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Abstract
A higher order lubrication model between slip walls is proposed for predicting the flow fields that cannot be described by the 
standard lubrication models based on the thin-gap approximation. The analysis shows that when considering the non-negli-
gible pressure gradient in the surface-normal direction, the local pressure can be separated into (i) the base contribution by 
the modified Reynolds lubrication equation and (ii) the higher order component varying in both longitudinal and wall-normal 
directions, which takes the form proportional to the longitudinal derivative of the local velocity of the Couette–Poiseuille 
flow. For both (i) and (ii), the effect of the slip boundaries appears as the apparent displacements of the no-slip solid walls, 
and for (i) additional terms (to the no-slip case) also appear. The validity of the higher order slip-wall lubrication model is 
established by comparing the analytical prediction of the pressure with the fully resolved numerical results in a relatively 
wide region between a no-slip corrugated wall and a flat plate with varying slip length: the contribution of the higher order 
term is identified as the decreased lubrication pressure due to velocity slip. The model also successfully predicts the trend 
of pressure change between the varying slip case and a more realistic system with constant slip length for a channel, where 
the thin-gap approximation does not hold.

Keywords Higher order lubrication model · Velocity slip · Pressure distribution · Numerical simulation

1 Introduction

The continuum approximation may break down as the char-
acteristic dimensions of the mechanical device approach the 
mean free path (for gases) or molecular scale (for liquids) 
(Szeri 2011). Non-continuum effects on fluid flow are char-
acterised by thermal creep, intermolecular forces, and the 
appearance of slip flow at solid boundaries (Gad-el-Hak 
1999). For gas flows, when a Knudsen number (i.e. the ratio 
of the mean free path to the characteristic length scale of 
the flow) is in the range Kn ≥ 10−3 , the traditional no-slip 
boundary condition is no longer valid (Gad-el-Hak 1999), 
and similarly for liquid flows (Barrat and Bocquet 1999; 
Priezjev 2013; Omori et al. 2019). An important application 
at these scales is found in micro-electro-mechanical systems 

(MEMS) as sensors and actuators in a flow. For example, 
the typical flight height of the read/write head of a com-
puter hard disk drive is on the order of 1∼10 nm . For such 
thin film flows, the Reynolds lubrication equation (Reynolds 
1886) with a no-slip boundary condition is known to predict 
too much shear stress, and therefore lubrication models that 
take into account the velocity slip on the wall have been 
developed (Burgdorfer 1959; Shukla et al. 1980; Hsia and 
Domoto 1983; Mitsuya 1993; Wu and Bogy 2003; Bahuku-
dumbi and Beskok 2003; Aurelian et al. 2011; Bailey et al. 
2017).

Although the velocity slips on solid boundaries are typi-
cally observed at small scales, there may be situations where 
flows in large clearances (i.e. not thin or non-negligible 
gaps) are affected by velocity slips. For example, the air 
flow in micro bearings typically takes Kn ∼ 10−2 (Gad-el-
Hak 1999), while the gap between the shaft and the housing 
is generally not expected to be sufficiently small (Maureau 
et al. 1997) to justify the thin-gap approximation. Maureau 
et al. (1997) analytically solved the lubrication problem 
between the circular shaft and the housing of a micro bear-
ing in the Stokes regime with a slip boundary condition. 
They reported that the effect of velocity slip appears as a 
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disappearance of the recirculation flow when the gap width 
is not negligible, while the recirculation zone becomes 
larger with the increase in the clearance. Later, Nieto et al. 
(2013) analysed the Stokes flow in an eccentric channel with 
a nonlinear slip boundary condition as a function of local 
shear rate, and the effect of the inhomogeneous slip length 
shows interesting implications on the velocity inversion 
and recirculation zone. Therefore, the flow patterns under 
velocity slip may be different from those predicted by the 
bare lubrication theory in thin gaps under no-slip boundary 
conditions.

