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Abstract
A discrete-forcing immersed boundary method with permeable membranes is developed to investigate the effect of lubrication 
on the permeations of solute and solvent through membrane. The permeation models are incorporated into the discretisation 
at the fluid cells including the membrane, and discretised equations for the pressure Poisson equation and convection–diffu-
sion equation for the solute are represented with the discontinuities at the membrane. The validity of the proposed method is 
established by the convergence of the numerical results of the permeate fluxes (solute and solvent) to higher-order analytical 
models in a lubrication-dominated flow field. As a model of the mass exchange between inside and outside of a biological cell 
flowing in a capillary, a circular membrane is placed between parallel flat plates, and the effect of lubrication is investigated 
by varying the distance between the membrane and the walls. The pressure discontinuity near the wall is larger than that at 
the stagnation point, which is a highlighted effect of lubrication. In the case of a small gap, the solute transport is dominated 
by convection inside the circular membrane and by diffusion outside. Through the time variation of the concentration in the 
circular membrane, lubrication is shown to enhance mass transport from/to inside and outside the membrane.

1 Introduction

In biological environments and industrial applications, mass 
transport through permeable membranes takes place in vari-
ous ways. Exchange of solute and water through microvascu-
lar wall is largely passive (Michel and Curry 1999), and the 
relationship between the structural elements of the capillary 
wall and the permeability coefficients for solutes of various 
sizes has been determined by systematic studies (Sugihara-
Seki and Fu 2005). As an example, the filtration performance 
of the kidney is significantly affected by the narrowing and 
occlusion of the vascular lumen (Cannon et al. 1974), which 
is normally held in tension by intravascular pressure. On 
the contrary, it has been indicated that an increased perme-
ability of glomerular capillary may lead to capillary occlu-
sion owing to protein deposition (Purkerson et al. 1976), and 
the lubrication at narrow capillaries may play an important 
role in those processes. Using a lubrication-based model, 

Secomb et al. (1998, 2001) demonstrated that the hydrostatic 
pressure generated within the endothelial surface layer alters 
the shape of the red blood cells and the wall-cell distance 
depending on the flow velocity in the capillary [as well as 
the geometry of the vessel wall (Secomb and Hsu 1996, 
1997)]. By solving a coupled problem of hydrostatic and 
osmotic pressures across the endothelial surface layer, Hu 
and Weinbaum (1999) reported a non-uniform distribution 
of mass concentrations and the corresponding non-uniform 
distribution of effective osmotic pressure.

The above processes are commonly characterised by 
transport phenomena under lubrication. In the ideal lubri-
cation state in a negligibly small gap region (between the 
interfaces), the pressure increases locally. However, there 
may be a number of cases in biological environments 
where the ideal condition for the lubrication theory is 
violated (Takeuchi et al. 2021). For example, in relatively 
large gaps, the theory could deviate from the conventional 
Reynolds lubrication theory  (Takeuchi and Gu 2019), 
resulting in an underestimation of solute and solvent per-
meations driven by the pressure difference. One of the 
difficulties associated with the numerical analysis of lubri-
cation is that by introducing � as the ratio of the gap width 
and reference length, the minimum number of grid points 
that are required to capture the pressure increase generated 
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by lubrication is �−1∕2 (Takeuchi et al. 2021), and, the res-
olution, therefore, becomes insufficient on a coarse grid 
system; meanwhile, the fine grid system becomes compu-
tationally demanding. In addition, the lubrication pressure 
decreases owing to permeation, which makes the analysis 
or prediction difficult (Takeuchi et al. 2021).

Another difficulty in the numerical simulation of per-
meation for a two-component fluid (i.e. solute and sol-
vent) is the accuracy of the flow around the membrane. For 
this problem, a number of numerical methods have been 
proposed. The immersed boundary (IB) method proposed 
by Peskin was first applied to the analysis of blood flow 
in a heart (Peskin 1972). The interaction force from the 
object is incorporated into the external force term in the 
equation of motion of the fluid, and an approximate delta 
function is used to distribute the interaction force from 
the Lagrange marker to the grid points of the surrounding 
fluid. Numerical methods in the framework of taking Eule-
rian and Lagrangian approaches for fluid and solid (such 
as the IB method), respectively, have been developed for 
heat and mass transport analysis. Gong et al. (2014) and 
Wang et al. (2020) proposed a numerical method for the 
analysis of oxygen transport with red blood cells by treat-
ing the diffusion flux as an independent variable and using 
an approximate delta function to incorporate the effect of 
the diffusion flux in the membrane into the source term 
of the advection–diffusion equation. On the other hand, 
the ghost-cell method, the immersed interface method and 
the direct forcing immersed boundary method are typical 
methods for imposing interface conditions on discretised 
equations. The ghost-cell method implicitly assigns inter-
face conditions to a virtual cell in the solid phase adjacent 
to the fluid cell (called the ghost point) by an interpolation 
function using the values of the mirror point of the inter-
face and the nearby cells in the fluid phase. The ghost-cell 
method has been applied, for example, to particle mul-
tiphase flows with reactions at the particle surface (Lu 
et al. 2018). The immersed interface method (LeVeque 
and Li 1994; Layton 2006; Jayathilake et al. 2010) repro-
duces a sharp interface by applying a finite difference dis-
cretisation that takes into account jumps at the interface 
without using interpolation functions. The pressure jump 
is calculated by the singular force acting on the interface 
and the concentration jump by interpolation from the fluid 
cell near the membrane (Jayathilake et al. 2010). Miyauchi 
et al. (2015, 2017) proposed a finite element formulation 
for fluid permeation through a deformable membrane in a 
two-component fluid by incorporating the discontinuities 
of pressure and concentration into the discretised equa-
tions, and they showed that the reproduction of the sharp-
ness of the discontinuities in pressure and concentration 

fields at the membrane is important for the accurate pre-
diction of permeate fluxes.

