labTP-​UTH/​symbo​licRe​gress​ion.​git.

A more complete view of the data behavior is shown 
in Fig. 2, where the flow rate vs � for the limiting values 
of p = [0, 0.9] and l = [0, 5] is plotted. As expected, W is 
decreased as l and/or p are increased in the whole range 
of � . Also, W increases with � and, more specifically, it 
increases for 𝛿 < 0.1 very slowly (remains almost constant), 
for 1 ≤ � ≤ 102 significantly (approximately linearly pro-
portional to log � ) and for 𝛿 > 102 again slowly reaching 
gradually the continuum flow rate at the hydrodynamic limit 
( 𝛿 > 103 ). The exact values of � , determining the limits of 
each of the three regions, depend on l and p. Surely, the 
intermediate regime is the one more difficult to capture with 
a closed-form expression.

An essential preprocessing step is the calculation of the 
correlations between the dataset features {p, l, �;W} , which 
are shown through the correlation matrix in Fig. 3. Values 
close to 1 or −1 denote high positive and negative correla-
tion, respectively, while values equal to zero denote no cor-
relation. It can be seen that there is no correlation between 
the inputs p, l, � and they can all be seamlessly incorporated 
in the regression calculations. The input features p, l are 
both negatively correlated to the output W, indicating a 

reduction of the pressure and aspect ratios with increasing 
W. On the contrary, � is positively correlated to W and, thus, 
it increases as W increases.

In addition to the prescribed dataset, additional data have 
been produced for l = 10 and p = 0.95 , based again on the 
deterministic solution of kinetic model equations. These data 
are exclusively used in Sect. 3.3 to test the capability of the 
ML results to capture the correct behavior of W outside the 
specified training and testing dataset.

2.3 � Machine learning

2.3.1 � Random forest regression (RFR)

The dataset is fed to an RFR model, in order to provide 
numerical predictions for the reduced flow rate W. The RFR 
architecture employs a collection of decision trees (DT); 

Table 1   Dataset statistical properties

Property p = P2∕P1 l = L∕R � W

Count 22,344 22,344 22,344 22,344
Mean value 0.450 1.444 76.827 0.824
Standard deviation 0.274 1.492 168.210 0.439
Minimum value 0.0 0.0 0.0 0.031
Maximum value 0.9 5.0 1000.0 1.547

Fig. 2   Dimensionless flow rate W vs gas rarefaction parameter � for 
the limiting values of the pressure ratio p and tube aspect ratio l, 
based on the employed dataset

Fig. 3   The correlation matrix of the dataset used in the current ML 
framework. Values close to 1 or −1 denote high positive and negative 
correlation, respectively, while zeros denote no correlation at all

https://github.com/labTP-UTH/symbolicRegression.git
https://github.com/labTP-UTH/symbolicRegression.git
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each tree is in itself a regression model and it is trained 
on a different random subset of the training data, as dem-
onstrated in Fig. 4. A number of DTs are read in parallel 
from the upper root node, passing through the internal nodes 
and stopping to a terminal node (the leaf of the tree). Each 
node is a decision point, where one of the three input vari-
ables {p, l, �} is examined if it is greater or smaller than a 
threshold. If an error criterion (e.g., the MSE) is fulfilled, the 
process moves on the next node, where another input vari-
able, (or the same, with a different threshold) is considered 
for new decision tests, until it ends up in the final leaf. The 
output from a RFR is extracted by averaging the individual 
predictions of DTs, which anticipates the possibility of over-
fitting (Breiman 2001). RFRs have shown a remarkable 
accuracy in prediction tasks dealing with middle to large 
datasets (Shah et al. 2019), they can easily be adapted to 
nonlinear data (Schonlau and Zou 2020) and, recently, they 
have been applied successfully to Lennard–Jones channel 

liquid flows (Sofos and Karakasidis 2021) and rarefied gas 
flows (Ding et al. 2022).

In the present work, the RFR algorithm from the publicly 
available package Scikit-Learn (Pedregosa et al. 2011) is 
used. Only 80% as the implied dataset is designated to train 
the RFR to predict W, while the remaining 20% is used as the 
test set (unseen data). Essentially, the RFR will approximate 
the results shown in Fig. 2. Important hyper-parameters that 
have to be decided are the number of DTs to create the forest 
and the number of leaves that denote the steps needed until 
the process reaches the final leaf. It has also been shown 
that one can improve its performance by hyper-parameter 
tuning (Probst et al. 2019). In the present work, the default 
values of the Scikit-Learn package have been used, with a 
total of 30 DTs in the forest.

2.3.2 � Symbolic regression (SR)

SR is a novel ML technique that approximates the relation 
between an input and an output through analytic mathemati-
cal formulae derived from a GP-based, natural evolution pro-
cess. A graphical demonstration of the adopted SR method 
is given in Fig. 5. An expression is represented as a tree, 
where leaves are numerical constants or variables and (non-
leaf) nodes are mathematical operators applied to their child 
node(s). This structure makes it possible to apply evolution-
mimicking operations in GP, namely mutation and crossover. 
An initial parent is randomly constructed and transformed 
to similar or different child structures. To guide the evo-
lution of the expressions in a desirable direction, a fitness 
function (e.g., mean absolute error, or mean square error) 
is employed, which determines whether newly created indi-
viduals (expressions) survive into the next generation. In 
general, individuals with higher fitness values survive. This 
cycle of evaluating, selecting, crossing over and mutating 
defines one generation of the method.

