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Abstract
We present a scheme for accelerating hybrid continuum-atomistic models in multiscale fluidic systems by using Gaussian 
process regression as a surrogate model for computationally expensive molecular dynamics simulations. Using Gaussian 
process regression, we are able to accurately predict atomic-scale information purely by consideration of the macroscopic 
continuum-model inputs and outputs and judge on the fly whether the uncertainty of our prediction is at an acceptable level, 
else a new molecular simulation is performed to continually augment the database, which is never required to be complete. 
This provides a substantial improvement over the current generation of hybrid methods, which often require many similar 
atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-
confined unsteady flow through a high-aspect-ratio converging–diverging channel, and make comparisons between the 
new scheme and full molecular dynamics simulations for a range of uncertainty thresholds and initial databases. For low 
thresholds, our hybrid solution is highly accurate—around that of thermal noise. As the uncertainty threshold is raised, the 
accuracy of our scheme decreases and the computational speed-up increases (relative to a full molecular simulation), enabling 
the compromise between accuracy and efficiency to be tuned. The speed-up of our hybrid solution ranges from an order of 
magnitude, with no initial database, to cases where an extensive initial database ensures no new MD simulations are required.

Keywords Multiscale modelling · Machine learning · Hybrid methods · Micro/nanofluidics · Molecular dynamics

1 Introduction

Almost all fluid engineering systems are multiscale in their 
nature. At the smallest scale, the fluid and surrounding envi-
ronment are comprised of atoms, with interactions occurring 
across nanometers ( 10−9 m) and over femtoseconds ( 10−15 
s), while the fluid flow is characterized by the scale of the 
system geometry, which is often many orders of magnitude 
larger. In most instances, the separation of scales is so large 
that the atomistic behaviour can be accurately incorporated 
into a continuum fluid description through empirical bound-
ary conditions (e.g. the no-slip condition at walls) and con-
stitutive relations (e.g. viscosity in the shear stress–strain 

rate relation). However, as some characteristic dimension of 
the system approaches the micro/nanoscale, these approxi-
mations break down, and the fluid flow becomes highly 
dependent on atomistic phenomena (Schoch et al. 2008; 
Hadjiconstantinou 1999; Brenner et al. 1994; Karniadakis 
et al. 2005).

A major challenge in modern computational fluid dynam-
ics is how to capture these microscopic effects without 
incurring a prohibitive simulation cost. There are numer-
ous applications where atomistic information is required to 
capture non-continuum/non-equilibrium phenomena, but the 
macroscopic flow develops over much larger length and time 
scales; e.g. pumping technology that exploits thermal creep 
in a rarefied gas (Patronis and Lockerby 2014), or high-
throughput nanotube membranes for salt water desalination 
(Ritos et al. 2015). The multiscale nature of these systems 
leads to a dual requirement for capturing the local atomic-
scale interactions and macro-scale fluid response. The 
complexity of the flow necessitates modelling with atomic 
resolution, but the state-of-the-art techniques (molecular 
dynamics (MD) for dense fluid flows (Allen and Tildesley 
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1987), and the direct simulation Monte-Carlo method 
(DSMC) for rarefied gas flows (Bird 1994) are extremely 
computationally expensive. This limits their application to 
small system sizes, typically (100 nm3 ), and short simula-
tion times, typically (100 ns) , rendering many important 
engineering problems intractable, and limiting possibilities 
for comparison with experiments.

Hybrid methods provide a promising framework for simu-
lating such systems by combining continuum (macro) and 
atomistic (micro) solvers and exploiting scale separation 
where it exists to obtain a highly accurate, yet computation-
ally tractable, solution. Hybrid approaches to fluid dynamics 
problems are a well-researched area (e.g. see recent reviews 
by Wijesinghe and Hadjiconstantinou (2004), Hadjiconstan-
tinou (2005), Kalweit and Drikakis (2008), and Mohamed 
and Mohamad (2009). Broadly speaking, hybrid methods 
operate by identifying the regions which require a micro-
resolution, then coupling the micro- and macro-domains 
together via the exchange of state or flux variables to ensure 
consistency; the information passed from one model is used 
as a boundary condition for the other. The majority of hybrid 
methods provide a concurrent approach to multiscale mod-
elling (Delgado-Buscalioni et al. 2008; Markesteijn et al. 
2017), i.e. both the micro- and macro-simulations are per-
formed at the same time. A common criticism of concurrent 
hybrid methods is that they require the repetitive simulation 
of similar micro-configurations—i.e. information from the 
micro-domain is used once then wastefully discarded, before 
regenerating similar information in a future simulation.

An alternative, sequential, hybrid approach is to use look-
up tables, whereby micro-simulations are performed ahead 
of time with the information stored in a table (Walter et al. 
2013; Holland et al. 2015; Borg and Reese 2017). This table 
is then used as a surrogate model for all micro-simulations, 
with the macro-model interpolating between data entries 
whenever it requires micro-input. The drawback of such a 
scheme is that either a) the micro-simulations do not cover 
a sufficiently wide range of parameter values (or are too 
sparsely spread), leading to poor interpolation/extrapola-
tion accuracy; or b) the micro-simulations cover too wide 
a range of parameter values (or are overly numerous) and 
information from many of the simulations are not used. In 
this paper, we propose a hybrid method which uses a sur-
rogate model to replace costly micro-simulations, but can 
judge on-the-fly when the surrogate’s prediction is likely to 
be poor. At this point, a new micro-simulation can be auto-
matically performed and added to a growing database which 
never needs to be complete. In this way, we combine the best 
aspects of concurrent and sequential approaches. The aim is 
to optimize the information efficiency of the most computa-
tionally expensive part of a hybrid method by reducing the 
number of superfluous micro-simulations—to do this, we 
use machine learning.

