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Abstract
The simulation of multi-phase flow at low capillary numbers (Ca) remains a challenge. Approximate computations of the 
capillary forces tend to induce parasitic currents (PC) around the interface. These PC induce additional viscous dissipation 
and shear forces that potentially lead to wrong calculations of the general flow dynamics. Here, we focus on the case of spon-
taneous imbibition in a microchannel of Hele-Shaw cell symmetry with capillarity being the only driving force. We extend 
the Lucas–Washburn equation to account for arbitrary viscosity ratios and assess four volume-of-fluid (VOF) formulations 
against the analytical solution. More specifically, we evaluate the continuum surface force (CSF) formulation, the sharp 
surface force (SSF) formulation, the filtered surface force (FSF) formulation and the piecewise linear interface calculation 
(PLIC) formulation extended by a higher order discretisation of the interface curvature through a height function with respect 
to accuracy, performance and heuristic parameters. We quantify PC for each formulation and investigate their impact on 
flow with Ca < 10

−2 . The magnitude of PC are largest for CSF and are reduced two fold by SSF. FSF reduces PC consider-
ably more but shows periodic short bursts in the velocity field. PLIC shows no PC for the studied Ca and viscosity ratios. 
However, it fails when a denser fluid displaces a lighter fluid. Despite PC, all formulations are accurate within 10%. PLIC is 
suited to serve as a reference but relies on a structured mesh and is computationally expensive. FSF requires more heuristic 
parameters. Together with periodic bursts, this prevents a conclusive statement on the best choice between SSF and FSF.

Keywords Spontaneous imbibition · Extended Lucas–Washburn equation · Capillary flows · Direct numerical simulation · 
Volume of fluid · Parasitic currents

List of symbols
�  Length of the channel (m)
�  Force (kg m/s2)
�  Unit normal
�  Surface area (m2)
�  Unit tangent
�  Velocity (m/s)
c  Characteristics of PLIC line segment
D  Density ratio, �n∕�w
f  Height function (m)
h  Height of the channel (m)
k  Interface curvature (1/m)

M  Viscosity ratio, �n∕�w

m  Mass of fluid (kg)
p  Pressure (kg/ms2)
r  Interface normal (1/m)
t  Time (s)
V  Volume (m3)
w  Width of the channel (m)
x  Spatial co-ordinates

Coefficients
Cf11  Capillary forces filter
Cfi2  Capillary momentum flux filter
Cshp  Sharp VOF’s colour function

Greek symbols
�  Volume-of-Fluid’s colour function
Δ  Spatial/ temporal discretization
�  Dirac delta function
�  Slip length (m)
�  Dynamic viscosity of fluid (kg/ms)
�  Flux (m3/s)
�  Density of fluid (kg/m3)
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�  Surface tension between fluids (kg/s2)
�  Equilibrium contact angle

Subscript
�  Fluid phase, w = wetting; n = non-wetting
BK  Brackbill
c  Cell centre
f  Cell face centre
s  Smooth
x, y  Co-ordinate plane
avg  Average
b  Body
cap  Capillary term
fi  Filter
I  Interface
m  Meniscus
max  Maximum
ref  Reference variable
shp  Sharp
th  Threshold
vis  Viscous term
w  Wall

1 Introduction

The understanding of multi-phase flow at low flow rates in 
small confined geometries is crucial for many engineering 
applications ranging from hydrocarbon recovery, carbon 
sequestration, microfluidic devices and remediation of con-
taminated soil. The fluid dynamics depend on the complex 
interplay of inertial, capillary, viscous and gravitational 
forces (Méheust et al. 2002; Ferrari and Lunati 2013, 2014). 
Thus, marginal changes in fluid and rock properties as well 
as flow conditions can have a huge impact on displacement 
patterns (Avraam and Payatakes 1995).

In recent years, advancements in imaging techniques have 
improved the understanding of capillary-dominated flow 
substantially (Pak et al. 2015; Blois et al. 2015; Duxenneu-
ner et al. 2014). However, numerical simulation tools are 
still indispensable for progress in theoretical understanding 
of the dynamic processes as well as for parameter optimisa-
tion (Zhou et al. 2017).

A variety of numerical methods exist that differ in their 
discretisation strategy and come with different challenges. 
We only provide a brief overview and refer to (Wörner 2012; 
Teschner et al. 2016) for a comprehensive discussion.

Smooth particle hydrodynamics (SPH) is a mesh-free 
method that discretizes partial differential equations con-
sidering particles that represent a spatial region (Fatehi 
et al. 2008). Properties of a particle (density, velocity, pres-
sure) are computed using a smoothing kernel considering 
neighbouring particle properties as well that are within a 

specific length scale (smoothing length). Further, Tartako-
vsky and Meakin (2005) used SPH to mimic fluid dynamics 
by coarse-grained particles with specific interaction terms. 
SPH is mass conservative and inherently captures a sharp 
interface. Morris (2000) introduced the concept of model-
ling two-phase flows by including capillary effects in SPH. 
Kunz et al. (2016) have validated two phase SPH consider-
ing open boundaries for the formation of bubbles during gas 
injection. Lattice Boltzmann methods solve the Boltzmann 
equation for particle density in phase space on a lattice and 
reproduce fluid dynamics by specific collision terms (Zhang 
2011) . The local nature of their formulation renders them 
very well suited for parallel computing. However, they gen-
erally require structured meshes and the link between spatio-
temporal scales, physical parameters as well as as bound-
ary conditions make extensions to include other physical 
phenomena cumbersome. In addition, density and viscosity 
contrasts pose a challenge.

Continuum methods directly solve the Navier–Stokes 
equations (NSE) through a conventional spatio-temporal dis-
cretisation. This renders them flexible with respect to mesh 
structures and inclusion of additional physics. In addition, 
density and viscosity contrasts generally do not pose a chal-
lenge. Continuum methods differ in the representation of the 
interface between the fluids. Lagrangian interface tracking 
methods such as moving mesh (MM) (Quan and Schmidt 
2007), marker and cell (MAC) (Harlow et al. 1965) represent 
a sharp interface but struggle with topological changes such 
as break up and coalescence. Topological changes are well 
captured by Eulerian methods. The volume-of-fluid (VOF) 
method (Hirt and Nichols 1981) represents the two-phase 
system as a mixture and determines the two-phase properties 
based on the mixture parameter. The VOF method is sim-
ple and conserves mass on any type of mesh. However, the 
advection of the mixture parameter by conventional schemes 
lead to smearing of the interface. The level-set (LS) method 
(Sussman et al. 1994) tracks the distance to the interface 
by a smooth-signed distance function. The LS method rep-
resents a sharp interface but struggles to conserve mass. 
The phase-field (PF) method (Jacqmin 1999; Lim and Lam 
2014) propagates the auxiliary phase-field function using the 
fourth-order Cahn–Hilliard’s equation. This diffuse interface 
method captures the contact line dynamics on the wall with-
out developing stress singularity. Higher-order discretisa-
tion schemes are required to model the fourth-order term of 
Cahn–Hilliard’s equation which poses a challenge.