In the present study, to investigate mass transport induced 
by lubrication pressure (hereafter, lubrication-induced mass 
transport) in a two-component fluid separated by a mem-
brane, we develop a discrete-forcing (DF) IB method to 
capture the concentration and pressure distributions sharply 
along the membrane and to analyse the membrane permea-
tion accurately. In the proposed method, the membranes are 
represented by Lagrange markers to maintain a high resolu-
tion in the vicinity of the membranes, and a Cartesian mesh 
fixed in space is used to solve fluid flow along the arbitrary 
geometry of the membrane. The boundary condition on the 
fluid-membrane interface is enforced by directly specifying 
the boundary values into the discretised equations, thereby 
enabling the sharp representation of the object interface as 
well as tight conservations of mass and momentum (and, 
therefore, the sharp distributions of the pressure and mass 
concentration), which distinguishes the method from previ-
ous DF-IB methods.

In the present study, based on the concept of the above 
numerical method with membrane permeations of solute and 
solvent, we analyse the effect of lubrication on the mass 
transport through a membrane in two-dimensional space. 
For this purpose, a new pressure Poisson equation is derived 
by incorporating the concentration jump on the membrane. 
The numerical method is validated through a comparison 
with analytical predictions of permeate fluxes for the case 
of a moving corrugated membrane. To study the mass trans-
port in a lubrication-dominant environment, a system with 
a circular membrane placed near a solid wall is set up for 
different wall-membrane distances, and the time develop-
ment of concentration field is discussed by decomposing 
the fluxes into the components of convection, diffusion, and 
permeation.

2  Governing equations

The fluid is an incompressible Newtonian fluid governed 
by the continuity equation and the Navier–Stokes (N–S) 
equation:

where u is the fluid velocity, �f is the fluid density, t is the 
time, p is the pressure, and �f is the viscous coefficient.

The transport of solute is governed by the following 
unsteady convection-diffusion equation:

(1)∇ ⋅ u = 0 ,

(2)�f

(
�u

�t
+ u ⋅ ∇u

)
= −∇p + �f∇

2
u ,
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where c and D are the solute concentration and diffusion 
coefficient, respectively.

The permeate fluxes of solvent and solute through mem-
brane are modelled as follows  (Katchalsky and Curran 
1961): 

 where Lp is the permeability, � is the repulsion coefficient, 
and �L = Ld∕Lp , with Ld being the phenomenological coef-
ficients relating the diffusion flow to the osmotic pressure 
Π . Denoting the limiting values of � on the membrane as 
�− and �+ in the rear and front sides, respectively, the jump 
and average values of � are defined as [[� ]] = �− − �+ and 
� =

(
�− + �+

)
∕2 , respectively. The unit normal vector n 

on the membrane is defined in the direction from the rear 
to front sides.

In this study, we assume that the two-component fluid 
(i.e. solute and solvent) is a dilute solution, and van’t Hoff’s 
equation Π = RTc (R: the gas constant, T: the temperature) is 
used to convert [[ Π ]] in Eq. (4) into the concentration jump 
[[ c ]] . Throughout the study, no deformation is considered 
for membranes.

3  Numerical method

In this section, discretisations at the boundary cells are 
explained using a DF-IB method. Boundary cells are fluid 
cells that are separated into two regions by the membrane, 
and are represented by the triangular symbol for the con-
figuration in Fig. 1.

For a single-component fluid (i.e. no solute), the DF-IB 
method proposed by Sato et al. (2016) and Takeuchi et al. 
(2018) directly discretises the N-S equation even at the 
boundary cells, while at the same time, their method guar-
antees the consistency between the discretised equations for 
the incompressible velocity and pressure fields. Using their 
“consistent direct discretisation” for the DF-IB approach, 
the no-slip and impermeable conditions on the interface 
were strictly imposed in a discrete sense, while satisfying 
the mass and momentum conservations, which enables 
capturing the sharp distribution of the velocity and pres-
sure at the interface. The DF-IB method was extended to 
enable permeation of the solvent through the membrane by 
Takeuchi et al. (2019) and Tazaki et al. (2020); they showed 
discretisations that consider the permeable condition for the 
solvent at the interface. In the present study, we further deal 

(3)
�c

�t
+ ∇ ⋅ (cu) = D∇2c ,

(4a)Jv = Lp
(
[[ p ]] − �[[ Π ]]

)
n ,

(4b)Js = Lpc
{
(1 − �)[[ p ]] +

(
�L − �

)
[[ Π ]]

}
n ,

with membranes which also allow solute permeation (i.e. 
bi-permeation for a two-component fluid), and the discretisa-
tion of the governing equations considering solvent and sol-
ute permeation is explained in two-dimensional space based 
on the DF-IB method for the configuration shown in Fig. 1.