The mathematical treatment adopted in Maureau et al. 
(1997) to solve the Stokes flow problem in a non-negligible 
gap is similar to that developed by Kamal (1966) and Ashino 
and Yoshida (1975) using a conformal mapping from the 
bipolar coordinates (i.e. the region between two eccentric 
circles) to a rectangular system. Meanwhile, for lubrication 
in a gap of arbitrary shape (or even a region between deform-
able surfaces), the Reynolds lubrication equation is most 
widely used, and modifications of the equation with slip 
boundary condition were attempted; Aurelian et al. (2011) 
developed a modified Reynolds lubrication equation with the 
slip lengths in both wall-tangential and wall-normal direc-
tions, and Bailey et al. (2017) considered the effects of the 
fluid compressibility and velocity slip on the axisymmetric 
system. However, taking the aspect ratio of the gap region as 
� ( = H∕L for the geometry in Fig. 1), the Reynolds lubrica-
tion equations were derived for a gap of 𝜀 ≪ 1 by retaining 
the O[�0] terms in the Stokes equation. Therefore, in the situ-
ation of a non-negligible gap (i.e. 𝜀 ≲ 1 ) bounded by (slip/
no-slip) walls of arbitrary shape, a simple lubrication model 
is not possible and an additional higher order term needs to 
be considered in the Reynolds lubrication equation.

One of the present authors showed that a higher order 
component of lubrication pressure can be considered 
through a reduced Stokes equation under the no-slip condi-
tion (Takeuchi and Gu 2019). Retaining the O[�2] terms in 
the case of a non-negligible gap, Takeuchi and Gu (2019) 
showed that the pressure can be decomposed into (i) a base 
component satisfying the Reynolds lubrication equation 
and (ii) a higher order component that predominantly varies 
in the surface-normal direction. Their model contains an 

interesting aspect: the higher order term takes the form of 
the longitudinal variation of the local velocity of the Cou-
ette–Poiseuille flow driven by (i) and the moving walls. The 
validity of the higher order lubrication model was estab-
lished for the case of non-negligible gap width of various 
geometries under the no-slip condition (Takeuchi and Gu 
2019), and the feasibility of the model was studied for mem-
brane permeation driven by lubrication pressure (Takeuchi 
et al. 2021a, 2021b; Yamada et al. 2021).

In this paper, we derive a higher order lubrication model 
of slip flow (under the linear slip boundary condition) in a 
non-negligible gap width, where the longitudinal variation 
of the gap is assumed to be small. The newly developed 
lubrication model has a unique property that the effect of 
velocity slip is capsuled as an apparent displacement of no-
slip walls. The model is validated through comparison with a 
fully resolved numerical analysis of the Navier-Stokes equa-
tion under a boundary condition with locally varying slip 
length. Through modelling of the lubrication pressures under 
constant and locally varying slip lengths, the qualitative dif-
ference in the lubrication pressures by the slip characteristics 
is discussed.

2  Governing equations and boundary 
conditions

The following discussion is based on the gap and the bound-
ary conditions illustrated in Fig. 1. For simplicity, the lower 
wall is flat. The x coordinate is taken along this wall, and the 
coordinate y is in the wall-normal direction. The velocities in 
the x and y directions are introduced as u and v, respectively. 
The wall velocities are (Ub,Vb) on the lower wall and (Ut,Vt) 
on the upper wall. The length scales in the longitudinal (x) 
and wall-normal (y) directions are taken as L and H , respec-
tively, and the aspect ratio of the narrow gap is introduced as 
� = H∕L . The reference velocities in the x and y directions 
are denoted as U and V.