Though at different levels, all methods have in com-
mon that they are challenged by strong capillary forces. 
This stems from the multi-scale nature of the problem. The 
interface only spreads over a few molecules in distance and 
an explicit representation of the interface is out of reach. 
Further, capillary forces depend on the curvature of the 
interface and are, therefore, highly sensitive to even small 
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errors. These inaccuracies lead to non-physical parasitic cur-
rents (PC) around the interface (Lafaurie et al. 1994) that 
potentially change the interface dynamics. In this paper, we 
investigate the VOF method due to its simplicity, mass con-
servative nature and ability to capture topological changes. 
In addition, the VOF method is available in many open-
source and commercial software packages such as Open-
FOAM (www.openf oam.com), Gerris (http://gfs.sourc eforg 
e.net), Ansys-Fluent (https ://www.ansys .com) and others.

The VOF method represents the two-phase system by a 
mixture. Flow parameters are determined based on the vol-
ume fraction function, � referred to as the colour function. 
The interface location is determined by steep gradients of 
the colour function. The capillary forces term is approxi-
mated as a body force.

Four implementations of open-source finite-volume VOF 
formulations are assessed in this manuscript: the continuum 
surface force (CSF) formulation of the interFoam solver of 
OpenFoam (version foam-extend 1.6, http://wikki .gridc ore.
se), the sharp surface force (SSF) and the filtered surface 
force (FSF) formulations of poreFoam (http://www.imper 
ial.ac.uk/earth -scien ce/resea rch/resea rch-group s/perm/
resea rch/pore-scale -model ling/softw are/direc t-two-phase 
-flow-solve r), a separately available solver for OpenFoam 
(version foam-extend 1.6) and the piecewise linear interface 
calculation (PLIC) formulation of Gerris (http://gfs.sourc 
eforg e.net) with a higher-order discretisation of the inter-
face curvature through a height function. All the formula-
tions differ in approximation of the capillary body force. 
SSF, FSF and PLIC have previously been benchmarked for 
a droplet and bubble relaxing in an equilibrium field (Raeini 
et al. 2012; Popinet 2009). PLIC was further validated for 
capillary waves and shape oscillations of an inviscid droplet 
during relaxation (Popinet 2009) and for droplet pinch-off in 
a T-shaped microchannel (Sivasamy et al. 2011). CSF was 
validated with experiments for capillary flows in microchan-
nels consisting of integrated pillars (Saha et al. 2009). SSF 
and its close relatives (Lafaurie et al. 1994; Brackbill et al. 
1992) have been used to study complicated flow phenomena 
in porous materials (Raeini et al. 2014; Ferrari and Lunati 
2014) and microfluidic devices (Hoang et al. 2013).

Our contribution in this paper is to bridge the gap 
between static test cases and applications by introducing a 
dynamic test case with an analytic solution for spontaneous 
imbibition in a microchannel of Hele-Shaw cell symmetry 
considering partial slip on the wall. The imbibition occurs 
solely due to capillarity. We extend the Lucas–Washburn 
equation to arbitrary viscosity ratios and assess the perfor-
mance of the different VOF formulations against this analyti-
cal solution. The numerical methods are validated for flows 
at different capillary numbers as well as different viscosity 
and density ratios. We quantify the magnitude of PC around 
the interface and discuss their impact on the flow dynamics.

The paper is structured as follows. Section 2 provides a 
detailed description of the four VOF formulations highlight-
ing heuristic parameters. In Sect. 3 we develop the extension 
of the Lucas–Washburn equation to account for arbitrary 
viscosity ratios. Section 4 discusses the numerical set-up of 
the initial and boundary value problem. In Sect. 5, we pre-
sent the assessment of the fourk VOF formulations against 
the test cases. Conclusions are given in Sect. 6.

2  Physical and numerical description 
of two‑phase flows

The isothermal dynamics of two immiscible and incom-
pressible fluids are governed by the Navier–Stokes Equa-
tions for each fluid phase. The NSE of the two fluid phases 
are coupled through a boundary condition at the interface 
between them. The interface dynamics are part of the solu-
tion and hence, a moving boundary problem has to be solved 
(Batchelor 2000). The VOF method (Hirt and Nichols 1981) 
simplifies the moving boundary problem by treating the 
two-phase fluid system as a mixture. The mixture param-
eter � ∈ [0, 1] referred to as a colour function represents the 
volume fraction of one of the phases in a control volume. 
The capillary forces at the interface are modelled through 
a body force.

The NSE for the VOF mixture are the mass conservation 
equation

and the momentum conservation equation

where � denotes the velocity field, � the density, t the time, 
p the pressure, � the dynamic viscosity, �b the external body 
force and �cap the capillary body force.

The density ( � ) and the dynamic viscosity ( � ) of the mix-
ture are given by 

where the indices w and n denote the two fluids.
The capillary body forces are given by (Brackbill et al. 

1992)

where � denotes the surface tension, k the interface curva-
ture, �I the unit normal to the interface and �I the Dirac delta 
function that restricts the capillary forces to the interface. 
The system is closed with a transport equation for the colour 

(1)∇ ⋅ � = 0,

(2)

�

(
��

�t
+ � ⋅ ∇�

)
= −∇p + ∇ ⋅ �

(
∇� + ∇�T

)
+ �b + �cap,

(3a)� = �w� + �n(1 − �),

(3b)� = �w� + �n(1 − �),

(4)�cap = �k�I�I,

http://www.openfoam.com
http://gfs.sourceforge.net
http://gfs.sourceforge.net
https://www.ansys.com
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http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/software/direct-two-phase-flow-solver
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http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/software/direct-two-phase-flow-solver
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/software/direct-two-phase-flow-solver
http://gfs.sourceforge.net
http://gfs.sourceforge.net
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function � . This equation is expressed in a conservative form 
with the help of Eq. (1) as

2.1  Variants of VOF formulations

The paper assesses the four VOF formulations CSF, SSF, 
FSF and PLIC. They differ in the discretisation of the inter-
face curvature, the interface normal vector and the Dirac 
delta function for the capillary body forces of Eq. (4). PLIC 
further uses a different scheme for the advection equation of 
the colour function Eq. (5). This section discusses these for-
mulations in detail and highlights any heuristic parameters. 
The explicit numbers of any heuristic parameters are given 
in the supplementary material.

2.1.1  Continuum surface force (CSF)

In CSF, the interface normal vector and the Dirac delta func-
tion in Eq. (4) are approximated by the gradient of the colour 
function. Here, we use the implementation of the interFoam 
solver of OpenFoam (version foam-extend 1.6). The capil-
lary force vector is represented by its projection onto cell 
face normals to have a consistent discretization with the 
pressure gradient term while solving NSE (Francois et al. 
2006). The discrete capillary force is given by

The interface curvature is computed from the gradient of the 
colour function as,

Like other methods such as Lattice–Boltzmann, SPH and 
Level Set a drawback of VOF is the occurrence of non-
physical currents, referred to as parasitic currents around 
the interface (Harvie et al. 2006). PC could potentially lead 
to abrupt changes in interfacial configurations and/or the 
general flow dynamics.