In the following, the Cartesian coordinate system is 
adopted, and uniform fluid cells are arranged in the domain. 
The variables are defined on the collocated grid points; the 
primary variables (i.e. velocities u and v, pressure p and 
concentration c) are defined at the centres of the fluid cells, 
and the gradients and contra-variant velocity components 
are on the cell faces. For each time step, the concentration 
field is updated, followed by the time-marching procedure 
of the flow field.

3.1  Discretisation of fluid equations with solute 
permeation

Based on the approach in Takeuchi et al. (2018, 2019), the 
discretisation for the N–S equation is briefly explained, with 
a focus on the improvements to consider the concentration 
jump at the boundary cells (i−1, j) and (i, j) in Fig. 1.

The incompressible velocity and pressure fields are cou-
pled by a fractional-step method. The discretisations of the 
convective and viscous terms are the same as those provided 
in Takeuchi et al. (2018). The major differences from the 
impermeable case (Takeuchi et al. 2018) and permeable case 
for the solvent (Takeuchi et al. 2019) appear to incorporate 
the concentration jump at the membrane into discretisation. 
In the following, the explanation of the numerical method 
focuses on the pressure Poisson equation and velocity cor-
rection procedure.

Fig. 1  Schematic of the membrane and the Cartesian grid. The mem-
brane separates the fluid cells (i−1, j) and (i,  j), and these cells are 
referred to as “boundary cells”. The distance between the membrane 
and the centre of a boundary cell is denoted by �∓ Δx



 Microfluidics and Nanofluidics (2021) 25:83

1 3

83 Page 4 of 17

In the numerical study, the governing equations are non-
dimensionalised using the reference velocity U, the reference 
length H, the reference pressure �fU2 , the reference time H/U, 
and the reference concentration C, and the non-dimensional 
variables are denoted with a tilde (̃⋅) . For example, the non-
dimensional forms of the permeate fluxes are as follows: 

where Re is the Reynolds number defined as �fUH∕�f , 
L = �fLp∕H  is the non-dimensional permeability of 
the solvent, �p = RTC∕�fU

2 is the pressure ratio, and 
c̃ =

(
c̃− + c̃+

)
∕2.

At the boundary cells (i − 1, j) and (i, j), the pressure equa-
tions considering the discontinuities are expressed as follows:

• at the boundary cell (i − 1, j)

• at the boundary cell (i, j) 

where Δx̃ is the grid spacing and Δ̃t  is the time increment, 
�x̃ and �ỹ are the second-order central differences, nx is the 
x component of the normal vector, �∓Δx̃ are the distances 
between the membrane and the cell centre (see Fig. 1), Ũ 
and Ṽ  are the velocities in the x and y directions at the cell 
face, respectively, and ũm is the membrane velocity in the x 
direction. The superscripts “ ⋆⋆ ” and (n + 1) represent the 
fractional-step velocity and the time level, respectively. By 
linearly extrapolating the pressure values from both sides of 
the membrane to determine [[ p̃ ]] , Eqs. (6) and (7) (together 
with the discretised equations at non-boundary cells) con-
stitute a closed set of simultaneous equations.

Note that the discretisations of the convective and viscous 
terms may include 1∕�∓ , and the present study employs a 
wider stencil when �∓

→ 0 to cope with the singular behav-
iours. For more details, refer to Takeuchi et al. (2018).

The velocities at the fluid cell centre and cell face 
ũi−1,j, ũi,j, Ũi−

1

2
,j are corrected as follows:

(5a)
Jv

U
= ReL

{
[[ p̃ ]] − ��p[[ c̃ ]]

}
n ,

(5b)
Js

CU
= ReLc̃

{
(1 − �)[[ p̃ ]] + �p(�L − �)[[ c̃ ]]

}
n ,

(6)

−
Δ�t

(𝜔− + 0.5)Δ�x

{(
𝛿�x�p

n+1
)
i−

3

2
,j
+

ReLnx[[�p ]]
n+1

Δ�t

}
+ Δ�t

(
𝛿�y𝛿�y�p

n+1
)
i−1,j

=

(
�um − ReLnx𝜇p[[�c ]]

n+1
)
− �U⋆⋆

i−
3

2
,j

(𝜔− + 0.5)Δ�x
+
(
𝛿�y
�V⋆⋆

)

i−1,j
,

(7)

Δ�t

(𝜔+ + 0.5)Δ�x

{(
𝛿�x�p

n+1
)
i+

1

2
,j
+

ReLnx[[�p ]]
n+1

Δ�t

}
+ Δ�t

(
𝛿�y𝛿�y�p

n+1
)
i,j

=

�U⋆⋆

i+
1

2
,j
−
(
�um − ReLnx𝜇p[[�c ]]

n+1
)

(𝜔+ + 0.5)Δ�x
+
(
𝛿�y
�V⋆⋆

)

i,j
,

• at the boundary cell (i − 1, j)

• at the boundary cell (i, j) 

where the interpolation functions �∓
3,4,5

 are expressed with the 
discontinuities in the following form:

3.2  Discretisation of solute equation 
with permeation

The x and y components of the solute flux (cu − D∇c) are 
denoted as j̃sx and j̃sy , respectively. Using ũm and Eq. (4), j̃sx 
on the membrane is given as follows:

(8a)�un+1
i−1,j

= �u⋆⋆
i−1,j

− Δ�t

[
𝜙−
3

(
𝛿�pn+1

𝛿�x

)]

i−1,j

,

(8b)