Machine learning (ML) is a popular umbrella term for a 
wide variety of inferential data-driven methods. In recent 
years, machine learning techniques have been employed to 
cheaply incorporate nanoscale information into more coarse-
grained models, e.g. building quantum-mechanics-informed 
molecular force fields sequentially (Behler and Parrinello 
2007; Bartók et al. 2010; Szlachta et al. 2014; Botu et al. 
2017) and on the fly (Li et al. 2015; Botu and Ramprasad 
2015; Caccin et al. 2015); predicting atomisation energies 
of organic molecules from density-functional theory (Rupp 
et al. 2012); and informing continuum stress calculations 
with molecular dynamics (Ulz and Moran 2012). Machine 
learning has also been used to aid hybrid methods in fluid 
dynamics: to quantify the uncertainty propagating from the 
micro- to the macro-model as a function of time-averaging 
window and the amount of sampled data (Salloum et al. 
2012); constructing a constitutive relation for a continuum 
model that is applicable to nanoscale physics (Salloum and 
Templeton 2014); and building a surrogate model to replace 
MD simulations using neural networks (NNs) (Asproulis and 
Drikakis 2013) and Gaussian processes (GPs) (Salloum and 
Templeton 2014). However, all such approaches, bar that in 
Asproulis and Drikakis (2013) are limited by the training 
data used to fit the ML model; i.e. they are sequential hybrid 
methods, and are not transferable to situations not envisaged 
at the time of construction.

In Asproulis and Drikakis (2013), an NN is used for 
the surrogate model; here, we choose to use GP regression 
which has the advantages of a) directly capturing the model 
uncertainty by outputting probability distributions for the 
predicted values—this provides a simple measure for pre-
diction accuracy; and b) being simple to design, with mod-
els described by only a few parameters which can be easily 
optimised. This produces a natural trade-off between fitting 
the data and smoothing, and this well-tuned smoothing has 
the added benefit of permitting micro-simulation times to 
be kept short.

The goal of this paper is to demonstrate the first-ever 
on-the-fly implementation of GP regression into a hybrid 
fluidic model, providing an accessible introduction to the 
confluence of two fields: machine learning and multiscale 
fluid dynamics. The paper is laid out as follows: first, we 
introduce the benchmark fluidic system and the relevant 
multiscale method, we then explain how the GP regression 
is performed and implemented, and finally we present results 
and discussion.

2  Methodology

The system we will use as a benchmark for our new scheme 
is dense fluid flow through a converging–diverging channel, 
with the flow driven by a time-variant periodic external force 
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Fext(t) . The geometry of the system is presented in Fig. 1a. 
We choose this as our benchmark system for two reasons: 
1) it is multiscale both spatially and temporally; and 2) the 
results for the full atomistic simulation, recently published 
by Borg et al. (2015), provide a useful basis for compari-
son. The hybrid method we use to model this system is the 
unsteady Internal-flow Multiscale Method (IMM), devel-
oped by Borg et al. (2015), and described in detail therein. 
For completeness, we provide a short summary below.

2.1  Hybrid method

Our benchmark system has a high aspect ratio, with non-
continuum effects (e.g. velocity slip and density layering) 
persisting over the entire cross section; as such, spatial scale 
separation can only be exploited in the streamwise direc-
tion. Micro-subdomain simulations cover the entire channel 
height and are placed at regular intervals in the streamwise 
s-direction. The channel is periodic in the s-direction, so the 
first micro-subdomain is simultaneously located at the inlet 
and the outlet. The number of micro-subdomains N is set 
large enough to resolve the streamwise geometrical varia-
tion; here we, like Borg et al., use N = 5 . The channel height 
h(s) varies sinusoidally with streamwise position from 3.4 
nm at the inlet/outlet to 2.04 nm at the centre. Each micro-
simulation is considered to be in quasi-steady state because 
the characteristic time for the evolution of the macro-model 
(e.g. the period of the external force) is much larger than the 
characteristic time for the development of the micro-model 
(e.g. the start-up time from rest).

The macro-model consists of the unsteady one-dimen-
sional equations for mass and momentum conservation. We 
use MD for the micro-model, with atoms interacting through 
pairwise potentials and moving according to Newton’s laws 

of motion (see Appendix A for details). Coupling is per-
formed by ensuring that the mass and momentum in each 
micro-subdomain are consistent with the conservation laws 
of the macro-model. For mass:

where �(s, t) is the density, A is the cross-sectional area, and 
q(s,t) is the time-averaged mass flow rate. Micro-subdomains 
are also perdiodic in the s-direction and cannot support a 
pressure gradient; therefore, for the momentum flux to be 
hydrodynamically equivalent to that in the macro-model, 
the total force F(s,t) applied to each atom is

where m is the mass of a single atom.