2.1.2  Sharp surface force (SSF)

The SSF has been developed based on CSF to reduce PC. 
The reduction is achieved by smoothing the colour func-
tion for calculating the curvature and sharpening the colour 
function for calculating the Dirac delta function in Eq. (4) 
(Raeini et al. 2012; Francois et al. 2006). Here, we use pore-
Foam solver (Raeini et al. 2012) and switch off the filtering 
coefficients (discussed in Sect. 2.1.3) to obtain SSF.

(5)
��

�t
+ ∇ ⋅ (��) = 0.

(6)�
CSF
cap

= �k∇�.

(7)k = −∇ ⋅ �I = −∇ ⋅
∇�

|∇�| .

The smoothed colour function �s is obtained by mapping 
the cell-centred values of the colour function � onto the cell 
faces and vice versa. In formal notation, the smoothed colour 
function is given by,

where the indices c and f denote the cell centre and face 
centre, respectively. The level of smoothing is controlled 
by the number of repeated applications of the mapping. We 
apply the smoothing once.

Numerical diffusion and inaccurate representation of the 
capillary forces lead to a smeared colour function. Since 
the capillary forces are approximated by the gradient of the 
colour function in Eq. (6), a smeared colour function implies 
that the capillary forces acts in domains where no interface 
is present. Raeini et al. (2012) have proposed a sharpening 
for the colour function to address this issue and restrict the 
region where the capillary forces act. The sharpened colour 
function �shp is given by (Raeini et al. 2012),

where Cshp ∈ [0, 0.5) denotes the heuristic sharpening coef-
ficient. Values of Cshp ≈ 0.5 restrict the capillary forces to a 
narrow range of the colour function. While it appears that 
a large value is desirable, too large values induce instabili-
ties. Purely heuristically, we set the sharpening coefficient 
to Cshp = 0.2.

The capillary body forces are given by,

It has been shown that SSF reduces PC for static test cases 
such as droplet relaxing in an equilibrium field (Raeini et al. 
2012). For dynamic cases such as droplet in a uniform veloc-
ity field at low Ca , PC are generated parallel to the interface 
(Raeini et al. 2012).

2.1.3  Filtered surface force (FSF)

The FSF has been developed based on SSF to reduce PC 
under dynamic conditions. The reduction is achieved by 
dampening capillary-induced flows parallel to interface 
(Raeini et al. 2012). Here, we use the poreFoam solver.

To remove capillary-induced flows parallel to the 
interface, the total pressure p is expressed in terms of the 
dynamic pressure pd and the capillary pressure pc . The cap-
illary pressure is computed from the capillary forces through 
the boundary value problem

(8)�s =
�
⟨�⟩c→f

�
f→c

,

(9)

�shp =
1

1 − 2Cshp

[
min

(
max

(
�,Cshp

)
, 1 − Cshp

)
− Cshp

]

(10)�
SSF
cap

= −�∇ ⋅

(
∇�s

|∇�s|

)
∇�shp.

(11)∇ ⋅ ∇pc = ∇ ⋅ �
FSF
cap

,
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with a zero-gradient boundary condition for pc . The capil-
lary forces parallel to the interface is dampened as

where �I restricts the filtering to the sharpened interfacial 
region,

Cfi1 in Eq. (12) is the filtering co-efficient set to 0.1 and � in 
Eq. (13) is 10−12/ 3

√
Vavg (Raeini et al. 2012). �old

cap,fi1
 represents 

the value of �cap,fi1 at the previous time step and the term (
∇pc − (∇pc ⋅ �I)�I

)
 represent the capillary term parallel to 

the interface. The filtered capillary forces is updated as

Numerical error in computing the interface curvature 
results in computing inaccurate capillary forces. Hence, the 
zero net capillary forces constraint over a symmetric closed 
interface ( ∫ �cap ⋅ �sd�s = 0 , �s is the interfacial area) is 
violated. Therefore, the capillary momentum f lux 
( �cap = (�FSF

cap
− ∇pc)�f  , �f  is the surface area vector) below 

a small threshold is filtered,

The threshold capillary momentum flux, �cap,th is,

Cfi2 is the capillary flux-filtering coefficient, set to 0.005 
(Raeini et al. 2012).

2.1.4  Piecewise linear interface calculation (PLIC)

PLIC constructs a sharp interface using line segments in the 
cells marked by the gradient of the colour function (cut cells) 
to geometrically advect the colour function with minimal 
diffusion (Popinet 2009; Youngs 1982). We use the PLIC 
formulation available for structured meshes in Gerris (Pop-
inet 2003, 2009).

In 2D, the orientation of a line segment in cut cells is 
defined by,

where rx, ry are the interface normal components computed 
from the gradient of the colour function by Mixed-Young-
Centred method (Aulisa et al. 2007). x, y are the spatial 
co-ordinates and c is a free parameter (Scardovelli and 
Zaleski 1999). For a given value of the colour function and 

(12)�cap,fi1 =
(
�I
)(

�
old
cap,fi1

+ Cfi1

(
∇pc − (∇pc ⋅ �I)�I

))
,

(13)�I =
||||

∇�shp

∇�shp + �

||||
.

(14)�
FSF
cap,fi

= �
SSF
cap

− �cap,fi1.

(15)�cap,fi2 = �cap −max(min(�cap,�cap,th),−�cap,th).

(16)�cap,th = Cfi2

(
�
FSF
cap

)

avg
�f .

(17)rxx + ryy = c,

computed interface normal, c is determined such that the 
mass of the fluids in the cut cells are conserved (Scardovelli 
and Zaleski 2000).

The interface curvature is computed using the height 
function method with finite differences (Afkhami and 
Bussmann 2008). For |ry| > |rx| , a vertical height function f 
is computed over a 3 × 7 stencil,

where �i,j represents the colour function in cell (i, j) and Δy 
represents the cell size along the vertical direction. The case 
|rx| > |ry| follows accordingly by computing a horizontal 
height function. The interface curvature is computed from 
the height functions as

The derivatives fx and fxx are approximated by second-order 
central finite differences. In the boundary cells, the height 
functions are estimated in ghost cells (assuming linear pro-
jection of the contact line on the wall into the ghost cells) 
(Afkhami and Bussmann 2008). The capillary forces for 
PLIC is computed from Eq. (6). A smoothing kernel for the 
colour function is used to avoid jumps in the fluid proper-
ties ( �,� ) at the interface (Popinet 2009). We perform the 
smoothing twice.

Table 1 provides a brief summary of the discussed VOF 
formulations mentioning the advantages, disadvantages and 
heuristic parameters.

2.2  Boundary conditions on the wall

We use an equilibrium contact angle, � at the wall surface 
such that the interface normal is oriented as,

where �w is the unit normal to the wall and �w is the unit 
tangent to the wall (Brackbill et al. 1992).

Displacing menisci on a no-slip boundary results in 
convergence issues. This is due to mesh dependent vari-
able stresses developed on the boundary control-volumes 
leading to stress singularities (Afkhami et al. 2009; Huh 
and Scriven 1971). To overcome this numerical artefact, 
several approaches such as using a partial slip on the wall, 
lubricating films, dynamic contact angle or a combination 
of the abovementioned methods were proposed. We refer 
to Snoeijer and Andreotti (2013) and Sui et al. (2014) for a 
comprehensive review on moving contact line dynamics. We 
choose to use a partial “Navier” slip boundary condition for 
the velocity on the wall given by

(18)fi =

j+3∑

j−3

�i,jΔy,

(19)k =
fxx

(1 + f 2
x
)
3

2

.