The scaled variables u∗ = u∕U, v∗ = v∕V , t∗ = L∕U,

x∗ = x∕L, y∗ = y∕H  and p∗ = p∕Pref  are introduced 
in the equation of continuity and in the incompress-
ible Navier–Stokes equations, where t is the time and 
Pref = �−2�UL−1 . Then, the scaled equation of continuity,

gives the estimation V = �U . The scaled Navier–Stokes 
equations are obtained as (Leal 2007)

(1)
�u∗

�x
∗

+
�v∗

�y
∗

= 0

H

L

h
(x
)

Ut

Ub

Vt

Vb

x, t

y,n

Surface 1

Surface 2

Fig. 1  Schematic of a flow in a gap between two moving rigid sur-
faces
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where Re = �UL∕� is the Reynolds number. The character-
istic aspect of this formulation may be that, because the ref-
erence pressure is defined with the viscous scale ( Pref ), the 
Reynolds number appears in front of the inertia term mul-
tiplied with �2 and �4 . By eliminating all the terms smaller 
than the order of �2 but retaining only the O[�0] terms, the 
above equations are reduced to

which are the basic equations for the Reynolds lubrication 
equation (Reynolds 1886; Leal 2007).

On the other hand, assuming Re ≪ 1 and retaining the 
terms of O[�2] , we have the following set of equations: 

 By using the gap width h(x), the first term in the right-hand 
side (RHS) of Eq. (2a) is re-evaluated as follows:

where h∗ = h∕H . This equation indicates that, when both the 
gradient of the interface profile and its curvature

are small, the term �2u∕�x2 is smaller than the order of �2 , 
which enables elimination of the second-order x-derivative 
of u from Eq. (2a). Therefore, in the present study, we 
employ the following set of equations for lubrication: 

 for a non-negligible gap of moderately undulating surface 
profile.
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The isothermal slip boundary condition of the fluid veloc-
ity is specified by the following equation (Chen et al. 2014):

where u and U are the fluid velocity and wall velocity vec-
tors, respectively, t and n are the wall-tangential and wall-
normal unit vectors, respectively, � is the slip length on 
the wall and d is the deformation rate tensor defined as 
(∇u + (∇u)T )∕2 . By introducing t and n as

where ex and ey are the basis in the x and y directions, and 
assuming |dh∕dx| ≪ 1 , the above slip boundary condition is 
simplified as follows: 

 Here, the slip length is denoted as a function of x for the 
purpose of the validation in the subsequent section. By 
assuming the wall is impenetrable to the fluid and also 
|dh∕dx| ≪ 1 , the y component of the fluid on the upper and 
lower walls is given as follows: 

3  Modelling of lubrication with slip 
boundary condition

By solving Eqs. (1) and (4), a lubrication model is con-
structed to describe the pressure variation in both the lon-
gitudinal and surface-normal directions. The following two 
lemmas are introduced:

Lemma 1 The local pressure gradient in the x direction, 
�p∕�x , is regarded as a function of x (and is negligibly rel-
evant to y).

Lemma 2 The pressure can be separated into the base and 
adjusting components:

(5)(u − U) ⋅ t = 𝓁
[

t ⋅ (2d) ⋅ n
]

t ≃
ex + (dh∕dx)ey
√

1 + (dh∕dx)2
, n ≃

ey − (dh∕dx)ex
√

1 + (dh∕dx)2
,

(6a)u|y=h − Ut = −�(x)
�u

�y

|

|

|

|y=h

,

(6b)u|y=0 − Ub = +�(x)
�u

�y

|

|

|

|y=0

(7a)v|y=h =Vt

(7b)v|y=0 =Vb

(8)p(x, y) = pbase(x) + padj(x, y)
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where no more independent function of x is separable from 
padj.

The proofs of the lemmas are found in Takeuchi and Gu 
(2019), which are valid regardless of the specific wall bound-
ary conditions.

By Lemma 1, we obtain the following form of u by integrat-
ing Eq. (4a) twice with respect to y:

From the boundary conditions, Eq. (6), the integral constants 
f1 and f2 are given as 

 where Ur = Ut − Ub . From �v∕�y = −�u∕�x with Eq. (9)

is obtained, where one of the boundary conditions v|y=0 = Vb 
is used. The other velocity condition on the boundary, 
v|y=h = Vt , imposes the following relation:

where Vr = Vt − Vb . Hereafter, the wall pressure that satis-
fies the above equation is denoted as pw(x) . Substituting Eq. 
(10) into the above equation, the following equation for pw 
is obtained:

This is the Reynolds lubrication equation with the slip solid 
boundary condition. By taking � → 0 , the above equations 
is reduced to the traditional Reynolds lubrication equation 
with no-slip boundary condition.