Fig. 4   The RFR model, consisting of various DTs providing different 
predictions. The final prediction is an averaged value of all DTs’ out-
puts

Fig. 5   SR evolution from a 
parent to child tree structures. A 
parent tree is created randomly 
from a pool of mathematical 
expressions, input features and 
numerical variables. Child 
structures are created by substi-
tuting nodes or branches of the 
parent tree



	 Microfluidics and Nanofluidics (2023) 27:85

1 3

85  Page 6 of 14

Here, SR is used to obtain explicit equations for 
the reduced flow rate of rarefied gas pipe flows of 
the form W = W(p, l, �) . For this reason, the open 
source PySR package  (Cranmer et  al. 2020) has been 
exploited. The symbolic operators considered here 
as building blocks to compose the equations are 
{+,−,×, ∕, (⋅)2, (⋅)3, exp, ln, xy} , as well as real constants. 
The following custom defined operators have also been used: 
{Lin(x) = 1 − x, Ln1(x) = ln(∣ x + 1 ∣), Ln2(x) = ln(∣ (x − 1)∕

100 + 1 ∣), Exp1(x) = (1 − x)e−y} . These custom operations 
are basic functions that reproduce certain basic, expected 
trends of the reduced flow rates and they are adopted here 
to assist SR. The operators {exp, ln, xy} and all the custom 
operators are weighted properly, since they are more com-
plex operations.

Equation selection is made manually as follows. Initially, 
the computational output consists of multiple candidate equa-
tions at different levels of complexity. Complexity (COMP) is 
scored by counting the number of occurrences of each opera-
tor, constant and input variable. At first, we select several equa-
tions, for which there is a fractional drop in the mean square 
error, chosen as a loss function, over the increase in complexity 
from the next best model (Cranmer et al. 2020). Any equation 
having relative error with respect to the simulation data less 
than a predefined threshold value (e.g., 10% or 20% ) is consid-
ered a potential analytical model and the one with the smallest 
complexity is finally chosen. It is found experimentally that, in 
this way, the best solutions are produced, fulfilling the objec-
tives of the problem under investigation.

SR may lead to complicated expressions that are difficult to 
interpret, containing undesirable features, such as for example, 
nested operations. For this reason, constraints are applied in 
order to control nesting of all operators without permitting 
nesting of the same operators at all, unless otherwise stated. 
For example, two consecutive “ exp ” operations, exp(exp(⋅)) , 
are not allowed. In this context, the complexity of any expres-
sion acting on each operation is limited below COMP ≤ 9 . 
Extensive experimentation revealed that smaller samples of 
the current dataset are sufficient for obtaining accurate math-
ematical formulas, i.e., having relative error smaller than 
predefined limits, using SR. For large datasets and in cases 
for which all data points are not needed, a sample of approxi-
mately 1000 data points is usually used (Cranmer 2023; Cran-
mer et al. 2020). Here, it is found that random samples of 
about 1000 to 5600 data points are more than adequate in 
order to obtain SR-based mathematical equations. The rest of 
the data is used for comparison purposes against the kinetic 
results as testing dataset, in order to ensure the accuracy of 
the SR equations for the whole dataset. The training of the SR 
model is repeated several times (typically of about 10 times) 
using different random samples. It is noted that approximately 
the same skeleton equation is always obtained, which ensures 
further the validity of the present SR model.

For the purposes of the present work, we mainly antici-
pate to obtain closed-form and accurate SR-based equa-
tions that can be easily used in engineering calculations. In 
this context, a compromise between accuracy, complexity 
and total number of the proposed equations is made, while 
simultaneously ensuring the validity of the equations for the 
range of the relevant parameters.

3 � Results and discussion

The RFR-based numerical predictions and the SR-based 
analytical expressions of the flow rate W, with regard to the 
prescribed dataset, within the specified range of parameters, 
namely 0 ≤ p ≤ 0.9 , 0 ≤ l ≤ 5 , 0 ≤ � ≤ 103 , are presented in 
Sects. 3.1 and 3.2, respectively. Complimentary, the capabil-
ity of the ML procedures to capture the correct behavior of 
W outside this range is briefly discussed in Sect. 3.3.

The predicted flow rates via the RFR and SR approaches 
are denoted as W (RFR)

p
 and W (SR)

p
 , respectively. For both ML 

algorithms, representative accuracy measures (metrics) are 
provided, including the coefficient of determination R2 , the 
mean average error MAE, the mean square error MSE and 
the average absolute deviation AAD. Training and testing 
data are examined separately. In addition, the RFR and SR 
relative errors between the predicted flow rates and the ones 
in the dataset, defined as RE(RFR) =

(
W (RFR)

p
−W

)
∕W  and 

RE(SR) =

(
W (SR)

p
−W

)
∕W  , respectively, are computed and 

discussed.

3.1 � Predicted flow rates via random forest 
regression

The feature importance of the dataset is demonstrated in 
Fig. 6, which provides a visual representation of the contri-
bution of each input feature p, l or � to the prediction of the 
target variable W. The feature importance plot accounts the 
number of times a feature is used to make a split across all 
the trees in the forest, as well as the improvement in predic-
tion accuracy resulting from the use of a feature in the RFR. 
Features that are more important achieve higher scores, 
revealing a greater impact on the prediction of the model. 
In contrast, features with lower scores will probably be less 
important or even redundant and they could potentially be 
removed from the model without significantly affecting 
its performance (Karakasidis et al. 2022). For the current 
dataset, the parameter � has a prominent impact on the flow 
rate W, exhibiting an importance of about 60% , followed by 
about 25 and 15% importance for p and l, respectively.

After training the RFR algorithm on the available data, as 
described in Sect. 2.3.1, a comparison between the values of 



Microfluidics and Nanofluidics (2023) 27:85	

1 3

Page 7 of 14  85

W (RFR)
p

 and the corresponding kinetic ones of W is performed 
by providing the identity plot in Fig. 7a and the prediction 
residuals (W (RFR)

p
−W) in Fig. 7b. In Fig. 7a, the identity 

plot depicts the actual responses, i.e., the RFR predictions 
W (RFR)

p
 vs the kinetic database W. Obviously, the better the 

prediction is, the closer the data point is to the diagonal 
line. It can be seen that the predicted data W (RFR)

p
 fit almost 

perfectly on the expected data W for both training and testing 
data. Very few outliers are visible, exhibiting a rather insig-
nificant deviation. In Fig. 7b, the scatter plot of the residu-
als indicates that the RFR predictions for both the train and 
test data resemble a normal distribution. This is an evidence 
that training and testing of the RFR model are uniformly 
tuned (Vabalas et al. 2019). It is also shown that all absolute 
residuals |W (RFR)

p
−W| fall below 0.05.