2.2  Gaussian process regression

In this paper, we replace the majority of micro-simulations 
with a cheaper data-driven surrogate model to negate much 
of the computational cost. The challenge here is to produce a 
relationship between the macroscopic inputs (channel height 
h, density � , and force F) and the microscopic output (pre-
dominantly mass flow rate q), despite no prior knowledge of 
the function form (other than it is smooth), and to determine, 
on the fly, when this relationship is likely to be inaccurate. 
For this, we use GP regression. Here, we provide only a 
brief overview of the approach; see Rasmussen and Wil-
liams (2006) for further details. In a GP, the predicted out-
put at every point � in some continuous multi-dimensional 
input space is modelled by a normally distributed random 

(1)
��

�t
+
(

1

A

)�q

�s
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(2)F = Fext −
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m

�

)
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,

Fig. 1  Schematics of a the 
multiscaled converging–diverg-
ing nanochannel, b the micro-
subdomain decomposition, and 
c a 1D representation of the 
Gaussian-process surrogate 
model, where the points are 
observed measurements from 
the micro-model, the blue line 
is the surrogate prediction (the 
mean of the posterior distribu-
tion), and the grey envelope is 
a confidence threshold for the 
prediction (based on the vari-
ance of the posterior distribu-
tion). All dimensions are in nm

(a)

(b) (c)
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variable1, i.e. across all of input space, our unknown rela-
tionship q = f (�) is described entirely by a probability dis-
tribution with a mean function � and a covariance function 
C. Here, our input space is 3-dimensional, so the ith input 
�i = (hi, �i,Fi).

Our surrogate model learns through gathering data via 
micro-simulations, but we must start from some prior belief 
of what our function looks like, i.e. an initial estimate of 
the probability distribution for mass flow rate, before data 
is considered. The posterior belief in the function, after the 
data has been taken into account, is calculated by Bayesian 
inference. The mean of the posterior distribution is the pre-
diction of the surrogate model—it is the expected value of 
mass flow rate given the observed data and our prior belief—
and the variance of the posterior distribution is a measure of 
the uncertainty of the prediction. The prediction will closely 
resemble the measured mass flow rates � near the input data 
points X with a high degree of confidence—i.e. low poste-
rior variance. However, away from the observed data the 
prediction will approximate the prior mean function with 
low confidence—i.e. high posterior variance (see Fig. 1c for 
an illustration). Predictions, thus, become more accurate as 
the database grows and covers more of input space. As each 
data point ‘speaks’, the GP can be considered to have a finite, 
but unbounded, number of parameters, which grow with the 
database.

For mathematical simplicity, we choose the prior mean 
function to be

A covariance function models the correlation between 
predictions f (xi) and f (xj) at inputs �i and �j , respectively. 
In this paper, we use the squared exponential kernel K for 
the prior covariance function because it is stationary (it is 
only dependent on the relative position of inputs, not their 
absolute values) and is simple (it is only comprised of two 
hyperparameters):

where �2
f
 and � are the two hyperparameters, representing 

the signal variance and the length scale of the unknown 
function, respectively (see Fig. 1c). The signal variance is a 
scaling factor defining the variance of the predictions away 
from known data; the length scale describes the function 
smoothness and the spearation distance between inputs 
before their respective predictions become uncorrelated. The 
term d2

ij
 is the squared Euclidean distance between the points 

(3)�(�) = 0.

(4)K(�i, �j) = �2
f
exp

(

−
d2
ij

2�2

)

,

�i and �j in input space, normalized by the mean separation 
for each input variable—this allows a single length scale to 
be used for simplicity (see Appendix B for details).

We assume that the observed mass flow rates differ from 
the function values by some additive noise (because the 
micro-simulation measurements are not perfectly accurate), 
i.e. q = f (�) + � where the noise � is normally distributed 
with a mean of zero and a variance of �2

n
 2. This noise vari-

ance is an additional hyperparameter. The prior covariance 
between the mass flow rate observations is then

where I is the identity matrix. For a set of test inputs X∗ , 
Bayesian inference leads to a posterior distribution for mass 
flow rate predictions �∗ , with a mean

and a covariance

The prediction variances �2
f∗
 are the diagonal of the posterior 

covariance matrix cov(�∗) . In our scheme, whenever the 
standard deviation of the mass flow rate prediction �f∗ 
exceeds a pre-determined uncertainty threshold �t , the pre-
diction is deemed insufficiently accurate and a new micro-
simulation is automatically performed and added to the 
database.

The values of the hyperparameters are important to ensure 
that we do not over- or under-fit to the data. While the noise 
variance can be calculated directly from instantaneous mass 
flow rate observations in a training set of micro-simulations 
( �n = 0.05 ng/s), the remaining two hyperparameters must 
be numerically optimised using maximum likelihood estima-
tion (MLE) over the same training data. In MLE, hyperpa-
rameters are chosen such that the resulting function is most 
consistent with the observed mass flow rates. For the train-
ing data, we used a small sample which would later be used 
as an initial database for case D4 (see Table 1 in Sect. 3.1). 
Performing MLE yielded results of �f ≈ 1 ng/s and � ≈ 1 , 
which were both rounded to unity for simplicity. We also 
applied MLE to covariance model selection, comparing 
the squared-exponential kernel,the Mateŕn 3/2 kernel, and 
Mateŕn 5/2 kernel, with negligible difference found between 
them (maximum likelihoods within 3% of each other).