�Un+1

i−
1

2
,j
=
[
𝜙−
4

(
�U⋆⋆

)]

i−
1

2
,j
− Δ�t

[
𝜙−
5

(
𝛿�pn+1

𝛿�x

)]

i−
1

2
,j

,

(9a)�un+1
i,j

= �u⋆⋆
i,j

− Δ�t

[
𝜙+
3

(
𝛿�pn+1

𝛿�x

)]

i,j

,

(9b)

�Un+1

i−
1

2
,j
=
[
𝜙+
4

(
�U⋆⋆

)]

i−
1

2
,j
− Δ�t

[
𝜙+
5

(
𝛿�pn+1

𝛿�x

)]

i−
1

2
,j

,

[
𝜙−
3

(
𝛿�pn+1

𝛿x

)]

i−1,j

=
1

𝜔− + 0.5

{
𝜔−

(
𝛿�x�p

n+1
)
i−

3

2
,j
+ 0.5

(
𝛿�pn+1

𝛿x

)−}
,

[
𝜙+
3

(
𝛿�pn+1

𝛿x

)]

i,j

=
1

𝜔+ + 0.5

{
𝜔+

(
𝛿�x�p

n+1
)
i+

1

2
,j
+ 0.5

(
𝛿�pn+1

𝛿x

)+
}

,

[
𝜙−
4

(
�U⋆⋆

)]

i−
1

2
,j
=

1

𝜔− + 0.5

{(
𝜔+ − 0.5

)
�U⋆⋆

i−
3

2
,j
+ um − ReLnx𝜇p[[�c ]]

n+1

}
,

[
𝜙+
4

(
�U⋆⋆

)]

i−
1

2
,j
=

1

𝜔+ + 0.5

{(
𝜔+ − 0.5

)
�U⋆⋆

i+
1

2
,j
+ um − ReLnx𝜇p[[�c ]]

n+1

}
,

[
𝜙−
5

(
𝛿�pn+1

𝛿x

)]

i−
1

2
,j

=
1

𝜔− + 0.5

{(
𝜔+ − 0.5

)(
𝛿�x�p

)
i−

3

2
,j
−

ReLnx

Δ�t
[[�p ]] n+1

}
,

[
𝜙+
5

(
𝛿�pn+1

𝛿x

)]

i−
1

2
,j

=
1

𝜔+ + 0.5

{(
𝜔+ − 0.5

)(
𝛿�x�p

)
i+

1

2
,j
−

ReLnx

Δ�t
[[�p ]] n+1

}
.
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where Pe is the Peclet number. Then, using the Crank–Nicol-
son method for the time update of the diffusion term, the 
discretisation of the unsteady convection–diffusion equation 
(3) is given as follows:

• at the boundary cell (i − 1, j)

• at the boundary cell (i, j) 

Note that to linearise the term c̃[[ c̃ ]] in Eq. (10), the aver-
age concentration on the membrane c̃  is evaluated at the 
time level n (i.e. it is treated as a known value). By linearly 
extrapolating for c̃∓ from the respective sides, Eqs. (11) and 
(12) constitute a closed set of simultaneous equations for 
c, which is solved using the pre-conditioned BiCGSTAB 
method.

(10)
j̃∓
sx
= c̃∓ũ∓ −

1

Pe

(
�x̃c̃

)∓
,

= c̃∓ũm + ReLc̃
{
(1 − �)[[ p̃ ]] + �p(�L − �)[[ c̃ ]]

}
nx ,

(11)
c̃ n+1
i−1,j

+
Δ̃t

2

(
(̃c−)n+1

i,j
ũ n
m
+ ReLc̃

n

nx�p(�L − �)[[ c̃ ]]n+1
)
−
(
j̃sx

)n+1

i−
3

2
,j

(�− + 0.5)Δx̃
+

Δ̃t

2

(
� ỹ j̃sy

)n+1

i−1,j

= c̃ n
i−1,j

−
Δ̃t

2

(
j̃−
sx

)n

−
(
j̃sx

)n

i−
3

2
,j
+ ReLc̃

n

nx(1 − �)[[ p̃ ]]n

(�− + 0.5)Δx̃
−

Δ̃t

2

(
�ỹ j̃sy

)n

i−1,j
,

(12)
c̃ n+1
i,j

+
Δ̃t

2

(
j̃sx

)n+1

i+
1

2
,j
−
(
(̃c+)n+1

i,j
ũ n
m
+ ReLc̃

n

nx�p(�L − �)[[ c̃ ]]n+1
)

(�+ + 0.5)Δx̃
+

Δ̃t

2

(
�ỹ j̃sy

)n+1

i,j

= c̃ n
i,j
−

Δ̃t

2

(
j̃sx

)n

i+
1

2
,j
−
(
j̃+
sx

)n

− ReLc̃
n

nx(1 − �)[[ p̃ ]]n

(�+ + 0.5)Δx̃
−

Δ̃t

2

(
�ỹ j̃sy

)n

i,j
.

4  Validation

4.1  Problem statement

We consider a problem with a corrugated permeable mem-
brane translating in a region between no-slip parallel plates, 
as illustrated in Fig. 2. The geometry and motion of the cor-
rugation are given by h(x, t) = h0 + h0� cos[k(x − U0t)] , 
where h0 = H0∕2 is the half channel height, k = 2�∕l is the 
wavenumber, � is a dimensionless parameter between 0 and 

1, and U0 is a constant velocity. Periodic boundary condi-
tions are imposed on the left and right boundaries. No sol-

vent permeation is considered on the top and bottom bound-
aries, whereas the following boundary concentrations are 
prescribed on the top and bottom boundaries, respectively: 
ctop(x) = c0[1 + sin(kx)] and cbot(x) = c0[1 − sin(kx)] . In this 
problem, 2c0 is taken as the reference concentration (C).