Representative accuracy measures for the RFR algorithm 
are summarized in Table 2. More specifically, R2 approaches 
1, while MAE and MSE obtain very small values for both train 
and test datasets. The spreading of the predictions based on 

the test set is somehow greater than that produced from the 
train set, as indicated by the increase of AAD. All measures 
have similar values for training and testing data, providing an 
evidence that no over-fitting occurs from the RFR (Rokach 
2016).

A more detailed view on the departure between RFR-based 
predicted flow rates and the associated kinetic ones from the 
dataset is shown in Fig. 8, where the relative error RE(RFR) 
on a percentage basis vs � is provided for all values of p and 
l (whole dataset). The maximum absolute value of RE(RFR) 
is about 12.5% . The extreme values of the relative error 
occur at intermediate values of the gas rarefaction parameter 
1 ≤ � ≤ 30 , while for a significant portion of the data, RE(RFR) 
is quite small.

Overall, the application of the RFR seems capable of pro-
viding accurate predictions on the reduced flow rate dataset 
that fit to the original kinetic simulation results. An inherent 
advantage of the method is the fast execution, both in training 
and testing tasks. Therefore, RFR could pose as an interest-
ing option to bypass time-consuming simulations in similar 
problems. However, the role of kinetic simulations cannot be 
completely negated, as some simulations will be required for 
generating the data to train the RFR models. Nevertheless, 
once trained the use of RFRs can lead to significant cost and 
effort savings. As pointed above the RFR leads directly to 
numerical predictions and thus in order to obtain closed-form 

Fig. 6   A feature importance plot of the current dataset (higher feature 
importance depicts higher effect on the dependent variable)

Fig. 7   a RFR predictions ( WRFR

p
 ) vs kinetic database (W) of the reduced flow rate; b Prediction residuals ( W (RFR)

p
−W ) and the corresponding 

distribution, while training and testing the RFR model

Table 2   Accuracy measures for the application of RFR on the train-
ing and testing datasets

Dataset R2 MAE MSE AAD

Training 0.99989 0.002 < 0.0001 0.823
Testing 0.99989 0.004 < 0.0001 1.289
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expressions providing interpretability and accessibility in 
engineering computations, the SR approach is investigated 
in the next section.

3.2 � Predicted flow rates via symbolic regression

Following the procedure described in Sect. 2.3.2, the SR 
model may deduce multiple various closed-form expressions 
of the form W = W(p, l, �) at different levels of complex-
ity. Intuitively, over-simplified equations tend to underfit, 
whereas the opposite is true for over-complex equations. The 
objective is to yield simple expressions with high accuracy 
and, therefore, the relative error RE(SR) between the SR-
based predictions W (SR)

p
 and the kinetic dataset W is required 

to vary within predefined threshold accuracy limits.
After some extensive experimentation, within the guide-

lines described in Sect. 2.3.2, it has been decided to pro-
pose (a) one closed-form expression, valid across the whole 
spectrum of the input parameters and (b) three closed-form 
expressions, each one valid in a specific range of the gas 
rarefaction parameter. The maximum absolute relative errors 
have been set in the former and latter cases to be less than 
20 and 10% , respectively. The specified threshold limits are 
considered acceptable for engineering purposes. All equa-
tions are valid in the whole range of p and l.

The proposed closed-form expression, which is valid 
in the whole dataset spectrum with absolute relative error 
|RE(SR)| < 0.2 , is given by

(1)

W (SR)
p

= (1 − p)

(
1.04 − e

−
1.73

0.667+l

)

[
1 +

(
1 − (0.00137 + 0.0352l)�∕100

)(
4.95 × 0.0107�∕100 + 22.4p + pl + l

)

1.81 + 0.226l

]

Smaller relative errors could be possibly achieved by allowing 
the SR model to distill equations with higher complexity. Here, 
in order to obtain more accurate prediction of the flow rate, 
while the expressions remain relatively simple, the initial data-
set is divided into three smaller sub-datasets with respect to � 
and the SR procedure is repeated. As an outcome, one equation 
for each of the three gas rarefaction subregions, with absolute 
relative error |RE(SR)| < 0.1 , is obtained and proposed:

•	 0 ≤ � ≤ 10 : 

•	 10 ≤ � ≤ 102 : 

•	 102 ≤ � ≤ 103 : 

(2)

W
(SR)

p,I
= (1 − p)

1.92 + 0.0479l

1.932 + l

{
1 − �

[(
0.3 × 0.675l − 0.775�(1−p)

)

×
(
0.28 × 0.65l − 0.0653(p + l + 0.4)p−1.012

)
− 0.165p − 0.074

]}

(3)
W

(SR)

p,II
= (p + 0.124)p

6
{
−0.0377l + 1.27

(
1 − p2

)
ep

2

− 0.143
[
l(1 − p) − 0.334

]
e−l(1−p)

+0.217
(
1 − 0.417le−0.0254�

)2
− 0.0377

}
e
−

7.55p2+1.58l

�

(4)
W

(SR)

p,III
=

[
1.285 +

(
0.195 + 2.103p10

)
e
(4.676l − l2)(1 − 0.16l)2 − 0.151�

�(1 − 0.16l)2

]

e
[−p(p+p0.308)(0.0419−0.0002089p+p5)− 4.676l

�
]
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Fig. 8   Percentage relative error of the RFR-based predictions of the 
flow rates with regard to the kinetic ones for the whole dataset
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Equations (2), (3) and (4) are valid in the whole range of 
p and l. The performance of the SR-based closed-form 
expression (1), as well as of expressions (2), (3) and (4) 
is summarized in Table 3, where their representative sta-
tistical metrics are tabulated. As in the RFR analysis, the 
training and testing datasets are treated separately. The 
coefficient of determination R2 approaches 0.99 for Eq. 
(1) and 1.0 for Eqs. (2), (3) and (4), while for all the equa-
tions, the values of the mean average error MAE and the 
mean square error MSE are sufficiently small of the order 
of 10−2 − 10−5 . The complexity levels are also included 
mainly for completeness purposes. In the last column of 

Table 3, the maximum absolute values of the relative error 
RE(SR) are given and as seen, in all expressions, they are 
smaller than the imposed threshold accuracy limits. The 
metrics of the SR model equations calculated on the sub-
sets of the training and testing data are similar indicating 
that the tendency for over-fitting is rather small for the 
proposed SR-based equations with the current levels of 
complexity (Li et al. 2019).