By integrating Eq.  (4b) with respect to y and using 
Lemma 2, �v∕�y is related to padj as
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where f3 is an integral constant. Comparing the above equa-
tion with −�u∕�x , the following relation is obtained:

From the above equation, the order of magnitude of �padj∕�x 
is found to be �UL−2 , while those of �p∕�x and dpw∕dx 
are found to be �−2�UL−2 from Eqs. (4a) and (11). There-
fore, considering Lemma 1, the x derivatives of p and pw 
are related as

which reads

from Eq.  (8) provided 𝜀2 ≪ 1 . The orders of mag-
nitudes of the pressures are summarised as follows: 
O[p] = O[pw] = Pref  and  O[padj] = �2Pref  .  Bes ides , 
�pbase∕�y = 0 and Eq. (4b) yield

This fact characterises the present problem: although padj is 
small in comparison to pw , �padj∕�y exhibits a comparable 
order of magnitude to dpw∕dx under 𝜀 ≲ 1 and 𝜀2 ≪ 1.

Substitution of Eq. (13) into (12) identifies padj as

Eq. (15) shows that padj is the pressure adjustment due to the 
spatial change of the local Couette–Poiseuille flow induced 
by the gradient of pw and the moving wall; the Couette com-
ponent of the flow is slightly modified by the apparently 
increased gap width ( h + 2�).

By deleting pw and padj from Eqs. (11, 12 and 15), a 
closed form of fourth-order differential equation for p(x, y) is 
shown in Appendix A. However, more feasible and equiva-
lent lubrication model may be constructed as follows: first, 
pw is solved from Eq.(11), and then, with padj(x, y) deter-
mined by Eq. (15), the pressure is eventually given by
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For a system with independent slip lengths for the upper 
wall, �t(x) , and lower wall, �b(x) , the above lubrication 
model is generalised as below. The Reynolds lubrication 
equation is modified as

where

A further general form of Eq. (17) may be given by includ-
ing the slip velocity components in the wall-normal direc-
tion (Aurelian et al. 2011). The adjusting component of the 
pressure is generalised as follows:

The additional shift of the gap width �p for the Poiseuille 
component in Eq.(19) characterises this setup of independ-
ent pair of slip lengths. These apparent shifts of the gap 
width ( �p and �c ) also appears in the three-dimensional ver-
sion of the slip-wall lubrication model (see Appendix B).

Note that the effect of the slip boundary condition appears 
in Eq. (17) as additional terms (i.e. the second, third, and the 
fifth terms) to the original Reynolds lubrication equation 
with no-slip walls, indicating a modification of mass con-
servation at the �0-order level. On the other hand, Eq. (19) 
retains essentially the same functional form (i.e. composed 
of the Poiseuille and Couette terms) as the case with the no-
slip boundary condition.
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4  Validation

For a validation, the pressure distribution affected by slip 
boundary is calculated by the above lubrication model, and 
the result is compared with the fully resolved numerical 
result.

Here, we set out a problem of the flow induced by a 
curved object travelling at a constant speed, and different 
slip lengths, �t(x) and �b(x) , are considered at the upper and 
lower boundaries, respectively. As schematically shown in 
Fig. 2, the lower flat wall is towed at the velocity U0 in the 
positive x direction, and a corrugated wall of sinusoidal 
geometry

is fixed in space, i.e. Vr = 0 . In the above equation, H0 is the 
average channel height, � is the non-dimensional parameter 
between 0 and 1, and the wave number k is set to 2�∕L0 . The 
periodic boundary condition is applied in the x direction, 
and the slip lengths are given as �b(x) = �h(x) ( � : a positive 
constant) and �t = 0 ; only the upper wall is no-slip. Then, 
Eq. (17) is simplified as

and the analytical solution is given as follows:

With the above pw , the corresponding padj can be calculated 
from Eq. (19).