(5)cov(�) = C(X,X) = K(X,X) + �2
n
I,

(6)�̄∗ = 𝜇(X∗) + K(X∗,X)C(X,X)
−1(� − 𝜇(X)),

(7)cov(�∗) = K(X∗,X∗) − K(X∗,X)C(X,X)
−1K(X,X∗).

1 Here, we use the notation that a lower case symbol is a scalar, a 
bold symbol is a vector, and a capitalised symbol is a matrix.

2 The magnitude of this variance is assumed to be independent of the 
input values—i.e. the function is homoscedastic. This is a reasonable 
assumption for isothermal flow of a dense fluid.
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2.3  Implementation

The step-by-step procedure for implementing our GP-
accelerated hybrid method is now described, with refer-
ence to the variables in our benchmark system. In this 
section, subscripts denote a position index (i.e. different 
subdomains) and superscripts denote a (macroscale) time 
index.

 1. Generate a range of data points for each microscale 
input variable X = (h,�,F) and perform the requisite 
micro-simulations. Calculate the time-averaged mean 
output variable(s) to be passed to the macro-model q̄.

 2. If possible, measure the variance of the output variable 
q directly from the simulations. This is the noise vari-
ance hyperparameter �n.

 3. Use MLE over the training data (see Rasmussen and 
Williams 2006 for more details) to set the remaining 
hyperparameters �f  and � (and �n if it could not be set 
in the prior step). Compare the MLE across different 
kernels to ensure a sensible model has been chosen.

 4. Use Eqs. (4) and (5) to calculate the covariance 
between the training set outputs.

 5. Repeat steps 2, 3, and 4 for each output variable. For 
our benchmark system, we used a separate 2-input GP 
as an equation of state to calculate pressure p from 
density and channel height. This GP was trained over 
hundreds of inputs using a single simulation, for each 
different micro-subdomain height, at negligible com-
putational cost. As this database was very easy to 
cheaply fill, it was not updated on the fly. The hyper-
parameters for this GP were �n = 0.003 MPa, and �f  
and � were again calculated to be approximately one.

 6. Choose an initial database with which to start the 
hybrid simulation. This can be empty if desired.

 7. Set the hybrid simulation parameters and initial con-
ditions. For our benchmark system, this is the num-
ber of micro-subdomains N, the distance between 
micro-subdomains S, the height of each micro-
subdomain h (see Fig.  1), the macroscopic runt-
ime and time-step, the initial density distribution 
�
1
1...N

= {1331, 1320, 1278, 1273, 1312} kg/m3 ,  the 
external forcing function Fext , and the uncertainty 
threshold �t.

 8. Evolve the macro-model in time.
 9. Calculate the pressure using GP regression. To do 

this, use Eq. (4) to calculate the similarity between the 
current macro-state X∗ = (�1...N ,�

i
1...N

) and the train-
ing inputs Xp . Hence calculate the pressure across all 
micro-subdomains using Eq. (6).

 10. Calculate the pressure gradient at each micro-sub-
domain along the channel using a central difference 
approximation.

 11. Calculate the total force �i
1...N

 to applied to each atom, 
for each micro-subdomain.

 12. Microscale information is now required, so query the 
surrogate GP for each micro-subdomain in turn. Use 
Eq. (4) to calculate the similarity between the current 
macro-state �∗ = (hj, �

i
j
,Fi

j
) and the training inputs Xq . 

Hence calculate the mass flow rate prediction f̄∗ using 
Eq. (6) and the uncertainty of said prediction �f∗ using 
Eq. (7). Note, as we are making a prediction for a sin-
gle point in input space, the outputs of Eqs. (6) and (7) 
are both scalars, rather than a vector and a matrix, 
respectively.

 13. If 𝜎f∗ > 𝜎t , then a new micro-simulation is performed 
with input �∗ ; otherwise f̄∗ is taken as the mass flow 
rate output q̄i

j
 of the micro-model.

 14. If a new micro-simulation is performed, append the 
initial database with the input �∗ = (hj, �

i
j
,Fi

j
) and the 

time-averaged output q̄i
j
 . Append the covariance matrix 

with this new data point C(
[

X �∗
]

,
[

X �∗
]

) using Eqs. 
(4) and (5).

 15. Once steps 12, 13, and 14 have been completed for 
each micro-subdomain, the density distribution across 
the channel can be calculated using a finite-difference 
form of Eq. (2).

 16. Repeat steps 8 onwards until the macro simulation is 
complete.

For the micro-model, to minimize the start-up time before 
measurements can be made, simulations are initiated with 
the final atomistic positions and velocities of the nearest con-
figuration from our database ( xin ), i.e. the configuration with 
which it has the highest covariance K(xin, x∗) . If there is no 
database entry for the channel height to be tested, new MD 
simulations start with the fluid atoms in a simple cubic lat-
tice, with zero mean velocity. We estimate the start-up time 
for each MD simulation by performing a unique ‘pseudo 
MD’ simulation (at trivial computational cost) using a 1D 
Navier–Stokes solver with a Navier slip condition.