The evaluation of the proposed SR-based expressions is 
continued in Fig. 9 by providing the identity plots for all 
four expressions. In all cases, the identity plots reveal a very 
good fitting of the predictions W (SR)

p
 based on the SR Eqs. 

Table 3   Accuracy measures 
for Eqs. (1), (2), (3) and (4) 
obtained via SR on the training 
and testing datasets

Equation Dataset R2 MAE MSE COMP RE

W
(SR)
p

 , (1) Training 0.988 2.99 × 10−2 2.3 × 10−3 52 15.91%
Testing 0.981 4.05 × 10−2 3.7 × 10−3 16.50%

W
(SR)

p,I
 , (2) Training 0.9996 2.98 × 10−3 3.5 × 10−5 56 3.00%

Testing 0.9995 4.01 × 10−3 3.5 × 10−5 3.68%

W
(SR)

p,II
 , (3) Training 0.996 1.585 × 10−2 4.15 × 10−4 60 8.98%

Testing 0.999 4.01 × 10−2 3.1 × 10−4 7.54%

W
(SR)

p,III
 , (4) Training 0.997 1.26 × 10−2 3.03 × 10−4 53 6.02%

Testing 0.994 1.42 × 10−2 3.35 × 10−4 7.60%
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Fig. 9   SR predictions ( W (SR)
p

 ) vs kinetic database (W) of the reduced flow rate for training and testing datasets based on Eq. (1) (a), Eq. (2) (b), 
Eq. (3) (c), and Eq. (4) (d)
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(1–4) and the kinetic database W. In accordance to Table 3, 
the smallest spreading of predictions is in Eq. (2), followed 
by the ones in Eqs. (3) and (4), while the largest spreading 
is in Eq. (1). As it is observed, the deviation of the predic-
tions with respect to the diagonal is more apparent for large 
values of flow rates. Therefore, the presence of outliers in 
this region of W is not expected to contribute significantly to 
increased values of the relative error RE(SR) . On the contrary, 
spreading of predictions at small values of W (SR)

p
 may lead to 

large relative errors.
The relative error RE(SR) on a percentage basis for the 

flow rates obtained by Eqs. (1), (2), (3) and (4) with regard 
to the kinetic ones, as a function of � for all p and l cases 
is shown in Fig. 10. As expected, always the absolute rela-
tive errors are smaller or equal to the associated maxi-
mum ones in Table 3. In the closed-form expression (1), 
which is valid in the whole range of � , it is seen that RE(SR) 
remains very small for � ≤ 1 and then it grows, staying, 
however, always within the values of ±17% . Closed-form 
expression (2), which is proposed for 0 ≤ � ≤ 10 , works 
very well in the whole range of the sub-dataset (within 
±4% ). In closed-form expressions (3) and (4), which are 
proposed for 10 ≤ � ≤ 102 and 102 ≤ � ≤ 103 , respectively, 
the variation of RE(SR) vs � remains almost the same and 

it is always within ±9% . Although it cannot be seen in 
Fig. 10, it is noted that with regard to the other two param-
eters p and l, the maximum deviations from the kinetic 
database are observed at 0.8 ≤ p ≤ 0.9 and 3.5 ≤ l ≤ 5 . In 
general, all the SR-based equations exhibit a better perfor-
mance for most of the input data parameters in each spe-
cific regime and only small fractions of data have absolute 
relative errors close to the specified maximum ones.

Closing this section, it may be useful to consider the 
case of � = l = 0 . As it is well known, in the specific case 
of free molecular limit ( � = 0 ) through and orifice ( l = 0 ), 
the flow setup is amenable to analytical treatment and the 
dimensionless flow rate is given by W = 1 − p . By substi-
tuting � = l = 0 in the closed-form expressions (1) and (2), 
which are valid at � = 0 , it is readily deduced that 
W

(SR)

p,I
= 0.965 (1 − p) and W (SR)

p,II
= 0.994 (1 − p) , respec-

tively. In both cases the proposed expressions recover suf-
ficiently the analytical ones. Unfortunately, for 𝛿 > 0 , no 
analytical expressions of the flow rate are available for 
orifices or short tubes and, therefore, it is not possible to 
perform similar comparisons. In the next section, however, 
some comparisons are performed with numerical results 
based on linear and nonlinear kinetic modeling.
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Fig. 10   Percentage relative error of the SR-based predictions of the flow rates with regard to the kinetic ones: a Eq. (1), b Eq. (2), c Eq. (3), and 
d Eq. (4)
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3.3 � Comparison between SR‑based and kinetic flow 
rates outside the prescribed range of input 
parameters

A comparison between the predicted flow rates via the SR-
based closed-form expressions, with corresponding linear 
and nonlinear kinetic results for flow input parameters not 
included in the original dataset, is performed. More specifi-
cally, the predicted W (SR)

p
 , in the former case are compared 

with the ones in Pantazis and Valougeorgis (2013), while in 
the latter one with kinetic results, which have been particu-
larly produced here for the purposes of the present work.