The lower and upper regions of the membrane are denoted 
as Ω1 and Ω2 , respectively. Hereafter, the variables in those 

Fig. 2  Schematic of a cor-
rugated permeable membrane 
travelling in a parallel channel 
at a constant speed U0 in the +x 
direction

hc
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Non-slip B.C.

h
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=

H
0
/
2

H
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h
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y, ey
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h
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regions are distinguished by the subscripts 1 and 2, and jump 
values are defined on the membrane as [[� ]] = �1 − �2.

The narrow gaps between the corrugation and the flat 
walls induce the lubrication. Therefore, in this problem, 
the permeate fluxes are driven by the hydrostatic pressure 
difference developed by lubrication, and at the same time, 
osmotic pressure difference owing to the difference in con-
centration either promotes or impede the permeations by 
Eq. (4).

4.2  Analytical models of lubrication‑induced 
permeate fluxes

By introducing � as the ratio of the channel width 
to the channel length h0∕l , we assume 𝜖 ≪ 1 and 
𝜖Re ≪ 1

(
Re = 𝜌fU0h0∕𝜇f

)
 . The hydrostatic pressure is 

described by the Reynolds lubrication equation for a narrow 
gap between the corrugation and the flat plate. We further 
assume an infinitesimal limit for Lp to isolate the effect of per-
meability to develop an asymptotic analytical model. Then, 
the pressure in Ω1 is expressed as follows (Takeuchi and Gu 
2019; Tazaki et al. 2020):

where the superscript (0) represents the 0th-order pressure 
(i.e. the pressure satisfying the Reynolds lubrication equa-
tion). Owing to the symmetry of the computational domain, 
the pressure in Ω2 is given as p(0)

2
(x, t) = p

(0)

1
(x + �∕k, t).

When 𝜖 ≪ 1 and 𝜖Pe ≪ 1
(
Pe = U0h0∕D

)
 , the mass trans-

port of the solute is dominated by diffusion in the y direc-
tion. Then, the wall-normal concentration distribution is 
assumed to be uniform, and the wall-tangential distribution is 
approximated to be equivalent to the boundary concentrations: 
c1(x,

∀y) ≃ cbot(x) and c2(x, ∀y) ≃ ctop(x).

(13)

p
(0)

1
(x, t) = −

6

��2

U0�f

l

�

2 + �2{
2 + � cos[k(x − U0t)]

}
sin[k(x − U0t)]

{
(1 + � cos[k(x − U0t)]

}2
,

The pressure jump, concentration jump and the average 
concentration on the membrane are obtained as follows: 

 Then, the y components of the asymptotic permeate fluxes 
are approximated as follows: 

 Here, the permeability is normalised as L (= Lp�f∕H0).
To improve the prediction of lubrication-induced flow 

over a larger � range (i.e. 𝜖 ≲ 1 ), a higher-order lubrication 
model (Takeuchi and Gu 2019) is applied to describe the 
wall-normal distribution of pressure. Takeuchi et al. (2021) 
showed the 2nd-order pressure for the corrugated membrane 
as:

where the superscript “ ∗ ” represents the value observed 
on the frame fixed at the membrane; x∗ = x − U0t . Using 
p
(2)∗

2
(x∗) = p

(2)∗

1
(x∗ + �∕k) , the pressure jump (with the 

higher-order correction) is given as [[ p∗ ]] = [[ p(0)∗ + p(2)∗ ]] , 
and the corresponding fluxes (denoted as J(0+2)∗

v
 and J(0+2)∗

s
 ) 

are calculated from Eq. (4). The explicit forms of the fluxes 
are not presented here because of the long mathematical 
expressions.

(14a)

[[ p(0) ]] = p
(0)

1
(x, t) − p

(0)

2
(x, t)

= −
24

��2

U0�f

l

�

2 + �2

sin [k(x − U0t)]

(1 − �2 cos2 [k(x − U0t)]
2
,

(14b)
[[ c ]] = c1(x) − c2(x) = cbot(x) − ctop(x)

= −2c0 sin (kx) = −C sin (kx),

(14c)c =
c1(x) + c2(x)

2
= c0 =

C

2
.

(15a)

Jv(x, t) ⋅ ey = −
24LU0

��

�

2 + �2

sin [k(x − U0t)]
(
1 − �2 cos2 [k(x − U0t)]

)2

+ ReLU0��p sin (kx) ,

(15b)Js(x, t) ⋅ ey = −
C

2

{
(1 − �)

24LU0

��

�

2 + �2

sin [k(x − U0t)]
(
1 − �2 cos2 [k(x − U0t)]

)2 + ReLU0(�L − �)�p sin (kx)

}
.