In the following, the aspect ratio of the corrugated chan-
nel is fixed at � = H0∕L0 = 0.1 . This value reasonably satis-
fies the condition 𝜀2 ≪ 1 , and our previous study (Takeuchi 
and Gu 2019) showed that the lubrication model with the 
no-slip boundary condition ( �t = �b = 0 ) was found to 
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12
+
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2
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[

1
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]

Fig. 2  Schematic of a corru-
gated plate above a moving flat 
plate, together with the compu-
tational mesh (body-conforming 
geometry) and boundary 
conditions. The gap width h(x) 
is given by Eq. (20)
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reproduce the true pressure distribution for this aspect ratio 
of the corrugated channel.

For comparison, a direct numerical simulation (DNS), 
which solves the full Navier–Stokes equation, is carried 
out with a fully validated fourth-order finite difference 
method (Kajishima and Taira 2016). A structural body-fit 
mesh is prepared to conform the upper and lower walls and 
all the variables are defined on the collocated arrangement. 
The number of grid points are 200 and 20 in the x and y 
directions, respectively, and the number density of the grid 
points are increased near the upper and lower boundaries 
as well as in the narrowest gap region (i.e. around x = L0∕2 
or kx = � ). For the DNS, the Reynolds number is set at 
Re = �U0L0∕� = 1.

Figure 3 compares the pressure contours obtained by 
the slip-wall lubrication model (Eq. (16)) and the numeri-
cal simulation for � = � = 0.25 . Considering that the pres-
sure obtained by the Reynolds lubrication equation is a 

function of only x (see Eq. (22)), the proposed slip-wall 
lubrication model reasonably reproduces the y-dependence 
of the pressure distribution.

To see the effect of the corrugation amplitude and 
the slip length, � and � are varied in the following range: 
� = 0.1, 0.25 and � = 0.10, 0.25, 0.50 . For the values of � , 
the maximum gradient of the surface profile is evaluated 
as H0�k = 2��� ≒ 0.63 × 10−1 and 0.16, respectively. 
Although the gradient at � = 0.25 is slightly large, the cur-
vatures of the profiles for both � cases are sufficiently small: 
H0�k

2 = 2���2H−1
0

≒ 0.63 × 10−2H−1
0

 and 0.16 × 10−1H−1
0

 , 
and we eliminate �2u∕�x2 as explained at Eq.(3).

The  p res su re  p ro f i l e s  a long  t he  l i ne  o f 
y = yf

def
=0.8H0(1 − �) (i.e. slightly below the lowest point 

of the upper boundary) are compared in Fig. 4. The sym-
bol and solid line represent the results of the DNS and 
the present model (Eq. (16)), respectively. For all the � 
and � cases (including the case of the larger amplitude, 
� = 0.25 ), the proposed slip-wall lubrication model agrees 
well with the DNS result, and the importance of padj is 

Fig. 3  Comparison of the pressures obtained by Eq. (16) and by a fully resolved numerical simulation (DNS) at steady state. The parameters are 
set at � = H0∕L0 = 0.10 and � = � = 0.25 . The pressure is shown normalised by �U

0

∕L
0
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clear by comparing with the profiles of the Reynolds lubri-
cation solution, Eq. (22), represented by dashed line. Con-
sidering that the maximum pressures under the no-slip 
condition (i.e. � = 0 ) were found to be about 10�U0∕L0 
for � = 0.10 and 25�U0∕L0 for � = 0.25 (Takeuchi and Gu 
2019) for the same corrugated channel, the graph shows 
that the slip-wall condition significantly reduces the lubri-
cation pressure. The comparison of the maximum absolute 
differences between the pressure values obtained by DNS 

and the models plotted in Fig. 5 show that Eq.(16) pro-
vides better prediction than pw.