As the pressure ratio approaches unity ( p ⟶ 1 ), the 
flow setup is linearized and may be treated via the linearized 
kinetic model equations. In this case, the dimensionless flow 
rate WLIN depends only on � , l and is related to the nonlin-
ear one as W = (1 − p)WLIN . The complete analysis of the 
linear flow configurations with the associated results may 
be found in Pantazis and Valougeorgis (2013). The com-
parison is performed for the following set of parameters: 
p = 0.95 , l = [0, 0.5, 1, 2, 5, 10] , � = [0, 0.1, 1, 2, 5, 10] . The 
values of p = 0.95 and l = 10 are outside the working ranges 
of the pressure and tube aspect ratios. The above input set 
of parameters are introduced in the proposed closed-form 
expressions (1) and (2), which are valid in the specific 
range of � and the computed W (SR)

p
 are compared to the 

corresponding ones in table 2 in Pantazis and Valougeorgis 
(2013). The estimated relative errors RE(SR) for Eqs. (1) and 
(2) are plotted in Fig. 11a, b, respectively. As it is seen, they 
remain for l ≤ 5 , as well as for l = 10 , within the associated 
imposed maximum threshold values ( ±20% for Eq. (1) and 
±10% for Eq. (2)).

The next comparison refers again to closed-form expres-
sion (1), but for a wider range of � and more specifically for 
the following set of parameters: l = 10 , p = [0.1, 0.5, 0.9] , 
� = [0.1, 10, 20, 50, 102] . The value of l = 10 is outside the 
examined tube aspect ratio, while the values of � and p are 
inside the original input data. Based on the set of param-
eters the flow is considered nonlinear and to perform the 
comparison the corresponding values of W are computed 
based on deterministic nonlinear kinetic modeling (the same 
with the one used for the original dataset). The computed 
relative errors, between the kinetic results and the ones via 
closed-form expression (1), are tabulated in Table 4. Again, 
the comparison is considered satisfactory since the maxi-
mum relative error remains within the imposed maximum 
threshold values.

It is noted that the above results may be considered indic-
ative but not conclusive about the capability of closed-form 
expressions (1) and (2) predict the behavior of the flow rate 
outside the investigated database.
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Fig. 11   Percentage relative error of the SR-based predictions of the flow rates with regard to linear kinetic ones in table  2 in Pantazis and 
Valougeorgis (2013) for p = 0.95 : a Eq. (1), b Eq. (2)

Table 4   Percentage relative 
error of the SR-based 
predictions of the flow rates via 
Eq. (1) with regard to nonlinear 
kinetic ones for l = 10

p RE(SR)%

�=0.1 �=1 �=10 �=20 �=50 �=100

0.1 2.65 3.68 0.959 6.73 4.37 6.52
0.5 4.15 6.82 3.97 12.5 13.7 4.67
0.9 4.36 7.23 11.2 3.24 12.0 18.5
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4 � Conclusions

Machine learning (ML) techniques, namely the Random 
Forest Regression (RFR) and Symbolic Regression (SR), 
have been employed to compute the flow rate of rare-
fied gas flow through circular tubes in a wide range of 
the involved parameters. An available database, built via 
deterministic kinetic modeling, is divided into training and 
testing regions and feeds the ML models. The kinetic data-
base consists of the flow rate W, as the dependent (target) 
variable, and the gas rarefaction parameter � ∈ [0, 103] , 
the pressure ratio p ∈ [0, 0.9] and the tube aspect ratio 
l ∈ [0, 5] , as the three independent (input) variables. In 
turn, the RFR and SR models extract numerical predictions 
and analytical expressions, respectively, to fully describe 
the data behavior.

The application of SR leads to the extraction of relatively 
simple and accurate closed-form expressions of the flow rate, 
which may be very useful in engineering applications, cir-
cumventing the need of computationally demanding kinetic 
modeling and simulations. In particular, the proposed closed 
expression in the whole range of the dataset, may reproduce 
the kinetic flow rates, with an absolute relative error of less 
than 17% . In addition, more accurate predictions have been 
obtained by dividing the dataset into three subsets in terms 
of � and providing one SR-based closed-form expression of 
each subset. Then, in all cases the absolute relative error is 
reduced to less than 9%.

Complementary, the RFR has been also found capable 
of providing accurate numerical predictions of the flow rate 
that fit well the original kinetic database, with an absolute 
relative error of less than 12.5% . Therefore, RFR could pose 
as an interesting option to bypass time-consuming kinetic 
simulations in similar problems and lead to significant com-
putational cost and effort savings. However, the RFR pre-
dictions are strictly numerical and no symbolic expressions 
may be deduced. The results obtained from the RFR analysis 
serve here as reference for comparisons against those from 
SR. For instance, it turns out that RFR exhibits a better accu-
racy relative to SR when the whole range of parameters is 
considered, but the SR method has the potential to achieve 
higher accuracy by extending the search space to more com-
plex expressions.

Based on the present results, it is believed that the imple-
mentation of the SR and RFR models, in other investigations 
related to rarefied gas dynamics, such as gas–surface interac-
tion and interaction between particles in single gases and gas 
mixtures, is very promising and has a lot of potential. Other 
ML approaches should be also applied.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10404-​023-​02689-6.

Acknowledgements  This work has been carried out within the frame-
work of the EUROfusion Consortium, funded by the European Union 
via the Euratom Research and Training Programme (Grant Agreement 
No 101052200 - EUROfusion). Views and opinions expressed are, 
however, those of the author(s) only and do not necessarily reflect 
those of the European Union or the European Commission. Neither the 
European Union nor the European Commission can be held responsible 
for them.

Author contributions  All authors equally contributed to the study con-
ception and analysis of results. CD performed most of the computa-
tional work, supported by FS and SM. The supplementary material has 
been prepared by SM and DV. The first manuscript has been prepared 
by CD and FS and then it was reviewed and finalized by all authors.

Funding  Open access funding provided by HEAL-Link Greece.