3  Results and discussion

Since experimental results are not available for this system, 
we test the accuracy of our hybrid scheme by comparing it 
to a full MD simulation of the same system; this also ena-
bles us to directly quantify the computational savings of 
our scheme. All the full MD solutions presented here are 
taken from Borg et al. (2015), with data points representing 
block averages over 2000 time-steps to reduce noise. For the 
majority of the results we present, the external forcing Fext is 
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sinusoidal with an amplitude of FA = 0.487 pN and a period 
of T = 10.8 ns (Case C in Borg et al. 2015), i.e.

Let us first consider the most computationally demand-
ing case, where we start with an empty MD database. With 
no human intuition to prescribe a likely useful set of start-
ing data, all learning must occur on-the-fly with our GP 
regression surrogate model. While it is fairly straightfor-
ward to estimate the input ranges for our benchmark system 
(as explained later), this may not be true for more complex 
systems with a larger number of input variables; it is, there-
fore, important to demonstrate that our scheme is sufficiently 
robust to accurately model the flow behaviour with no prior 
information. Nevertheless, setting the target uncertainty 
threshold �t involves some subjectivity. A sensible approach 
is to set the threshold above the measurement noise ( �n ), 
because it is difficult for the model to make predictions with 
more accuracy than the data upon which it is based3. We 
initially choose a threshold of �t = 0.1 ng/s, twice that of �n . 
This will be referred to as Case 1.

The transient mass flow rate results for Case 1 are dis-
played in Fig. 2, showing excellent agreement between the 
output of our hybrid scheme and the measurements from 
the full MD simulation. Mass conservation means that the 
mass flow rate profile is approximately the same at all micro-
subdomain locations, so we present the data only for micro-
subdomain 1. As we begin from an empty database, initially 
our hybrid scheme must perform micro-simulations with 
high frequency, because there is limited data upon which to 
base a prediction. Therefore, the hybrid solution (blue line) 
exhibits noise similar to that of the full MD simulation up 
until t = 2.7 ns, where the external forcing function peaks. 

(8)Fext(t) = FA sin
(

2�t

T

)

.

As the system geometry and external forcing function are 
both symmetric, after this time no ‘new’ input configurations 
are encountered, and no further micro-simulations need to 
be performed. Beyond this time, our hybrid solution near-
perfectly captures the sinusoidal temporal variation of mass 
flow rate, with smoothness resulting from our choice of 
covariance function.

Figure 2b shows a close-up of the second mass flow rate 
peak and highlights that the uncertainty of our hybrid solu-
tion (grey region, representing 95% confidence bounds) is 
smaller than the noise in the full MD simulation. This is to 
be expected because our micro-simulations are performed 
in the steady state; in the full MD simulation, properties 
are transient while mass flow rate are time-averaged. The 
uncertainty of our surrogate model’s mass flow rate predic-
tion is larger at the extremes because these configurations 
exhibit the most extreme force and density inputs, and thus 
the model is extrapolating beyond its existing database.

3.1  Uncertainty threshold and initial database size

Cases T1–T5 and D1–D4 demonstrate the effect of the 
uncertainty threshold and the initial database size on our 
hybrid solution. To isolate the effect of the uncertainty 
threshold, Cases T1–T5 all start with an empty database 
while the threshold varies from 0.2 ng/s (case T1) to 0.9 
ng/s (case T5). Similarly, to isolate the effect of the initial 
database size, the uncertainty threshold is kept at a constant 
0.1 ng/s for cases D1–D4, while the database varies from 15 
micro-cimulations (case D1) to 47 (case D4). The construc-
tion of each initial database is outlined in Table 1. Due to 
symmetry, the channel height for every micro-simulation 
will be either h1 , h2 , or h3 (see Fig. 1) and each initial data-
base has learned from micro-simulations of specific channel 
heights, as listed in Table 1. For each channel height, four 
densities and four forces are learned, uniformly distributed 

Fig. 2  Transient mass flow rate 
results for our hybrid scheme 
(blue line; Case 1—micro-
subdomain #1) and the full MD 
simulation (black line; Borg 
et al. 2015), showing a the full 
time series, and b a close-up 
to highlight the uncertainty of 
our hybrid solution—the grey 
envelope is drawn 1.96 standard 
deviations above and below of 
the mean, representing the 95% 
confidence interval. The hybrid 
solution uses a tight uncertainty 
threshold of 0.1 ng/s and starts 
from an empty database

(a) (b)

3 If there are multiple data points within close proximity of the test 
input, then the uncertainty can be lower than the measurement noise.
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across an estimated useful range4. For the force, this ranges 
from zero to the magnitude of the external force; for the 
density, this ranges from 1120, kg/m3 to 1480 kg/m3.