The above result indicates that the proposed lubrication 
model well predicts the pressure distribution of the flow 
under the slip boundary condition in a channel of a smooth 
(non-circular/spherical) profile with sufficiently small �2.

5  Discussion

To study the effect of slip length on pw and padj under a 
realistic condition, the cases with constant slip lengths are 
discussed. Here, the slip lengths at the top and bottom walls 
are set at �t = 0 and �b = �H0 , respectively. The other condi-
tions remain the same as the previous section, including the 
geometry of the corrugation.

The pressure deviations for the present case with respect 
to the varying slip case (i.e. the previous section) are denoted 
as Δpw (= p

c.�b

w − p
v.�b

w ) and Δpadj (= p
c.�b

adj
− p

v.�b

adj
) , where the 

superscripts c.�b and v.�b denote the cases of constant and 
variable slip lengths, respectively, and pv.�b

w  is identical to the 
pw in Eq.(22). Assuming that the corrugation amplitude � 
and the slip factor � are sufficiently small (i.e. 0 < 𝛿, 𝛾 ≪ 1 ), 
the Taylor expansions of the RHSs of Eqs.(17) and (19) yield 
the following model: 

 where Res.
def
=O[�2�] + O[��2] . Considering that pv.�b

w  (and 
also pc.�b

w  , as will be shown subsequently) is a similar curve 
to the major term of Δpw (i.e. sin(kx) ) and has zeros at 
kx = n� (n = 0, 1,⋯) , Eq.(23a) implies |pc.�b

w | > |p
v.�b

w | . On 
the other hand, Eq.(23b) shows that Δpadj is much smaller in 
magnitude and insensitive to � , indicating that both adjust-
ments ( pc.�b

adj
 and pv.�b

adj
 ) may be at the similar level in compari-

son to |pw| or |Δpw|.
The above prediction is investigated by comparing it 

numerically with the varying slip cases in Fig. 4. Here, pc.�b

w  
is obtained by numerically solving the one-dimensional 
Reynolds lubrication equation, Eq. (17), with the constant 
slip boundary condition, and the adjusting pressure is calcu-
lated by substituting pc.�b

w  into Eq. (19). The parameters � and 
� are varied in same ranges as in the previous section. Fig-
ure 6 compares the pressure distributions along y = yf . The 
dashed and solid lines represent pc.�b

w  and pc.�b

w + p
c.�b

adj
 , 

respectively. For each (�, �) case, |pc.�b

w | takes larger value 

(23a)Δpw =
1

�2

�U0

L0

[

3

�
�� sin(kx) + Res.

]

(23b)Δpadj =
�U0

L0

[

2��
y

H0

3y − 2H0

H0

sin(kx) + Res.

]
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than that of the same (�, �) case in Fig. 4, while the contribu-
tions of pc.�b

adj
 and pv.�b

adj
 are at similar levels for the same set 

of parameters. Although the values of � and � may not be 
sufficiently small as assumed in the above, the pressure vari-
ation due to different slip lengths can be well explained by 
the model in Eq. (23).

6  Conclusion

To study the effect of the velocity slip at the solid wall on 
the lubrication in a relatively wide channel, a 2nd-order slip-
wall lubrication model was developed.

For the moderately undulating surface profile with the 
aspect ratio � under 𝜀 ≲ 1 and 𝜀2 ≪ 1 , the effect of the veloc-
ity slip on the wall is considered, and the pressure was repre-
sented by a linear decomposition with two components: the 
component that obeys a Reynolds lubrication equation under 
the slip wall ( pw ∼ �0 ) and the corresponding higher order 
contribution ( padj ∼ �2 ). The form of padj is composed of 
the longitudinal derivative of the local velocity of the Cou-
ette–Poiseuille flow driven by pw and the tangential velocity 
of the walls, and this padj allows the pressure to distribute in 
both longitudinal and wall-normal directions.