(16)

p
(2)∗

1
= −4�

U0�f

H0

y

h0

�2�

2 + �2

×

(
4�2 +

(
�2 + 2

)
� cos(kx∗) − 1

)
(2� cos(kx∗) + 2 − 3y∕h0)

(1 + � cos(kx∗))4
sin(kx∗) .
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4.3  Simulation conditions

The simulation parameters are set as follows: the channel 
length l = 5H0 , the grid resolution is H0∕Δx = 40 , the time 
increment Δt∕(H0∕U0) = 5 × 10−5 , � = 0.5 , and �L = �p = 1 . 
The effect of the amplitude of corrugation is investigated 
at � = 0.1 unless specified otherwise. At the above spatial 
resolution, the y variation of the corrugation 2h0� is cov-
ered by 4 grid points, which is sufficient from our previous 
study (Takeuchi et al. 2018). The Reynolds number and the 
Peclet number are fixed at Re = 0.5 and Pe = 0.5 , respec-
tively. The permeability L is varied in the following range: 
L = 10−5, 10−4, 10−3, 10−2, 10−1, 100.

By substituting the above values of �L , �p and � into Eq. (5), 
the permeate fluxes are simplified as follows: 

(17a)
Jv

U0

= ReL
2[[ p̃ ]] − [[ c̃ ]]

2
n,

Considering that the base functions of [[ p ]] and [[ c ]] 
are sin[k(x − U0t)] and sin(kx) (see Eq. 14), there are the 
moments when [[ p ]] and [[ c ]] weaken and strengthen each 
other; at t∕(H0∕U0) = (2m − 1)�∕kU0 (m = 1, 2,⋯) , [[ p ]] 
and [[ c ]] weaken and strengthen each other for Jv and Js , 
respectively, while at t∕(H0∕U0) = 2m�∕kU0 , [[ p ]] and [[ c ]] 
strengthen and weaken each other for Jv and Js , respectively. 
In the following, m = 3 is taken (i.e. t∕(H0∕U0) = 12.5 and 
15.0). At t∕(H0∕U0) = 12.5 , the solvent and solute permea-
tions reach the respective minimum and maximum strengths, 
while the permeations of the solvent and solute are strongest 
and weakest, respectively, at t∕(H0∕U0) = 15.0.

(17b)
Js

CU0

= ReL c̃
[[ p̃ ]] + [[ c̃ ]]

2
n .
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Fig. 3  Longitudinal distributions of pressure p at � = 0.1 for the four L values at the time of the maximum solvent flux t∕(H0∕U0) = 12.5 . The 
pressure is shown normalised by �fU2
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Fig. 4  Longitudinal distributions of concentration c at � = 0.1 for the four L values at the time of the minimum solute permeate flux 
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4.4  Simulation results

Figures 3, 4, 5 and 6 show the pressure and concentration 
fields at time t∕(H0∕U0) = 12.5 and 15.0 for the following 
permeabilities: L = 10−5, 10−2, 10−1, 100 . The results are 
visualised on the coordinate system fixed on the corrugated 
membrane (i.e. x∗ and y).

In Figs. 3 and 5, the pressure distributions at L = 10−5 
and 10−2 tend to be insensitive to y in both the upper 
and lower regions (as predicted by lubrication theory). 
The y-insensitive distribution is more pronounced 
at t∕(H0∕U0) = 12.5 (Fig.  3a, b) than the cases at 
t∕(H0∕U0) = 15.0 (Fig. 5) because for this weak Jv condi-
tion, the apparent permeability L is supposed to be low. 
However, for L = 10−1 and 100 at both times (Figs. 3c, d, 5c, 
d), stronger y-dependent trend is observed in the pressure 
field; in particular, high- and low-pressure regions near the 
flat plates are highlighted at t∕(H0∕U0) = 15.0 . The result 
indicates the presence of a regime that is not described by 

Reynolds lubrication equation, which is referred to as the 
non-Reynolds lubrication regime (Takeuchi et al. 2021; 
Takeuchi and Gu 2019), hereafter.

The concentration field tends to show the y-insensitive 
distributions in all cases (Figs.  4,   6), which strongly 
reflects the effect of the small Peclet number and small 
aspect ratio of the channel. As a result, max

x∗
[[ c ]]∕C is 

nearly equal to 1, which will be mentioned again.
To visualise the permeate fluxes in the L range of the 

y-insensitive pressure distribution, Figs. 7 and 8 show the 
profiles of the y components of the permeate fluxes of the 
solvent and solute in the range of L between 10−5 and 10−2 . 
The dashed lines represent J(0)

v
 (Fig. 7) and J(0)

s
 (Fig. 8), 

and the solid lines represent J(0+2)
v

 (Fig.  7) and J(0+2)
s

 
(Fig. 8). The vertical axis is the permeate flux divided by 
L . Note that Jv∕L and Js∕CL are essentially the same as 
2[[ p ]] − [[ c ]] and [[ p ]] + [[ c ]] , respectively, which facili-
tate the study of the convergence of the discontinuities 
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Fig. 5  Longitudinal distributions of pressure p at � = 0.1 for the four L values at the time of the minimum solvent permeate flux 
t∕(H0∕U0) = 15.0 . The pressure is shown normalised by �fU2
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of pressure and concentration in the limit of L → 0 . The 
figures show that the numerical results exhibit converg-
ing trends towards the asymptotic solutions at L → 0 , and 
J
(0+2)
v

 and J(0+2)
s

 describe the permeation physics better 
than J(0)

v
 and J(0)

s
 . The results indicate that the effect of the 

non-Reynolds lubrication regime needs to be corrected.
Figure 9 summarises the convergence of the numerical 

permeate fluxes towards J(0+2)
v

⋅ ey and J(0+2)
s

⋅ ey in the L2 
norm for � = 0.1 and 0.5. The convergence at about the 
first-order rate of L is observed for both t∕(H0∕U0) = 12.5 
and 15.0. In addition, the error levels are improved with 
decreasing � . The results indicate the validity of the 

developed simulation method for lubrication-induced 
permeation.