Data availability  Not applicable. We have already provided data in the 
supplementary material.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aristov V, Frolova A, Zabelok S et al (2012) Simulations of pressure-
driven flows through channels and pipes with unified flow solver. 
Vacuum 86(11):1717–1724. https://​doi.​org/​10.​1016/j.​vacuum.​
2012.​02.​043

Aristov V, Shakhov E, Titarev V et al (2014) Comparative study for rar-
efied gas flow into vacuum through a short circular pipe. Vacuum 
103:5–8. https://​doi.​org/​10.​1016/j.​vacuum.​2013.​11.​003

Both GJ, Choudhury S, Sens P et al (2021) DeepMoD: Deep learning 
for model discovery in noisy data. J Comput Phys 428(109):985. 
https://​doi.​org/​10.​1016/j.​jcp.​2020.​109985

Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://​
doi.​org/​10.​1023/A:​10109​33404​324

Breuer KS (2005) Chapter 9 - Lubrication in mems. In: el Hak MG (ed) 
The MEMS Handbook, 1st edn. CRC Press, New York

Brunton SL (2021) Applying machine learning to study fluid mechan-
ics. Acta Mech Sin 37(12):1718–1726. https://​doi.​org/​10.​1007/​
s10409-​021-​01143-6

Cercignani C (1989) The Boltzmann equation and its applications. 
Applied mathematical sciences 67. Springer, New York

Chen Z, Liu Y, Sun H (2021) Physics-informed learning of governing 
equations from scarce data. Nat Commun 12(1):6136. https://​doi.​
org/​10.​1038/​s41467-​021-​26434-1

Chowdhury MA, Hossain N, Ahmed Shuvho MB et al (2021) Recent 
machine learning guided material research - a review. Comput 

https://doi.org/10.1007/s10404-023-02689-6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.vacuum.2012.02.043
https://doi.org/10.1016/j.vacuum.2012.02.043
https://doi.org/10.1016/j.vacuum.2013.11.003
https://doi.org/10.1016/j.jcp.2020.109985
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10409-021-01143-6
https://doi.org/10.1007/s10409-021-01143-6
https://doi.org/10.1038/s41467-021-26434-1
https://doi.org/10.1038/s41467-021-26434-1


Microfluidics and Nanofluidics (2023) 27:85	

1 3

Page 13 of 14  85

Condensed Matter 29(e00):597. https://​doi.​org/​10.​1016/j.​cocom.​
2021.​e00597

Colin S (2014) Chapter 2- Single-phase gas flow in microchannels. In: 
Kandlikar SG, Garimella S, Li D et al (eds) Heat transfer and fluid 
flow in minichannels and microchannels, 2nd edn. Butterworth-
Heinemann, Oxford, pp 11–102

Cranmer M (2023) Tuning and workflow tips. https://​astro​autom​ata.​
com/​PySR/​tuning/. Accessed 27 April 2023

Cranmer M, Sanchez Gonzalez A, Battaglia P et al (2020) Discovering 
symbolic models from deep learning with inductive biases. In: 
Larochelle H, Ranzato M, Hadsell R et al (eds) Advances in neural 
information processing systems, vol 33. Curran Associates, Inc., 
Red Hook, pp 17429–17442

Ding D, Chen H, Ma Z et al (2022) Heat flux estimation of the cylinder 
in hypersonic rarefied flow based on neural network surrogate 
model. AIP Adv 12(8):085314. https://​doi.​org/​10.​1063/5.​01087​57

Docherty SY, Borg MK, Lockerby DA et al (2014) Multiscale simu-
lation of heat transfer in a rarefied gas. Int J Heat Fluid Flow 
50:114–125. https://​doi.​org/​10.​1016/j.​ijhea​tflui​dflow.​2014.​06.​003

Fujimoto T, Usami M (1984) Rarefied gas flow through a circular ori-
fice and short tubes. J Fluids Eng 106(4):367–373. https://​doi.​org/​
10.​1115/1.​32431​32

Gallis MA, Torczynski JR (2012) Direct simulation Monte Carlo-based 
expressions for the gas mass flow rate and pressure profile in a 
microscale tube. Phys Fluids 24(1):012005. https://​doi.​org/​10.​
1063/1.​36783​37

Hashemifard S, Matsuura T, Ismail A (2019) Predicting the rarefied 
gas flow through circular nano/micro short tubes: a semi-empirical 
model. Vacuum 164:18–28. https://​doi.​org/​10.​1016/j.​vacuum.​
2019.​02.​044

Ho MT, Zhu L, Wu L et al (2019) A multi-level parallel solver for rare-
fied gas flows in porous media. Comput Phys Commun 234:14–
25. https://​doi.​org/​10.​1016/j.​cpc.​2018.​08.​009

Jiang T, Gradus JL, Rosellini AJ (2020) Supervised machine learning: 
a brief primer. Behav Therapy 51(5):675–687. https://​doi.​org/​10.​
1016/j.​beth.​2020.​05.​002

Jousten K (2016) Applications and scope of vacuum technology. In: 
Jousten K (ed) Handbook of vacuum technology, 2nd edn. Wiley, 
Weinheim, pp 518–520

Karakasidis TE, Sofos F, Tsonos C (2022) The electrical conductiv-
ity of ionic liquids: numerical and analytical machine learning 
approaches. Fluids 7(10):321. https://​doi.​org/​10.​3390/​fluid​s7100​
321

Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed 
machine learning. Nat Rev Phys 3(6):422–440. https://​doi.​org/​10.​
1038/​s42254-​021-​00314-5

Kontolati K, Loukrezis D, Giovanis DG et al (2022) A survey of 
unsupervised learning methods for high-dimensional uncer-
tainty quantification in black-box-type problems. J Comput Phys 
464(111):313. https://​doi.​org/​10.​1016/j.​jcp.​2022.​111313

Koza JR (1994) Genetic programming as a means for programming 
computers by natural selection. Stat Comput 4(2):87–112. https://​
doi.​org/​10.​1007/​BF001​75355

Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar vari-
ational autoencoder. arXiv:​1703.​01925

Lee EH, Jiang W, Alsalman H et al (2022) Methodological framework 
for materials discovery using machine learning. Phys Rev Mater 
6(043):802. https://​doi.​org/​10.​1103/​PhysR​evMat​erials.​6.​043802