Figure 3 confirms that a larger uncertainty threshold for 
our surrogate model yields greater error for the hybrid solu-
tion, while the initial database size has a negligible effect. As 
the threshold is raised, micro-simulations are performed less 
frequently, so the accuracy of our hybrid solution drops. The 
signal standard deviation is �f = 1 ng/s (see Sect. 2.2), so 
when the threshold 𝜎t > 1 ng/s, micro-simulations will never 
be performed, even when starting from an empty database. 
In this instance, the mass flow rate in each micro-subdomain 
is predicted to be zero for the entire time series, as this is 

the prior mean. The mass flow rate error is the discrepancy 
between our hybrid solution and full MD simulation, aver-
aged over all micro-subdomains and all macro time-steps 
for each case:

where Nt = tend∕Δt is the number of macro time-steps and 
qfi is the mass flow rate in the full MD simulation. To obtain 
a smooth error, the noise from the full MD solution is fil-
tered by performing GP regression over the raw data, using 
a periodic kernel with time as the single input variable.5 
Fig. 3 shows that the error remains in the region of the meas-
urement noise up to �t = 0.3 ng/s, after which it increases 
dramatically up to three times the measurement noise when 
�t = 0.9 ng/s. Varying the initial database has a negligible 
effect on the mass flow rate error; this is expected because 
the larger uncertainty encountered by having to extrapolate 
more often from a small database is countered by learning 
more frequently on-the-fly.

Figure 4 demonstrates how the computational speed of 
our scheme varies with the uncertainty threshold and initial 
database size by measuring the cumulative number of micro-
simulations. As expected, the trend is that the lower the 
threshold, the more micro-simulations must be performed. 
In all cases, no further micro-simulations are required after 
t = 2.7 ns. The computational speed-up over the full MD 
simulation is calculated by

where Naf
 is the number of atoms in the full MD simulation, 

t̄sim is the average time-steps performed in a single micro-
subdomain simulation, Nsim is the number of micro-subdo-
main simulations performed for the hybrid solution, and N̄ah

 
is the average number of atoms in each of those micro-sim-
ulations. For the tightest threshold (Case 1), our hybrid solu-
tion provides a modest speed-up over the full MD simulation 
of 12.3× ; this rises to 69.3× for the loosest threshold (Case 
T5), confirming our intuition that the choice of uncertainty 
threshold is a trade off between accuracy and computational 
efficiency. All cases show logarithmic growth for the number 
of required micro-simulations with respect to time— i.e. the 
frequency of MD simulations decreases as the database 
becomes larger, and the predictions become more 
accurate.

(9)error =

Nt
∑

i=1

N
∑

j=1

(q̄i
j
− qfi),

(10)speed-up =
tendNaf

t̄simNsimN̄ah

,

Fig. 3  The influence of the uncertainty threshold �
t
 (starting from an 

empty database) and initial database size (for �
t
= 0.1 ng/s) on the 

accuracy of our hybrid solution for mass flow rate. The horizontal 
dashed line represents the measurement noise for our surrogate model

Table 1  Initial databases for Cases D1–D4. See Fig.  1 for channel 
height references

Case Channel heights Initial 
database 
size

D1 h
1

15
D2 h

3
16

D3 h
1
, h

3
31

D4 h
1
, h

2
, h

3
47

4 In micro-simulations with a channel height of h1 , the combination 
of the largest force (0.487 pN) and the  lowest density ( 1120 kg/m3 ) 
produced a shear rate beyond the critical limit (Thompson and Troian 
1997), so the mass flow rate does not converge. Therefore, one data 
entry is removed from all relevant databases.

5 K(ti, tj) = �2
f
exp(−2 sin2(�|ti − tj|∕T∕�

2)) + �ij�
2
n
 , where T = 10.8 

ns is the oscillation period, �f = 1 ng/s, � = 1 s, and �n = 0.1 ng/s.
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The total number of micro-simulations decreases when 
the initial database is not empty, because more predictions 
are made through interpolation and ‘new’ configurations are 
not encountered so frequently at the start of the time series. 
However, the total number of micro-simulations performed 
does not continue to fall as the initial database grows. For 
larger initial databases, redundant information is sometimes 
gathered and never encountered in the dynamical simulation. 
For example, consider the discrepancy between the results of 
Cases D1 and D2, despite the model learning only one extra 
configuration for the latter case. This is due to the geometry 
of the case: a much larger force is required near the throat of 
the channel (micro-subdomains with h3 ) than at the inlet/out-
let (micro-subdomains with h1 ) to generate equal mass flow 
rates.6 As such, the local pressure gradient always acts in the 
opposite direction to the external force at the inlet/outlet of 

the channel and the peak force applied to micro-simulations 
is relatively small; thus learning the mass flow rate response 
for large forces in a channel of height h1 provides little infor-
mation. Conversely, all of the information is used when the 
initial database is formed using channel heights of h3 . Fewer 
micro-simulations corresponds to an increase in computa-
tional efficiency—Case D2 is 30.5× faster than the full MD 
simulation while maintaining a high level of accuracy (error 
of 0.042 ng/s). Another example is the difference between 
the results for Cases D3 and D4, where including micro-
simulations with channel height h2 only negligibly reduces 
the number of ‘on-the-fly’ simulations performed because 
much of this information can be inferred from simulations 
of other channel heights.