At the end of this section, a characteristic situation for 
the balance between [[ p ]] and [[ c ]] is investigated. Fig-
ures 10 and 11 show the numerical results of the y com-
ponents of the permeate fluxes of the solute and solvent at 
L = 10−1 and 100 . From the graphs, the distribution of the 
solvent flux (Fig. 10) changes little with time, whereas the 
phase difference in the distribution of the solute perme-
ate flux is significant (Fig. 11). This is because the maxi-
mum concentration jump on the membrane is approxi-
mately unity in all L cases for the small Peclet number 
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employed, while the maximum pressure jump varies as 
[[ p̃ ]] = 5.0, 3.0, 0.8, 0.6 for L = 10−5, 10−2, 10−1, 100 , respec-
tively. Therefore, at L = 10−1 and 100 , the concentration 
jump on the membrane is more influential than the pres-
sure jump, and the diffusion of the solute (i.e. osmotic 
pressure difference) has the predominant effect, which 
renders an interesting implication of the lubrication-
induced permeation of both the solute and solvent at large 
permeabilities.

In summary, the pressure-dominant permeation in a 
small L range (i.e. L = 10−5 and 10−2 ; ideally L → 0 ) shows 
good agreement of the numerical permeate fluxes with the 

higher-order models J(0+2)
v

 and J(0+2)
s

 , whereas over a finite 
L range, a different type of higher-order model may be 
necessary to describe the nonlinearity owing to the above 
comparable effects of [[ p ]] and [[ c ]].

5  Lubrication‑induced mass transport 
through circular membrane

As a simplified model of mass transport inside and out-
side a biological cell in a capillary, we set up a problem 
involving a circular permeable membrane ( Dp in diam-
eter) between parallel plates ( H0 in distance), as shown 
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in Fig. 12. The top and bottom walls are moved in the −x 
direction at a velocity U0 , and the non-deformable circular 
membrane is fixed at the centre level of the channel. No-
slip and impermeable conditions are imposed on the top 
and bottom walls, and periodic boundary conditions are 
imposed on the left and right sides. The initial concen-
trations C0 and 0 are uniformly given inside and outside 
the circular membrane ( Ω1 and Ω2 ), respectively. Then, to 
analyse the effect of lubrication on permeation, simula-
tions are carried out by varying the distance H0 between 
the parallel plates.

In the simulations, the domain length and the grid spac-
ing are set at l = 3Dp and Δx = Dp∕40 , respectively, and 
the time increment is fixed at Δt∕(Dp∕U0) = 1 × 10−5 . The 
dimensionless numbers for the permeate flux models are as 

follows: Re = �fU0Dp∕�f = 1 , Pe = U0Dp∕D = 1 , � = 0.5 
and �L = �p = 1 . The permeability is set to L = 10−2 unless 
specified otherwise.

The channel width is varied in the following range: 
H0∕Dp = 1.5, 2.0, 3.0 , which correspond to the narrowest 
width (i.e. the distance between the lowest/highest point 
of the circular membrane and the bottom/top wall) having 
a value of (H0 − Dp)∕2 = 0.25Dp, 0.50Dp, 1.0Dp , respec-
tively. Although the case of the smallest gap is already out 
of the range of the ideal lubrication condition 𝜖 ≪ 1 , our 
previous studies (Takeuchi and Gu 2019; Takeuchi et al. 
2021) showed that the lubrication phenomenon can still 
be described by including a higher-order correction for 
a non-negligible gap. Note that the effective longitudinal 
length scales of the lubrication region can be estimated to 
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Fig. 11  Numerical result of the solute permeate flux (Js ⋅ ey) at � = 0.1 for L = 10−1, 100 at the same instants as in Fig. 8
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be 
√
�Dp (Takeuchi et al. 2021), and the effective scales for 

the above three cases are 0.5Dp , 0.71Dp , and 1.0Dp , respec-
tively, which are sufficiently smaller than the domain length 
l, indicating that the permeation induced by lubrication pres-
sure is influenced little by the mirror images of the circular 
membranes due to the periodic boundary condition.

The pressure field in the entire domain at the time 
t∕(Dp∕U0) = 3.0 (= l∕Dp, see Fig. 12) is shown in Fig. 13. 
The figure shows that lubrication in the wall-membrane gap 
causes an increase in the pressure in the right-half side of Ω2 
with decreasing wall-membrane distance.

The concentration fields in Ω1 and Ω2 are visualised in 
Fig. 14. Recalling that the initial concentration is zero in 
Ω2 , more solute goes out of the membrane as the wall-
membrane gap becomes narrower. The x variations of the 

concentration field in Ω1 are evident for all cases, and the 
largest gradient for the case of H0∕Dp = 1.5 indicates that 
the unsteady transport is predominant. However, the pres-
sure shows different trends. The pressures in Ω1 remain 
nearly uniform for all the cases, whereas the pressure dis-
continuity varies along the membrane and takes the maxi-
mum and minimum values in the near-wall regions. These 
positions of the largest |[[ p ]]| are predicted by the higher-
order lubrication model (Takeuchi and Gu 2019), and it 
is worth noting that the stagnant point (i.e. the right-hand 
side intersection of the centreline and membrane) does not 
show the largest pressure for lubrication flows.