Li L, Fan M, Singh R, et al (2019) Neural-guided symbolic regression 
with asymptotic constraints. arXiv:​1901.​07714

Li Z, Kovachki N, Azizzadenesheli K, et al (2021) Fourier neural 
operator for parametric partial differential equations. arXiv:​2010.​
08895

Lilly TC, Gimelshein SF, Ketsdever AD et al (2006) Measurements 
and computations of mass flow and momentum flux through short 

tubes in rarefied gases. Phys Fluids 18(9):093601. https://​doi.​org/​
10.​1063/1.​23456​81

Livesey RG (2004) Solution methods for gas flow in ducts through the 
whole pressure regime. Vacuum 76(1):101–107. https://​doi.​org/​
10.​1016/j.​vacuum.​2004.​05.​015

Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via Deep-
ONet based on the universal approximation theorem of operators. 
Nat Mach Intell 3(3):218–229

Misdanitis S, Pantazis S, Valougeorgis D (2012) Pressure driven rare-
fied gas flow through a slit and an orifice. Vacuum 86(11):1701–
1708. https://​doi.​org/​10.​1016/j.​vacuum.​2012.​02.​014

Mohammad Nejad S, Iype E, Nedea S et al (2021) Modeling rarefied 
gas-solid surface interactions for Couette flow with different wall 
temperatures using an unsupervised machine learning technique. 
Phys Rev E 104(015):309. https://​doi.​org/​10.​1103/​PhysR​evE.​104.​
015309

Naris S, Vasileiadis N, Valougeorgis D et al (2018) Computation of the 
effective area and associated uncertainties of non-rotating piston 
gauges fpg and frs. Metrologia 56(1):015004. https://​doi.​org/​10.​
1088/​1681-​7575/​aaee18

Pantazis S, Valougeorgis D (2013) Rarefied gas flow through a cylindri-
cal tube due to a small pressure difference. Eur J Mech B/Fluids 
38:114–127. https://​doi.​org/​10.​1016/j.​eurom​echflu.​2012.​10.​006

Pantazis S, Valougeorgis D, Sharipov F (2014) End corrections for 
rarefied gas flows through circular tubes of finite length. Vacuum 
101:306–312. https://​doi.​org/​10.​1016/j.​vacuum.​2013.​09.​015

Papastamatiou K, Sofos F, Karakasidis TE (2022) Machine learning 
symbolic equations for diffusion with physics-based descriptions. 
AIP Adv 12(2):025004. https://​doi.​org/​10.​1063/5.​00821​47

Patel D, Ray D, Abdelmalik MRA, et al (2022) Variationally mimetic 
operator networks. arXiv:​2209.​12871

Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: 
machine learning in python. J Mach Learn Res 12:2825–2830

Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and 
tuning strategies for random forest. WIREs Data Mining Knowl 
Discov 9(3):e1301. https://​doi.​org/​10.​1002/​widm.​1301

Rackauckas C, Ma Y, Martensen J, et al (2021) Universal differential 
equations for scientific machine learning. arXiv:​2001.​04385

Rokach L (2016) Decision forest: twenty years of research. Inf Fusion 
27:111–125. https://​doi.​org/​10.​1016/j.​inffus.​2015.​06.​005

Rudy SH, Brunton SL, Proctor JL et al (2017) Data-driven discovery 
of partial differential equations. Sci Adv 3(4):e1602614. https://​
doi.​org/​10.​1126/​sciadv.​16026​14

Sahoo S, Lampert C, Martius G (2018) Learning equations for 
extrapolation and control. In: Dy J, Krause A (eds) Proceed-
ings of the 35th International Conference on Machine Learning, 
Proceedings of Machine Learning Research, vol 80. PMLR, pp 
4442–4450, https://​proce​edings.​mlr.​press/​v80/​sahoo​18a.​html

Schonlau M, Zou RY (2020) The random forest algorithm for statisti-
cal learning. Stata J 20(1):3–29. https://​doi.​org/​10.​1177/​15368​
67X20​909688

Shah SH, Angel Y, Houborg R et al (2019) A random forest machine 
learning approach for the retrieval of leaf chlorophyll content 
in wheat. Remote Sens 11(8):920. https://​doi.​org/​10.​3390/​rs110​
80920

Sharipov F (2012) Benchmark problems in rarefied gas dynamics. 
Vacuum 86(11):1697–1700. https://​doi.​org/​10.​1016/j.​vacuum.​
2012.​02.​048

Sharipov F (2015) Rarefied gas dynamics: fundamentals for research 
and practice. Wiley, Weinheim

Sofos F, Karakasidis TE (2021) Nanoscale slip length prediction 
with machine learning tools. Sci Reports 11(1):12520. https://​
doi.​org/​10.​1038/​s41598-​021-​91885-x

Sofos F, Charakopoulos A, Papastamatiou K et al (2022) A combined 
clustering/symbolic regression framework for fluid property 