3.2  Building on an existing database

As we have already demonstrated, one important advantage 
of using GP regression is that it enables information to be 
stored in and reused from a continually-growing database. 
So far, this information has been reused within the same 

Fig. 4  The influence of a the 
uncertainty threshold �

t
 (start-

ing from an empty database, 
Cases 1 and T1–T5) and b 
initial database size (for �

t
= 0.1 

ng/s, Cases 1 and D1–D4) on 
the computational efficiency 
of our hybrid solution for mass 
flow rate. The vertical dashed 
line denotes time for the first 
peak in the external forcing 
function, after which no further 
micro-simulations are per-
formed

(a)

(b)

6 It is difficult to provide similar analysis for the density ranges, 
because at the nanoscale, viscosity varies rapidly with density, so 
greater density does not necessarily produce a larger mass flow rate.
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case, resulting in decreasing the uncertainty of our mass 
flow rate predictions for configurations encountered later in 
the time series. However, we can go further. For example, 
suppose having completed the hybrid simulation, we decided 
that we are really interested in a flow feature occurring at 
s = 6.8 nm (halfway between micro-subdomains #1 and #2). 
Our previous options would have been to run the expensive 
full MD simulation to ensure every flow feature is captured, 
or to perform a new hybrid simulation using different micro-
subdomain locations; both of which are computationally 
wasteful. However, using GP regression, we can simply cre-
ate a new case which has micro-subdomains more frequently 
located, with the surrogate model having already learned 
from the database that we generated in the previous case.

In Cases S1–S3, we demonstrate how this approach can 
be used to continually add micro-subdomains and refine 
the streamwise density profile. In each case, the number 
of micro-subdomains is doubled (with the new micro-
subdomain locations bisecting the old micro-subdomain 

locations), starting from N = 10—double that of Case 
1. The total database generated at the end of the previ-
ous case is used as the initial database for the subsequent 
case. For all cases, the uncertainty threshold is �t = 0.1 
ng/s. As the spacing between adjacent micro-subdomains 
decreases, the relevance of data measured at neighbour-
ing micro-subdomains increases, and successively fewer 
micro-simulations are performed, as shown in Fig. 5a. 
Using 40 micro-subdomains, no new micro-simulations 
are required at all during the dynamical simulation. In 
addition, the accuracy of streamwise density profiles 
increases with the number of micro-subdomains. This is 
because central differences are used to model spatial gra-
dients in the macro-simulation, which assumes the vari-
ation between adjacent micro-subdomains is linear, and 
as the spacing between micro-subdomains decreases, this 
linear assumption becomes more accurate. Figure 5b–d 
show how the streamwise density profiles for case S3 (40 
micro-subdomains) compared to the profile measured by 

Fig. 5  The influence of the 
number of micro-subdomains 
on the hybrid solution for den-
sity (with an uncertainty thresh-
old of 0.1 ng/s): a the number of 
new micro-simulations (Cases 
1 ans S1–S3); and b streamwise 
density profiles for the full 
MD simulation and the hybrid 
solution for Case S3 using 40 
micro-subdomains at t = 7.2 ns, 
t = 14.4 ns, and t = 21.6 ns

(a)

(b)
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the full MD simulation at three snapshots in time. Our 
results show good agreement with the noisy MD data.

Another example of building on an existing database is 
evaluating the response to different external forcing func-
tions in the same geometry. Without the aid of a surrogate 
model, this would require performing an entirely new hybrid 
or full MD simulation. Using the database generated at the 
end of Case 1 as our initial database, we perform one new 
case: Case 2, with a variable-frequency external force whose 
oscillation period starts from 0.22 ns and gradually increases 
to 10.8 ns; the amplitude is 0.487 pN as in Case 1. Figure 6a 
shows the transient mass flow rate results for our hybrid 
solution and the full MD solution (Case D in Borg et al. 
2015). Once again, our solution exhibits strong agreement 
with the full MD simulation, and the computational speed-
up is effectively infinite7 as no new micro-simulations are 
performed.

3.3  Generalisation and limitations

The on-the-fly GP regression approach presented here 
is applicable to a wide range of hybrid methods, with the 
capacity for more complex macro- and micro-models to 
be incorporated. Broadly speaking, this can present three 
challenges: 1) the micro-model passes more variables to the 
macro-model, e.g. some form of constitutive relation like 
viscosity or slip length; 2) the macro-model passes more 
variables to the micro-model, e.g. the flow rate is tempera-
ture dependent; or 3) the micro- and macro-models are more 
tightly coupled, such that the quasi-steady assumption is no 
longer true for the micro-simulations.

Challenge #1 is the most simple: you can just use a sepa-
rate GP for each output variable. This will not particularly 
increase the computational cost of the surrogate model as 
each GP will be independent, so regression can be solved in 
parallel. In challenge #2, the dimensionality of input space 
for the surrogate model increases with each new variable. 
This means that exponentially more data points are required 
to map a sufficient quantity of input space for our surro-
gate to make accurate predictions. The main computational 
cost of regression is inverting the covariance matrix—used 
in Eqs. (6) and (7)—which is of a size Nsim × Nsim , where 
we recall that Nsim is the number of micro-simulations per-
formed (i.e. number of data points). However, this task does 
likely not become prohibitive until the number of data points 
is (10000) , and even then there are methods to perform 
regression using a subset of the covariance matrix Msim (see 
Rasmussen and Williams 2006 Chapter 8 for details), reduc-
ing the cost from (N3

sim
) to (NsimM

2
sim

).
Challenge #3 is the more conceptually difficult, but it 

eventually becomes another form of challenge #2. If we 
cannot perform steady-state micro-simulations because the 
macro- and micro-models are no longer scale-separated in 
time, then each micro-simulation requires more input vari-
ables to define its progress. For example, in our benchmark 
system perhaps the initial velocity profile over the chan-
nel may be required, along with the simulated time. The 
velocity profile would be binned over the channel height 
and so require several inputs. This does have the potential 
to make input space incredibly large, but if a shape could be 
assumed for the velocity profile then this is less of a prob-
lem. These challenges aside, the main problem GPs have is 
that they struggle to represent discontinuities, as Gaussians 
are smooth functions. However, as long as it is smooth, a GP 
is capable of modelling any function.