Therefore, the strong variations of c and p in Ω1 and 
Ω2 , respectively, indicate characteristic distributions of the 
lubrication-induced permeate fluxes along the membrane. 
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In the following, the effect of lubrication on permeate 
fluxes of the solvent and solute is discussed.

Figure 15 shows the velocity field and solvent fluxes 
through the membrane at time t∕(Dp∕U0) = 3.0 . Larger 
permeate fluxes are observed for smaller membrane-wall 

distance cases, indicating the active exchange of solvent 
between Ω1 and Ω2 . The velocity in Ω1 is especially large 
for H0∕Dp = 1.5 (Fig. 15a). Considering that the concentra-
tion field could be strongly influenced by the local velocity, 
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it may be interesting to decompose the mass flux into the 
convective and diffusive fluxes of the solute.

Figures 16 and 17 compare the fluxes of convection, 
diffusion, and permeation of the solute inside and outside 
the membrane, respectively, at the same instant as Fig. 15. 
In the case of the small gap ( H0∕Dp = 1.5 ), the solute 
transport in Ω1 is dominated by convection (Fig. 16a), 
which indicates that the solvent permeation by lubrication 
enhances the transport of the solute in Ω1 . Interestingly, 
diffusion is predominant in Ω2 (Fig. 17a), particularly in 
the narrowest gap regions between the membrane and flat 
walls. This is because the value of c varies largely in the x 
direction in this region, as shown in Fig. 14b.

For the other distance cases (i.e. H0∕Dp = 2.0 and 3.0), 
the effects of convective and diffusive fluxes are compara-
ble, indicating that the lubrication is less active.

Figure 17 shows that the outgoing flux (on the left-hand 
side of the membrane) is greater than the incoming flux for 
all of the H0∕Dp cases. To compare the effect of the wall-
membrane distance on the net permeate flux, the time evolu-
tion of the amount of solute inside the circular membrane is 
given as follows:

and is plotted in Fig.  18. The graph shows that for 
H0∕Dp = 1.5 , the solute permeation from the inside to the 

(18)
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outside is faster than the other two cases. As observed previ-
ously, the solute permeation is enhanced by the lubrication; 
the increase in lubrication pressure at the near-wall region 
of the membrane (Fig. 13a) causes a local increase in the 
solvent permeate flux into the membrane, resulting in the 
enhancement of convection and permeation of solute.

Table 1 summarises the values of the slope (i.e. time 
derivative) of Eq. (18) evaluated at t = 0 for the six L 

cases at H0∕Dp = 1.5 . The initial decrease rates of the 
mass exhibit approximately proportional to −L . Although 
Eq. (15) is for different geometry, the solute permeation 
being proportional to L may support the general trend of 
lubrication-induced permeation.

6  Conclusion

To study the effect of lubrication on the permeations of 
solute and solvent through membrane, DF-IB method was 
proposed with a permeable membrane, and the contribu-
tion of a higher-order mode of flux to permeation was 
highlighted through mathematical modelling.

In the numerical study, the permeate flux models for 
the solute and solvent were incorporated into the DF-IB 
method by considering direct discretisation and the con-
sistent coupling (between the incompressible velocity and 
pressure fields) in the immediate vicinity of the membrane, 
and discretised equations of the pressure Poisson equa-
tion and convective-diffusion equation for the solute were 
expressed with the discontinuities at the membrane.

The proposed method was validated by showing the 
convergence of the numerical result to the higher-order 
analytical models of permeate fluxes (of solute and sol-
vent) in a lubrication-dominated flow field for a problem 
involving the movement of corrugated membrane between 
parallel flat plates. The lubrication was found to promote 
the permeation of the solvent and solute. However, this 
effect depends on the permeability of the membrane, 
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Table 1  Slope of Eq. (18) at 
t = 0 for H0∕Dp = 1.5

L 1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1 1 × 10−0

Slope −1.47 × 10−5 −1.51 × 10−4 −1.51 × 10−3 −1.55 × 10−2 −0.150 −1.22
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and for highly permeable membranes, the nonlinearity 
in the solute permeation through the membrane becomes 
non-negligible.

As a model of mass release from a biological cell flow-
ing in capillary, a flow problem with a circular membrane 
placed between parallel plates was simulated, and the effect 
of lubrication was investigated by varying the distance 
between the membrane and plates. The pressure disconti-
nuity on the membrane in a near-wall region is larger than at 
the stagnant point, which highlights the effect of lubrication 
on the permeate fluxes of solute and solvent. In particular, 
for a small gap case, the solute transport was dominated 
by convection inside the circular membrane and by diffu-
sion outside. The temporal evolution of the concentration in 
the circular membrane indicated the enhancement of solute 
release by lubrication.

In the present study, the circular membrane was assumed to 
be non-deformable, and the effect of lubrication on the mem-
brane permeation was found to be predominant in a narrow 
channel. For general deformable membranes, considering 
that lubrication forces promote the deformation of the mem-
brane (Secomb et al. 2001), mass transport phenomena may 
be influenced by time-dependent variations of the membrane 
shape. Therefore, studies to investigate the effect of deforma-
tion under lubrication on mass transport through membranes 
are the subject of future work by the present authors.
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