(20)�I = �w cos (�) + �w sin (�),
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where � is the slip length (see Sect. 4.2) and n is the coordi-
nate normal to the wall.

2.3  Discretization and numerical schemes

Foam-extend and Gerris use the finite-volume method for dis-
cretization. A collocated Eulerian grid arrangement is used 
with the field variables stored at the cell centres of a control 
volume.

In foam-extend, an implicit first-order Euler scheme is used 
for time discretization. The gradient terms are discretized by 
the second-order Gauss linear scheme. The advection term 
in the Navier–Stokes momentum equation is solved using 
limited linear differencing. A bounded solution for the col-
our function is ensured by the vanLeer advection scheme. To 
control the numerical diffusion of the interface while solv-
ing the advection equation of the colour function Eq. (5), an 
artificial compression velocity is added only at the interfacial 
region in a direction normal to the interface (Rusche 2003). 
The pressure-velocity coupling of NSE is achieved through a 
predictor–corrector step of Pressure Implicit with Splitting of 
Operators (PISO by Issa 1986).

Gerris (Popinet 2003, 2009) uses a second-order staggered 
time discretization. The advection term of the momentum 
equation is solved by a Godunov scheme (Bell et al. 1989). For 
the advection term of the mixture transport equation, a direc-
tion-split advection method with geometrical flux estimates is 
used (Gerlach et al. 2006). The pressure–velocity coupling of 
the NSE uses the time split projection method based on Hodge 
decomposition of the velocity field.

To ensure numerical stability for capillary problems, the 
time step is limited according to the Brackbill number (Brack-
bill et al. 1992) as

(21)Uw = �
�U

�n
,

(22)ΔtBK =

√
�avg(Δx)

3

��
.

3  Analytical solution for spontaneous 
imbibition in a rectangular channel

Spontaneous imbibition into a cylindrical capillary was first 
studied by Lucas (1918) and Washburn (1921). Balancing 
the forces in the absence of gravity, negligible inertia and 
assuming 𝜇w ≫ 𝜇n , they obtained that the position of the 
meniscus, xm advances as xm ∝

√
t . The model was recently 

expanded to account for the viscosity of the defending gas 
phase in a long tube (Hultmark et al. 2011), for any viscosity 
ratio in a vertical capillary (Walls et al. 2016) and for arbi-
trary cross-sectioned microchannels (Berthier et al. 2015). 
Here, we consider horizontal displacement of the meniscus 
with a partial slip boundary in a Hele-Shaw cell ( h ≪ w , see 
Fig. 1 for an illustration). We neglect gravity as the largest 
bond number considered is Bo = Δ�gh2�−1 = 10−4.

3.1  Derivation of extended Lucas–Washburn 
equation

We consider the geometry illustrated in Fig. 1. An over-
view of the entire derivation in detail is provided in the sup-
plementary material. The velocity profile in a rectangular 
channel of length � , width w and height h, where h ≪ w , 
with a partial slip boundary condition on the wall is approxi-
mately parabolic. The average velocity Uavg , according to 
Hagen–Poiseuille (Barthès-Biesel 2012), is given by

Table 1  Advantages, disadvantages and heuristic parameters for different VOF method formulations

VOF formulation Advantages Disadvantages Heuristic parameters

CSF, solver: interFoam Simple expression for interface curva-
ture and capillary forces

Inaccurate computation of interface 
curvature; PCs around the interface

None

SSF, solver: poreFoam Reduced PC for static cases PC for dynamic cases Number of smoothing operations 
for colour function to compute 
interface curvature; sharpening 
coefficient

FSF, solver: poreFoam Reduced PC for static and dynamics 
cases

Potential removal of physical fluxes; 
a-priori heuristic filtering coeffi-
cients; periodic bursts in PC

In addition to SSF, coefficients for 
filtering the capillary forces and 
the capillary flux

PLIC, solver: Gerris Negligible PC and negligible interface 
smearing, adpative meshing

Computationally expensive; code 
available only for structured meshes 
and height functions for 2D

Number of smoothing operations for 
colour function to compute fluid 
parameters

Fig. 1  Illustration of the problem set-up
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The pressure at the inlet and outlet boundaries of the channel 
are kept equal (see Sect. 4.1, Fig. 4). Therefore, the acting 
forces are the capillary forces Fcap and the viscous forces 
Fvis . The capillary forces act over the circumference of the 
capillary at the meniscus defined by the product of the capil-
lary pressure (pc = 2�cos(�)∕h) and the area of the interface 
(wh)

Using Newton’s viscous law and Hele-Shaw’s principle 
(Batchelor 2000), the viscous forces is given by

where A = 2wl denotes the surface area of the wall.
Substituting the pressure gradient dp∕dx from Eq. (23) in 

Eq. (25), the viscous forces is given by

Balancing the active forces within the system ( Fcap = Fvis ) 
we obtain,

where xm denotes the position of the meniscus. As the 
fluids are incompressible and according to mass con-
servation (Eq. 1) the average velocity within the system 
( Uavg ) is equal to the meniscus velocity ( Um ). Therefore, 
Uavg = Um = dxm∕dt . Substituting dxm∕dt for Uavg in the 
above expression and integrating both sides, we obtain an 
implicit equation for the location xm of the meniscus, given 
by,

Assuming xm(t = 0) = 0 we immediately get C = 0 . The 
meniscus velocity Um is accordingly given by

where M is the viscosity ratio ( �n/�w ). Note, that for M = 1 , 
the meniscus velocity is constant in time (Eq. 30). Within a 
reference frame that moves at the fixed meniscus velocity, 

(23)Uavg =
h2 + 6h� + 6�2

12�

dp

dx
.

(24)Fcap = 2w�cos (�).

(25)Fvis =
h

2

dp

dx
A,

(26)Fvis = 12Uavg

wh

h2 + 6h� + 6�2 ∫
�

0

�(x)d�.

(27)

(h2 + 6h� + 6�2)� cos(�)

6h
= Uavg[(�w − �n)xm + �n�],

(28)

(h2 + 6h� + 6�2)�cos(�)

6h
t = (�w − �n)

x2
m

2
+ �n�xm + C.

(29)

Um =
(h2 + 6h� + 6�2)�cos(�)

6h�n�

×
1√

1 + 2
(

1

M
− 1

) (h2+6h�+6�2)�cos(�)t

6h�n�
2

,

the velocity field within the capillary does not change with 
time. For M ≠ 1 , the meniscus velocity changes with time 
and the velocity field within the capillary changes propor-
tionally. We now proceed to express terms in dimensionless 
form. We take the meniscus velocity at t = 0,

and the time it takes to fill the channel at this velocity,

as references. The dimensionless velocity is then given by,

and the dimensionless time by,

We define the reference capillary number as,

which, remarkably, is independent of viscosity and surface 
tension. Note, that the above definition of the capillary 
number applies exclusively for spontaneous imbibition in a 
(rectangular) capillary. Unlike forced imbibition scenarios 
where the imposed injection velocity serves as the refer-
ence velocity to determine the capillary number, sponta-
neous imbibition lacks a fixed injection velocity boundary 
condition. Hence, we choose the meniscus velocity at t = 0 
given by Eq. 30 as the reference velocity to determine the 
capillary number.