Fig. 6  Transient mass flow rate 
results for our hybrid solu-
tion (blue line) and the full 
MD simulation (black line) for 
Case 2—micro-subdomain #1 
(variable frequency external 
force). The hybrid solution uses 
an uncertainty threshold of 0.1 
ng/s, and the initial database is 
that which was generated at the 
end of Case 1

7 Of course, the speed-up is not actually infinite, but the computa-
tional effort to run the macro-model is negligible compared to an 
micro-simulation.
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4  Conclusion

We have presented an enhancement to conventional hybrid 
methods in fluid dynamics, using Gaussian process regres-
sion on the fly to predict microscopic detail based purely on 
macroscopic information, thereby avoiding costly repeated 
simulations of similar atomistic configurations. This proce-
dure enables micro-information to be reused multiple times, 
drastically increasing the computational efficiency without 
adversely affecting the accuracy.

We compare our new scheme to full molecular dynamics 
(MD) simulations and find strong agreement, with errors 
within the range of thermal noise when a tight uncertainty 
threshold is set (up to 0.3 ng/s). As this threshold is raised, 
the error increases to over three× thermal noise (0.05 ng/s); 
however, the computational speed-up over a full MD simula-
tion also increases. When starting from an empty database, 
raising the threshold from 0.1 to 0.9 ng/s increases speed-up 
from 12.3× to 69.3× with a resulting decrease in accuracy 
from 0.035 to 0.169 ng/s. Thus, the choice of threshold is a 
trade-off between the required accuracy and computational 
efficiency.

We demonstrate the computational benefit of creating an 
initial database to train our predictive model, by estimat-
ing the expected range of input values. This enables more 
predictions to be made via interpolation between known 
data, which provides less uncertainty than extrapolation and 
means fewer micro-simulations are performed ‘on-the-fly’. 
While maintaining approximately the same level of accu-
racy, starting with a modest initial database covering just 
16 data points resulted in a speed-up of 30× the full MD 
simulation for an incurred error of 0.042 ng/s.

Finally, we show how existing databases can be built 
upon (while never needing to be fully complete) to rap-
idly obtain high-resolution hybrid solutions—i.e. cheaply 
add more micro-subdomains at locations of interest—or to 
model different flow fields effectively instantly—i.e. no new 
micro-simulations are required.
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Appendix A. MD parameters

Non-equilibrium MD simulations of dense fluid argon are 
performed using mdFoam (Macpherson and Reese 2008; 
Borg et al. 2010)—an in-house solver developed in Open-
FOAM. Atoms are modelled as hard spheres which interact 
using shifted Lennard-Jones (LJ) pair potentials, with wall 
atoms frozen in place. Our MD parameters are necessarily 
identical to those used by Borg et al. (2015) for the full MD 
simulations. The LJ potential

has a cut-off radius of 1.36 nm; for the fluid-fluid interac-
tions, the LJ characteristic length and energy are �f−f = 0.34 
nm and �f−f = 1.65678 × 10−21 J, respectively; for the wall-
fluid interactions, these parameters are �w−f = 0.255 nm 
and �w−f = 0.33 × 10−21 J, respectively. The mass density 
of the wall atoms is 6.809 × 103 kg∕m3 , and the mass of a 
single atom is m = 6.6904 × 10−26 kg. Fluid atom dynam-
ics are described by Newton’s laws of motion, which are 
numerically integrated using the Velocity Verlet method 
(Swope et al. 1982), with a time-step of 5.4 fs. The excess 
heat generated by applying an external force is removed by 
modifying the velocities in the z-direction (see Fig. 1) using 
a Berendsen thermostat; this ensures a thermally homogene-
ous system, maintained at a temperature of 292.8 K. All of 
our simulations are periodic in the s- and z-directions. Mass 
flow rate and pressure measurements are time-averaged over 
40000 time-steps.

Appendix B. Exponential kernel d2

ij
 term

In the exponential kernel, the term d2
ij
 is the squared Euclid-

ean distance between input points �i = (hi, �i,Fi) and 
�j = (hj, �j,Fj) . For our benchmark system, we have chosen 
to normalise these distances by the mean separation distance 
for each input variable (Δh̄,Δ�̄�,ΔF̄) . The mean separation 
distance is calculated using the points in our training data-
base and its purpose is to simplify the surrogate model by 
reducing the number of hyperparameters, enabling the use 
of a single length scale � instead of a separate length scale 
for each input variable. The equation for d2

ij
 is thus

(A.1)ULJ(rij) = 4�

[

(

�

rij

)12

−

(

�

rij

)6
]

,

(B.1)d2
ij
=

(

hi − hj

Δh̄

)2

+

(

𝜌i − 𝜌j

Δ�̄�

)2

+

(

Fi − Fj

ΔF̄

)2

.
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