https://doi.org/10.1016/j.cocom.2021.e00597
https://doi.org/10.1016/j.cocom.2021.e00597
https://astroautomata.com/PySR/tuning/
https://astroautomata.com/PySR/tuning/
https://doi.org/10.1063/5.0108757
https://doi.org/10.1016/j.ijheatfluidflow.2014.06.003
https://doi.org/10.1115/1.3243132
https://doi.org/10.1115/1.3243132
https://doi.org/10.1063/1.3678337
https://doi.org/10.1063/1.3678337
https://doi.org/10.1016/j.vacuum.2019.02.044
https://doi.org/10.1016/j.vacuum.2019.02.044
https://doi.org/10.1016/j.cpc.2018.08.009
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.3390/fluids7100321
https://doi.org/10.3390/fluids7100321
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2022.111313
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
http://arxiv.org/abs/1703.01925
https://doi.org/10.1103/PhysRevMaterials.6.043802
http://arxiv.org/abs/1901.07714
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
https://doi.org/10.1063/1.2345681
https://doi.org/10.1063/1.2345681
https://doi.org/10.1016/j.vacuum.2004.05.015
https://doi.org/10.1016/j.vacuum.2004.05.015
https://doi.org/10.1016/j.vacuum.2012.02.014
https://doi.org/10.1103/PhysRevE.104.015309
https://doi.org/10.1103/PhysRevE.104.015309
https://doi.org/10.1088/1681-7575/aaee18
https://doi.org/10.1088/1681-7575/aaee18
https://doi.org/10.1016/j.euromechflu.2012.10.006
https://doi.org/10.1016/j.vacuum.2013.09.015
https://doi.org/10.1063/5.0082147
http://arxiv.org/abs/2209.12871
https://doi.org/10.1002/widm.1301
http://arxiv.org/abs/2001.04385
https://doi.org/10.1016/j.inffus.2015.06.005
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://proceedings.mlr.press/v80/sahoo18a.html
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.3390/rs11080920
https://doi.org/10.3390/rs11080920
https://doi.org/10.1016/j.vacuum.2012.02.048
https://doi.org/10.1016/j.vacuum.2012.02.048
https://doi.org/10.1038/s41598-021-91885-x
https://doi.org/10.1038/s41598-021-91885-x


	 Microfluidics and Nanofluidics (2023) 27:85

1 3

85  Page 14 of 14

prediction. Phys Fluids 34(6):062004. https://​doi.​org/​10.​1063/5.​
00966​69

Tantos C, Valougeorgis D (2015) Parametric study on propulsion 
performance of micro-tubes. In: Proc. 6th European Confer-
ence for Aeronautics and Space Sciences, EUCASS 2015 Flight 
Physics Volume

Tatsios G, Valougeorgis D, Stefanov SK (2019) Reconsideration of 
the implicit boundary conditions in pressure driven rarefied gas 
flows through capillaries. Vacuum 160:114–122. https://​doi.​org/​
10.​1016/j.​vacuum.​2018.​10.​083

Udrescu SM, Tegmark M (2021) Symbolic pregression: discovering 
physical laws from distorted video. Phys Rev E 103(043):307. 
https://​doi.​org/​10.​1103/​PhysR​evE.​103.​043307

Vabalas A, Gowen E, Poliakoff E et al (2019) Machine learning 
algorithm validation with a limited sample size. PLoS ONE 
14(11):e0224365. https://​doi.​org/​10.​1371/​journ​al.​pone.​02243​65

Vaddireddy H, Rasheed A, Staples AE et al (2020) Feature engi-
neering and symbolic regression methods for detecting hid-
den physics from sparse sensor observation data. Phys Fluids 
32(1):015113. https://​doi.​org/​10.​1063/1.​51363​51

Valougeorgis D, Vasileiadis N, Titarev V (2017) Validity range of 
linear kinetic modeling in rarefied pressure driven single gas 
flows through circular capillaries. Eur J Mech B/Fluids 64:2–7. 
https://​doi.​org/​10.​1016/j.​eurom​echflu.​2016.​11.​004

Varoutis S, Valougeorgis D, Sazhin O et al (2008) Rarefied gas flow 
through short tubes into vacuum. J Vacuum Sci Technol A 
26(2):228–238. https://​doi.​org/​10.​1116/1.​28306​39

Varoutis S, Valougeorgis D, Sharipov F (2009) Simulation of gas 
flow through tubes of finite length over the whole range of rar-
efaction for various pressure drop ratios. J Vacuum Sci Technol 
A 27(6):1377–1391. https://​doi.​org/​10.​1116/1.​32482​73

Vasileiadis N, Valougeorgis D (2020) Modeling of time-dependent 
gas pumping networks in the whole range of the Knudsen num-
ber: simulation of the ITER dwell phase. Fusion Eng Design 
151(111):383. https://​doi.​org/​10.​1016/j.​fusen​gdes.​2019.​111383

Vasileiadis N, Tatsios G, Misdanitis S et al (2016) Modeling of 
complex gas distribution systems operating under any vacuum 
conditions: simulations of the ITER divertor pumping system. 
Fusion Eng Design 103:125–135. https://​doi.​org/​10.​1016/j.​
fusen​gdes.​2015.​12.​033

Xiong J, Zhang TY, Shi SQ (2020) Machine learning of mechanical 
properties of steels. Sci China Technol Sci 63(7):1247–1255. 
https://​doi.​org/​10.​1007/​s11431-​020-​1599-5

Yoshida H, Hirata M, Hara T et al (2021) Comparison of measured leak 
rates and calculation values for sealing packages. Packag Technol 
Sci 34(9):557–566. https://​doi.​org/​10.​1002/​pts.​2594

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1063/5.0096669
https://doi.org/10.1063/5.0096669
https://doi.org/10.1016/j.vacuum.2018.10.083
https://doi.org/10.1016/j.vacuum.2018.10.083
https://doi.org/10.1103/PhysRevE.103.043307
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1063/1.5136351
https://doi.org/10.1016/j.euromechflu.2016.11.004
https://doi.org/10.1116/1.2830639
https://doi.org/10.1116/1.3248273
https://doi.org/10.1016/j.fusengdes.2019.111383
https://doi.org/10.1016/j.fusengdes.2015.12.033
https://doi.org/10.1016/j.fusengdes.2015.12.033
https://doi.org/10.1007/s11431-020-1599-5
https://doi.org/10.1002/pts.2594

	Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques
	Abstract
	1 Introduction
	2 Methods
	2.1 Computational framework
	2.2 Dataset description
	2.3 Machine learning
	2.3.1 Random forest regression (RFR)
	2.3.2 Symbolic regression (SR)


	3 Results and discussion
	3.1 Predicted flow rates via random forest regression
	3.2 Predicted flow rates via symbolic regression
	3.3 Comparison between SR-based and kinetic flow rates outside the prescribed range of input parameters

	4 Conclusions
	Anchor 15
	Acknowledgements 
	References