In this study, we vary the capillary number by changing 
the channel length � while keeping the other length scales 
of the channel ( h, � ) constant. Thus, small capillary numbers 
are achieved by long channels.

3.2  Model approximations

In the derivation of the extended Lucas–Washburn equa-
tion, we assume that the capillary and viscous forces 
are balanced at all times and a parabolic velocity profile 
along the length of the channel. These assumptions are not 
entirely met by the solution of the NSE. Here, we discuss 
briefly the expected error. Figure 2 shows a close-up of 
the flow field around the interface from a numerical solu-
tion with FSF. Details regarding the numerical set-up are 
given in Sect. 4. The curvature of the moving interface is 
constant in time resulting in a deviation of the parabolic 

(30)Uref =
(h2 + 6h� + 6�2)�cos(�)

6h�n�
,

(31)tref =
�

Uref

=
6h�n�

2

(h2 + 6h� + 6�2)�cos(�)
,

(32)U∗ =
Um

Uref

=
6hUm�n�

(h2 + 6h� + 6�2)�cos(�)
,

(33)t∗ =
t

tref
=

(h2 + 6h� + 6�2)�cos(�)t

6h�n�
2

.

(34)Ca =
�nUref

�
=

(h2 + 6h� + 6�2)cos(�)

6h�
,
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flow profile in the vicinity (upstream and downstream) 
of the interface. The width �′ of the region, where the 
velocity profile deviates from the parabolic shape for 
Ca = 3.12 × 10−3 and Ca = 3.12 × 10−4 , is �� ≈ 10 μ m. For 
Ca = 3.12 × 10−3 , �′/� ≈ 0.025 and for Ca = 3.12 × 10−4 , �′

/� ≈ 0.0025 . The flow field deviates smooth and continu-
ously and hence we expect an error of less than 2.5% for 
Ca = 3.12 × 10−3 and less than 0.25% for Ca = 3.12 × 10−4.

The numerical simulations are started from no-flow 
boundary conditions and hence capillary and viscous 
forces are not instantaneously balanced at the beginning. 
The force balance allows us to estimate the time scale of 
the acceleration process by,

where m denotes the cumulative mass of the fluids in the 
system. Solving this simple first-order ordinary differential 
equation for typical values used in this study (Table 2) yields 
an acceleration time scale of tacc ≈ 10−5 s and tacc∕tref ≈ 10−3 
for Ca = 3.12 × 10−3 . All numerical solutions match well 
with this approximation, Fig.  7.

(35)Fcap − Fvis = m
dUm

dt
,

4  Numerical set‑up

In this section, we introduce the initial and boundary condi-
tions used for spontaneous imbibition. A mesh dependence 
study is performed to find an optimal mesh resolution for the 
assessment. All essential files required to run the cases for 
all formulations are provided in the supplementary material.

4.1  Initial and boundary conditions

Figure 3 illustrates the initial and boundary conditions used for 
spontaneous imbibition. The meniscus is initially placed at a 
distance of 8 μ m from the inlet and is relaxed for 2.5 × 10−4 s 
to make the numerical validation independent of capillary 
wave effects. During the relaxation stage, there is no inflow 
or outflow of the fluids across the boundaries and the inter-
face reaches an equilibrium configuration based on the contact 
angle. Later, for spontaneous imbibition, we use a Dirichlet 
boundary condition for the pressure at both ends of the chan-
nel, p(0, t) = p(l, t) = p0 . Figure 4 shows the pressure profile 
along the channel length for spontaneous imbibition consid-
ering fluids having different viscosities. Pressure at inlet and 
outlet boundaries are set to p0 = 0Pa. Though the integrated 

Fig. 2  Flow profile for Ca = 3.12 × 10
−3 (FSF, details given in 

Sect. 5.1.1). Markers 1 and 4 point to regions with a parabolic profile. 
Marker 2 points to the diverging flow profile upstream of the interface 

and Marker 3 points to the converging flow profile downstream of the 
interface. The length �′ denotes the region where the flow profile is 
not parabolic

Fig. 3  Initial and boundary 
conditions used for spontane-
ous imbibition. The meniscus 
is initially relaxed with no flow 
boundary conditions at the inlet 
and outlet and then subjected to 
spontaneous imbibition
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pressure gradient over the entire channel length vanishes, a 
pressure gradient exists inside the channel due to capillarity. 
A zero-gradient Neumann boundary condition is applied for 
the velocity field at the inlet and outlet. Walls of the channel 
are fixed with a partial slip boundary condition (see Sects. 2.2 
and 4.2) and an equilibrium contact angle. To save computa-
tional effort, a symmetric boundary condition is used along the 
length of the channel at a height of h/2.

4.2  Mesh dependence

Table 2 provides the parameters used for mesh dependence 
analysis. The surface tension, the contact angle of the wetting 
phase with the wall and the height of the channel are kept 
constant for all the cases discussed in this paper.

We use a uniform and structured mesh to spatially discre-
tise the domain for all formulations. We test the spontane-
ous imbibition with several levels of refinement, h∕Δx = 8 
( Δx = 1.25 μm), h∕Δx = 16 ( Δx = 0.625 μ m) and h∕Δx = 32 
( Δx = 0.3125 μm). The average velocity Uavg within the chan-
nel represents the meniscus velocity, based on principles of 
continuity. The slip length ( � = 0.1 μm ) is chosen such that it 
is small enough compared to the channel height (2% of h) to 
avoid discrepancies with the Hagen–Poiseuille flow assump-
tion used in the analytical solution. Figure 5 shows the menis-
cus velocity for different resolutions and at different Ca for 
all formulations with the analytical reference solution from 
Eq. (29) represented by dashed black lines. The convergence 

rate for successive refinements are also mentioned. The veloc-
ity data [(average (or) meniscus velocity and the maximum 
velocity] is output every two time steps during the simula-
tion run. Even though the meniscus velocity is supposed to 
be constant (see PLIC for reference in Fig. 9) oscillations in 
the meniscus velocity are observed for CSF, SSF and FSF 
(Fig. 9). In quasi-steady state, these oscillations are periodic 
and uniform. Therefore, when the meniscus velocity oscillates, 
we determine the arithmetic average of the meniscus velocity 
in a period to obtain the meniscus velocity used in the plots 
of Fig. 5.