In the equation of pw , the apparently increased gap widths 
and the additional terms to the Reynolds lubrication equation 
(under no-slip boundaries) represent the effect of slip length. 
Meanwhile, the effect of velocity slip in padj only appears as 

the apparent increases in gap widths for both the Poiseuille 
and Couette components; the form of the modification in 
the Poiseuille component is not trivial, which characterises 
the higher order correction of the pressure in the slip flow.

The validity of the slip-wall lubrication model was estab-
lished by comparing the analytical predictions with the fully 
resolved numerical results for the pressure distribution in 
the region between a flat wall with varying slip length and 
a no-slip corrugated wall. For a wide range of slip lengths, 
the decrease in lubrication pressure due to velocity slip was 
significant, while the contribution of the higher order term 
padj markedly improved the pressure prediction. As a more 
realistic case, the pressure for the same geometry and con-
stant slip length was investigated, and the trend of the pres-
sure variation due to the change in slip characteristics was 
analytically studied and summarised as follows: the effect 
of constant or varying slip length mainly appears in pw , 
while the padj term is insensitive to the details of the slip 
characteristics.

The results show that the treatment of slip length in the 
proposed higher order slip-wall lubrication model was gen-
eralised to cover from the no-slip case to the slip case, and 
the applicability of the model to the regime that cannot be 
explained by the conventional thin-gap approximation (i.e. 
non-negligible gap regions with non-circular geometry) was 
established.

Appendices

A. Slip‑wall lubrication model in a single 
equation

By replacing padj in Eq.(12) with padj(x, y) = p(x, y) − pw(x) , 
the following equation is obtained:

A closed form of the equation for pressure p(x, y) is obtained 
by substituting the above equation into Eq. (11) as

This form of equation is useful when handling the govern-
ing equation of p(x, y) for solving a coupled system with 
object motion.

(A1)pw = p + �
�

�x
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dx
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Fig. 6  Comparison of the distributions of the pressures ( pc.�b

w  and 
p
c.�b

w + p
c.�b

adj
 ) along y = yf under constant slip lengths �b = �H0 

( � = 0.10, 0.25, 0.50 ) for two different values of amplitude param-
eter � . The pressure obtained by solving the one-dimensional Reyn-
olds lubrication equation, Eq. (17), is represented as pw and plotted 
with dashed line, and the pressure adjusted by Eq. (19) is plotted with 
solid line. The pressure value is normalised by �U

0

∕L
0



Microfluidics and Nanofluidics (2023) 27:46 

1 3

Page 9 of 10 46

B. Three‑dimensional version

The three-dimensional version of the slip-wall lubrication 
model is realised by a procedure similar to that applica-
ble for two dimensions. In the following, only the result is 
presented. A rigid surface z = h(x, y) travels at the relative 
velocity (Ur,Vr,Wr) in the (x, y, z) direction with respect 
to the lower wall velocity (Ub,Vb,Wb) , and the pressure 
p(x, y, z) is decomposed into the wall pressure pw(x, y) and 
the adjusting component padj(x, y, z) . The boundary condi-
tion for the tangential components (u and v in the x and y 
directions) are given as follows: 

 The wall pressure pw(x, y) obeys the following equation:

where ∇2 = (�∕�x, �∕�y) , and �c(x, y) and �p(x, y) take the 
same form as Eq.(18). The adjusting component of pressure 
is given as follows:

and finally pw(x, y) + padj(x, y, z) gives the full components 
of the pressure, p(x, y, z).

The above result is converted to the axisymmetric coor-
dinate system. In the following, r and � are the radial and 
azimuthal coordinates. Assuming �-independent distri-
butions for the geometric variables (i.e. h(r),�b(r),�t(r) ) 
and zero wall velocities in the tangential directions (i.e. 
0 = Ut = Vt = Ub = Vb ), the pressure pw(r) obeys the fol-
lowing equation:

and the adjusting component of pressure is given as follows:
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