Figure 5 shows that CSF struggles to converge due to an 
inaccurate computation of the capillary forces and large mag-
nitude of PC (see Sect. 5). An improvement in computing 
the capillary forces by SSF compared to CSF is seen to show 
better convergence and move the numerical solution towards 
the analytical solution. Compared to CSF and SSF, FSF and 
PLIC approximate the capillary forces better. At lower Ca 
(< 4 × 10−3) , the solutions of SSF, FSF and PLIC converge 
( ≲ 2% with respect to the finest resolution) at h∕Δx = 16 . All 
formulations at large Ca (≈ 0.01) show a slower convergence 
rate, which indicate the requirement to either increase the slip 
length or resolve the mesh with a similar length scale as that 
of the slip length (Afkhami et al. 2009). Moreover, we see the 
numerical solution converging to values below the analytical 
reference solution which is potentially due to the parabolic 
flow assumption considered in the analytic solution where we 
expect around 8.5% discrepancy ( ��

∕� ≈ 0.085 , see Fig. 2). At 
Ca ≤ 3.12 × 10−4 , the impact of the parabolic flow assumption 
and stress singularities on the wall boundaries reduce. Hence, 
the numerical results converge towards the analytic solution.

Table 3 compares the time step size calculated by Eq. (22) 
and computation time for all the formulations performed on 
4 Intel-Xeon processors (2.00 GHz frequency) for different 
resolutions.

Computation time of CSF is two times faster than SSF 
and FSF but produces the largest discrepancy in terms of the 
flow dynamics. Note that SSF and FSF are run with the pore-
Foam solver and for SSF, the filtering coefficients discussed in 
Sect. 2.1.3 are set to zero. The Gerris implementation of PLIC 
takes over 5 times longer compared to FSF but produces more 
accurate solutions.

Emphasising that the scope of this paper is to quantify PC 
at low Ca < 4 × 10−3 , observing convergence at a resolution 
of h∕Δx = 16 and taking into account the computation cost 
(Table 3) we choose to perform the rest of our analysis with a 
mesh resolution h∕Δx = 16 ( Δx = 0.625 μm).

Fig. 4  Axial pressure profile for spontaneous imbibition. Pressure 
boundaries at inlet and outlet are set to Dirichlet with p

0
= 0  Pa. 

Case: M =
�n

�w

 = 0.1, Sect. 5.2.1. Formulation: PLIC, t∗ = 1.15

Table 2  Parameters used for 
mesh resolution study

� , �
w
 , h are kept constant for all the cases discussed in this paper

�
w

�
n

�
w

�
n

� �
w

h (in  μm)

0.001 0.001 1000 1000 0.01 45 10
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5  Benchmark cases

In this section, we assess the precision of the VOF formula-
tions, CSF, SSF, FSF and PLIC (Sect. 2) for the capillary 
forces by comparing the numerical solution of the menis-
cus dynamics during spontaneous imbibition into a capillary 
with the analytic solution. We focus on flows at different Ca 
and quantify PC. We also study the resilience of the numeri-
cal solvers with respect to viscosity and density contrasts.

5.1  Flow at different capillary numbers

The focus of this study are flows at the brink where PC 
become dominant. The capillary numbers investigated are 

Ca = 3.12 × 10−3 and Ca = 3.12 × 10−4 . We vary Ca by 
changing the length of the channel according to Eq. (34). 
Table 2 lists the parameters used for this case. Equation (29) 
provides the analytical solution. We terminate the simula-
tions at 10 times the time taken to reach quasi-steady state 
for Ca = 3.12 × 10−3 and at 15 times the time taken to reach 
quasi-steady state for Ca = 3.12 × 10−4.

5.1.1  Case 1: Ca = 3.12 × 10−3

The length of the channel is 400 μm . Figure 6 shows a col-
our plot of the velocity magnitude for a section around the 
interface after reaching quasi-steady state. In a rectangular 
channel with Hagen–Poiseuille flow considering partial slip, 
the maximum velocity Umax occurs at the centre of the chan-
nel (slightly away from the upstream and downstream to 
vicinity of the meniscus) with a magnitude of (Equation 9 
in Supplementary material),

Dark red regions near the interface indicate PC with a mag-
nitude greater than the maximum velocity of the analytical 
solution.

(36)Umax = 1.5 × Uavg

(2� + h)2

(h2 + 6h� + 6�2)
= 1.47Uavg.

Fig. 5  Mesh dependence study performed for all VOF formulations at different capillary numbers. Dashed black lines represent the analytic ref-
erence solution

Table 3  Time step size ( Δt ) in seconds and computation time in min-
utes for all formulations at different mesh resolutions

Case: Ca = 3.12 × 10
−4 , Sect. 5.1.2. Run till t = 2.5 × 10

−3
s

Δx (μm) Δ t(s) Simulation time (min)

CSF SSF FSF PLIC

1.25 2.5 × 10
−7 6 12 11 58

0.625 8.8 × 10
−8 46 98 83 758

0.3125 3.1 × 10
−8 490 1046 976 8100
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Figure 7 illustrates the meniscus velocity and the maxi-
mum velocity for all four formulations and the analytical 
solution.

At quasi-steady state, the numerical solutions of the time-
averaged meniscus velocity differ by 8.25% for CSF, 5.4% 
for SSF, 3.4% for FSF and 2% for PLIC from the analytic 
solution.

CSF shows the largest discrepancy due to inaccurate com-
putation of the interface curvature and suffers from larger 
magnitude of PC at all times. The coarse representation of 

the capillary forces implies that more cells are affected by 
PC (marked by a red circle in Fig. 6). The PC increase vis-
cous dissipation and decelerate the flow.

The solution of SSF is closer to the analytical reference 
(Fig. 7). Though PC occur, their magnitude has reduced 
compared to CSF. PC are of similar magnitude as the physi-
cal flow. They are continuously generated parallel to the 
interface (marked by a red circle in Fig. 6). The sharper 
representation of the capillary forces Eq. (10) restricts PC 
to fewer cells compared to CSF. The additional viscous 

Fig. 6  Velocity field close to the interface for Ca = 3.12 × 10
−3 at 

t∗ ≈ 0.027 . Black contour lines represent the interface with � = 0.5 
for CSF, SSF and FSF. The red circle for CSF, SSF highlight PC at 

the interface. For SSF, PC are of the same order of magnitude as the 
physical velocity. The analytical solution yields U

avg
= 0.0312  m/s 

and U
max

= 0.046 m/s

(a) (b)

Fig. 7  Evolution of the velocities for Ca = 3.12 × 10
−3 . Dashed black lines represent the analytical solution
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dissipation from PC that occur close to the sharper interface 
explain the marginal rise in the amplitude of fluctuations of 
the meniscus velocity compared to CSF.

FSF and PLIC do not show any significant PC and the 
meniscus velocity is free from oscillations. Note that, based 
on the assumption of Hagen–Poiseuille flow for the analyti-
cal solution, we expect an error less than 2.5% as discussed 
in Sect. 3.2. The amount of filtering for FSF explain the 
remaining difference between the numerical and analytical 
solutions.

5.1.2  Case 2: Ca = 3.12 × 10−4

The length of the channel is 4000 μm . Figure 8 shows a 
colour plot of the velocity magnitude for a section around 
the interface at quasi-steady state. Dark red regions around 
the interface mark PC. An animation of the PC that occur 
for SSF and FSF are shown in the supplementary material.

Figure 9 shows the meniscus velocity and the maximum 
velocity for all formulations and the analytic solution.

Fig. 8  Velocity field close to the interface for Ca = 3.12 × 10
−4 at t∗ ≈ 2.73 × 10

−4 . The second figure for FSF shows the velocity field during a 
short burst at t∗ ≈ 3.53 × 10

−4 . The analytical solution yields U
avg

= 0.00312 m/s and U
max

= 0.0046 m/s

(a) (b)

Fig. 9  Evolution of the velocities for Ca = 3.12 × 10
−4 . Dashed black lines represent the analytical solution
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At quasi-steady state, the numerical solutions of the time-
averaged meniscus velocity differ by 6.35% for CSF, 2.27% 
for SSF, 0.4% for FSF and 0.37% for PLIC from the analyti-
cal solution. The better match is due to the reduced impact of 
the Hagen–Poiseuille flow assumption on the analytic solu-
tion (Sect. 3.2), expecting an error less than 0.25%.

The magnitude of PC, however, has increased approxi-
mately three times for CSF, showcasing the importance of 
an accurate representation of the capillary forces to capture 
the flow dynamics at low Ca . The number of interfacial cells 
affected by PC are also greater compared to the previous 
case and the amplitude of fluctuations of the meniscus veloc-
ity are within 1%.

For SSF, the magnitude of PC reduce approximately by 
a factor of two compared to CSF. However, PC occur at all 
times resulting in a fluctuating meniscus velocity with an 
amplitude of 3.3%.

For FSF, we see minimal PC generated at the interface 
at all times resulting in minor fluctuations of the meniscus 
velocity. Additionally, periodic bursts of PC temporarily 
decelerate the meniscus (represented by a dashed red cir-
cle in the inset of Fig. 9) having an amplitude of 2.6%. As 
the filtering removes these periodic bursts, the meniscus 
velocity returns back to the correct solution shortly after. 
For SSF, the bursts corresponding to maximum PC, are 
observed when the sharp colour function, �shp enters a new 
wall boundary cell. As we see in Fig. 9, the rise to and fall 
from maximum PC is gradual compared to FSF. Bursts cor-
responding to maximum PC for FSF are observed when the 
sharp colour function fills a wall boundary cell and com-
mences to enter a new boundary cell. The bursts are sudden 
and filtering dampens these bursts much faster compared 
to SSF. These periodic bursts of PC for SSF and FSF are 
observed for the cases discussed in the next sections as well 
dealing with low capillary numbers.

PLIC shows a consistent velocity field with no significant 
PC around the interface at all times.

5.2  Effect of viscosity ratio

The displacement of the meniscus decelerate or accelerate 
during the imbibition process if the fluids viscosities dif-
fer. The length of the channel is 400 μ m that corresponds 
to reference Ca = 3.12 × 10−3 (Eq. 34). We obtain different 
viscosity ratios by fixing the viscosity of the non-wetting 
phase, �n = 0.001 kg/ms and by varying the viscosity of the 
wetting phase, �w accordingly. Table 2 provides the other 
parameters for this case.

We define the reference velocity in Eq. (30) consider-
ing the viscosity of the non-wetting phase. Note, that the 
imbibition process starts with the wetting phase occupying 
2% of the channels volume. Hence, the initial meniscus 

velocity differs from one. At the end of the imbibition 
process, the meniscus velocity depends only on the viscos-
ity of the wetting phase. Therefore, as the wetting phase 
is close to imbibe the entire channel, the dimensionless 
meniscus velocity moves towards the viscosity ratio given 
by,

We consider two cases, M = 0.1 and M = 10 . We terminate 
the simulation when the wetting phase has imbibed half the 
length of the channel. The corresponding case with M = 1 
has been discussed in Sect. 5.1.1.

5.2.1  Case 1: M = 0.1

Figure 10 shows the evolution of the meniscus velocity 
and the maximum velocity for all formulations and the 
analytical solution.The inset shows a short time interval 
to highlight the fluctuations.

The flow decelerates over time as the more viscous 
wetting phase �w = 0.01 kg/ms invades the channel. All 
formulations qualitatively show a similar behaviour of the 
meniscus velocity. The numerical solutions of the menis-
cus velocity at the end of the inertial acceleration stage 
differ within 10% (for reference: 6.9% for PLIC) from the 
analytical solution which could potentially be due to the 
approximations used in the analytical solution, inaccurate 
computation of the interfacial curvature and due to PC 
for some formulations (see below). With time, as the flow 
decelerates, the discrepancy with respect to the analytical 
solution is seen to reduce.

Note, that for a later time when the meniscus velocity 
U∗

avg
 reaches approximately 0.1 (not shown here, that is 

when the imbibition is about to end), the meniscus velocity 
is approximately equal to that discussed in Sect. 5.1.2.

As the flow decelerates, CSF and SSF show a grad-
ual rise in the amplitude of fluctuations of the meniscus 
velocity towards the observations made in Sect. 5.1.2. This 
indicates that CSF and SSF are not sensitive to viscosity 
contrasts. Again, CSF shows the largest magnitude of PC 
at all times. For SSF, the magnitude of PC reduce approxi-
mately 1.5 times compared to CSF at t∗ ≈ 1.5.

Periodic generation of PC for FSF results in a widely 
fluctuating meniscus velocity. The amplitude of fluctua-
tions at t∗ ≈ 1.5 is 6.3%. At a meniscus velocity 1.9 times 
( U∗ = 0.19 ) that discussed in Sect. 5.1.2, the amplitude 
of fluctuations of the meniscus velocity increase 2 times. 
This indicates that FSF is sensitive to viscosity contrasts.

(37)U∗
end

=
Um

Uref

=
�n

�w

.
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PLIC shows only a minimal amount of PC that lead to 
marginal fluctuations of the meniscus velocity (at t∗ = 1.5 , 
discrepancy with the analytical solution is within 1%)

5.2.2  Case 2: M = 10

Figure 11 shows the evolution of the meniscus velocity and 
the maximum velocity for all formulations and the analytical 
solution. The inset shows a short time interval to highlight 
the fluctuations.

As the less viscous wetting phase �w = 0.0001 kg/ms 
invades the channel, the flow accelerates over time. At the 
end of the inertial acceleration stage, the numerical solutions 
of the meniscus velocity differ by 7.1% for CSF, 3.6% for 
SSF and 1.07% for FSF and PLIC from the analytic solution. 
This is primarily due to the coarser representation of the 
capillary forces for CSF and due to the expected discrepancy 
from the assumptions made for the analytical solution.

Again, CSF generates maximal PC at all times, whereas 
SSF shows periodic bursts of PC. The magnitude of PC for 
SSF at t∗ = 0.15 is approximately 1.12 times lower compared 

(a) (b)

Fig. 10  Evolution of velocities for M = 0.1 . The dashed black lines represent the analytical solution

(a) (b)

Fig. 11  Evolution of velocities for M = 10 . The dashed black lines represent the analytical solution
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to CSF. These PC decelerate the meniscus due to additional 
viscous dissipation. At any given time, CSF and SSF pre-
dict more viscous non-wetting fluid in the channel than the 
analytical solution due to the retardation of the meniscus by 
PC. This results in a discrepancy of the viscous forces and 
hence a deterioration of the solutions of CSF and SSF over 
time. As the flow accelerates, the fluctuations of the menis-
cus velocity dampen.

The meniscus velocity for FSF and PLIC match closely 
with the analytical solution at initial stages. As the flow 
accelerates, the numerical solutions of FSF and PLIC lag 
behind the analytical solution. This could potentially be due 
to error we expect from the analytical assumption which 
leads to predict slightly larger volume of the more viscous 
non-wetting fluid in the channel compared to the analytical 
solution. FSF generates periodic PC though their magnitude 
is not as large compared to the previous case ( M = 0.1 ). 
Hence, the impact of PC on the meniscus velocity is small. 
The periodic bursts of PC dampen as the flow accelerates. 
PLIC captures the flow dynamics accurately with no large 
PC observed around the interface.

5.3  Effect of density ratio

In this section, we investigate the sensitivity to density 
ratios of D = 1000 and D = 10−3 . As density neither occurs 
in Eq. (24) for the capillary forces nor in Eq. (26) for the 
viscous forces, we expect a quasi-steady displacement of the 
meniscus. However, based on the total mass of the fluids to 
be displaced in the capillary, the inertial acceleration time 
scales vary.

The channel length is 4000 μ m corresponding to 
Ca = 3.12 × 10−4 and the wetting phase initially occupies 
0.2% of the channels length. Apart from the density of flu-
ids, Table 2 provides the parameters for this case. The cor-
responding case for D = 1 has been discussed in Sect. 5.1.2.

For PLIC, extremely small time steps ( Δt = 0.08 tBK , 
corresponding to a CFL ≈ 8 × 10−5 compared to a CFL 
≈ 9 × 10−4 at tBK for FSF) are required to validate D = 10−3 
else resulted in an inconsistent flow field which made the 
validation infeasible. Hence, PLIC for D = 10−3 is omitted 
in the discussion.

5.3.1  Case 1: D = 1000

The specific fluid densities here are �n = 1000 kg/m3 and 
�w = 1 kg/m3 . We terminate the simulation at 15 times the 
time it takes to reach quasi-steady state. Figure 12 shows 
the evolution of the meniscus velocity and the maximum 
velocity for all formulations (solid lines) and the analytical 
solution. The inset picture shows the difference in the iner-
tial acceleration time scales for the two cases discussed. As 
the channel is initially filled by the denser non-wetting phase 
(99.8% of channel length), the total mass of fluids to be dis-
placed is greater (compared to Sect. 5.3.2), and therefore, 
the inertial acceleration time scales last longer.

All the formulations show a similar behaviour during 
acceleration stage before PC for CSF, SSF and FSF induce 
fluctuations of the meniscus velocity at the end of the inertial 
flow regime. The amplitude of fluctuations of the meniscus 
velocity and the magnitude of PC for CSF and SSF are simi-
lar to the observations made for D = 1.

(a) (b)

Fig. 12  Evolution of velocities for D = 1000 (solid-coloured lines) and D = 0.001 (dashed coloured lines). Dashed black lines represent the ana-
lytical solution
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PC of similar magnitude as the physical flow for FSF 
induce minimal fluctuations of the meniscus velocity. Com-
pared to D = 1 , PC during periodic bursts have increased 
1.22 times thereby increasing the amplitude of fluctuation 
of the meniscus velocity (amplitude = 3% compared to 2.6% 
for D = 1 ). Similar to Sect. 5.1.2, the maximum PC for SSF 
and FSF occur related to the sharp colour function entering 
a new cell along the wall boundary (similar observation for 
D = 0.001).

PLIC captures the flow dynamics accurately at all sec-
tions of the channel.

5.3.2  Case 2: D = 0.001

Fluid densities considered for this case are �n = 1 kg/m3 and 
�w = 1000 kg/m3 . The evolution of the velocity for CSF, 
SSF and FSF are represented by coloured dashed lines in 
Fig. 12. Due to lower density of the non-wetting phase occu-
pying 99.8% of the channel length, the total mass of the 
fluids to be displaced in the system is less and quasi-steady 
state is reached instantaneously (inset picture of Fig. 12). We 
terminate the simulation at t∗ = 9 × 10−4 . At quasi-steady 
state, the amplitude of fluctuations of the meniscus velocity 
for CSF, SSF and FSF are consistent with D = 1000 . The 
range of PC for CSF have marginally increased compared to 
D = 1000 . For SSF and FSF, the range of PC are consistent 
with the observations for D = 1000 . This indicates that nei-
ther of CSF, SSF and FSF are sensitive to density contrasts.

6  Conclusion

We have presented spontaneous imbibition in a Hele-Shaw 
cell symmetry considering a partial slip wall boundary to 
validate the numerical precision of open-source finite-vol-
ume VOF formulations namely, CSF (solver: interFoam), 
Sharp Surface Force (solver: poreFoam), FSF  (solver: 
poreFoam) and PLIC (solver: Gerris) for capillary numbers 
between Ca = 3.12 × 10−4 to Ca = 3.12 × 10−3 . We extended 
the Lucas–Washburn equation for the meniscus velocity in 
a horizontal micro-channel for arbitrary viscosity ratios. 
We considered flows solely driven by capillarity to focus on 
quantifying parasitic currents at low Ca . We also analysed 
the resilience of the numerical solvers at different density 
ratios.

Two important steps of the VOF method that impact the 
capillary forces are, advecting the colour function and com-
puting the interface curvature.

Solving the colour functions advection equation numeri-
cally (CSF, SSF, FSF) results in numerical diffusion and 
a smeared interface. Geometric split advection technique 
(PLIC) avoids numerical diffusion and preserves the 

sharpness of the interface. Extending the concept of accurate 
geometric advection on unstructured meshes is an ongoing 
research work (Roenby et al. 2016; Maric et al. 2013).

The height function methodology (PLIC) to compute the 
interface curvature provides an accurate capillary forces 
with minimal PC compared to other formulations using 
Brackbill’s expression (CSF, SSF, FSF).

Along with an inaccurate computation of the interface 
curvature, PC were seen with CSF at all times increasing 
viscous dissipation thereby slowing the meniscus velocity. 
Though PC occur at all times, SSF reduced their magnitude 
twofold compared to CSF. FSF filtered PC around the inter-
face. However, periodic bursts in the velocity field were seen 
that temporarily slowed down the meniscus. We observe that 
when the sharp interface ( �shp ) enters a new cell along the 
wall boundary resulted in maximum PC for SSF and FSF at 
low capillary flows. PLIC provided a consistent flow pro-
file with no PC when the viscosity and density ratios were 
around one. At high viscosity ratios, minimal PC were seen 
with PLIC too. We observed that the PLIC solver struggled 
to model few cases with large density contrasts.

In conclusion, the PLIC formulation of Gerris in 2D is 
a viable numerical tool to model two-phase flows at low 
Ca on structured grids. Even though SSF does not entirely 
eliminate PC, the smoothing and sharpening of the interface 
reduces PC substantially.

FSF reduces PC further but shows periodic bursts and 
requires additional heuristic parameters. The large magni-
tude of the periodic bursts of PC, raises concern that they 
can potentially alter the solution.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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