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1  Introduction

Multiscale and hybrid methods have been successfully 
applied to fluid mechanics problems in recent years. The 
reason for combining different length and timescales is to 
overcome limitations of numerical approaches and increase 
computational efficiency. The Navier–Stokes equations are 
well suited for continuum flows but are limited at micro- or 
nanoscales. The Knudsen number is the ratio of the mean 
free path over a characteristic length scale and indicates 
whether the continuum model or the molecular approach 
should be applied. Karniadakis et al. (2006) stated that the 
continuum model is not valid for Kn > 0.001 for gaseous 
flows. Gad-el Hak (2001) divided the flow regimes in which 
the no-slip boundary condition fails for 10−3

≤ Kn ≤ 10−1 , 
and the slip condition is expected at solid boundaries. The 
transition regime can be given between 10−1

≤ Kn ≤ 101, 
and flows are classified as free molecular flows when the 
Knudsen numbers are higher than ten. One of the most 
well-known space applications subject to all of these Knud-
sen number regimes is the Earth re-entry vehicle. The 
Stardust sample return capsule, a NASA project operating 
from 1999 to 2006, was specifically designed for collect-
ing cosmic dust samples. Mitcheltree et al. (1997) reviewed 
numerical and experimental studies on this capsule to 
investigate the differences between continuum and parti-
cle-based approaches for various Knudsen numbers. They 
also reported that above the Earth at 130 km, the molecular 
effects become dominant (Kn > 10), and when the capsule 
is passing through the dense atmosphere, the medium starts 
to behave as a continuum. They observed discrepancies 
between the Navier–Stokes solvers and the particle-based 
direct simulation Monte Carlo (DSMC) method for the 
axial force coefficient at the altitude of 83 km. This dif-
ference can be explained as the flow is subject to different 

Abstract  This work focuses on the review of particle-
based multiscale and hybrid methods that have surfaced in 
the field of fluid mechanics over the last 20 years. We con-
sider five established particle methods: molecular dynam-
ics, direct simulation Monte Carlo, lattice Boltzmann 
method, dissipative particle dynamics and smoothed-parti-
cle hydrodynamics. A general description is given on each 
particle method in conjunction with multiscale and hybrid 
applications. An analysis on the length scale separation 
revealed that current multiscale methods only bridge across 
scales which are of the order of O(102)−O(103) and that 
further work on complex geometries and parallel code opti-
misation is needed to increase the separation. Similarities 
between methods are highlighted and combinations dis-
cussed. Advantages, disadvantages and applications of each 
particle method have been tabulated as a reference.

Keywords  Multiscale simulations · Molecular dynamics · 
Direct simulation Monte Carlo · Lattice Boltzmann · 
dissipative particle dynamics · Smoothed-particle 
hydrodynamics

 *	 Tom‑Robin Teschner 
	 t.teschner@cranfield.ac.uk

	 László Könözsy 
	 laszlo.konozsy@cranfield.ac.uk

	 Karl W. Jenkins 
	 k.w.jenkins@cranfield.ac.uk

1	 Centre for Fluid Mechanics and Computational Science, 
Cranfield University, Cranfield, Bedfordshire MK43 0AL, 
UK

http://orcid.org/0000-0002-6436-6197
http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-016-1729-y&domain=pdf


	 Microfluid Nanofluid (2016) 20:68

1 3

68  Page 2 of 38

Knudsen numbers; therefore, the continuum approach 
breaks down.

Particle-based methods, such as molecular dynamics 
(MD), are derived from atomistic observations and there-
fore valid on much smaller physical length scales. It is, 
however, not feasible to employ these approaches on the 
continuum level as the computational cost becomes pro-
hibitively expensive. Therefore, particle-based hybrid and 
multiscale methods were actively developed over the last 
two decades. MD is capable of simulating the assumed cor-
rect behaviour of the slip boundary conditions, and it starts 
to behave as a continuous medium at around 10–20 atomic 
diameter taken from the wall (Asproulis et  al. 2012). For 
channels exceeding a couple of hundred atomic diameters 
in their height (Asproulis et  al. 2012; Xu and Li 2007), 
computational efficiency is expected to be high by using 
multiscale methods. In addition to this, experimental capa-
bilities such as micron-resolution particle image velocime-
try (µ-PIV) (Santiago et  al. 1998; Tretheway and Mein-
hart 2002) can still only operate at microscales. Advances 
towards smaller scales are hampered by the diffraction 
limit, noise in the particle image, interaction between fluid 
and seed particles, and the effects of the Brownian motion. 
Multiscale approaches are situated between pure particle 
simulations and experiments and able to obtain results in 
an efficient and confident manner; however, relatively few 
studies have been published concerning this overlapping 
region.

Micro- and nanofluidics became important in recent 
years as can be seen by the advent of MEMS, µ-TAS and 
lab-on-a-Chip devices (Gad-el Hak 2001; Ho and Tai 1998; 
Manz et  al. 1993). All of them are operating at length 
scales in which the continuum approach may not be valid. 
Squires and Quake (2005) investigated the flow physics 
at these small scales in terms of dimensionless numbers. 
They investigated the inertial effects (Reynolds number), 
advection and diffusion (Péclet number), interfacial tension 
(Capillary number), elastic effects occurring in deformable 
objects such as polymers (Deborah, Weissenberg and Elas-
ticity number), density-driven flows (Grashof and Rayleigh 
number) and the validity of the continuum model (Knud-
sen number) concluding that the behaviour of the fluid 
flow at microscales differs due to the increased surface-to-
volume ratio. More information can be found in the papers 
of Bayraktar and Pidugu (2006) focusing on flow physics 
in microchannels, and Gravesen et  al. (1993) investigated 
micropumps, microvalves and microsensors. Koo and 
Kleinstreuer (2003) categorised the literature on micro-
channels into “flow instabilities”, “viscous changes” and 
“no changes compared to macroscale”. Understanding the 
fundamental different behaviours of the fluid flow at micro-
scales is mandatory to appreciate the need for multiscale 
methods. The combination of two or more fluid dynamic 

approaches may accurately describe the fluid flow behav-
iour at the atomistic level with a particle-based approach 
while simulating the bulk of the fluid domain with an effi-
cient Navier–Stokes solver.

In this paper, we present practical examples that set the 
scene for multiscale methods and we discuss the main find-
ings in recent years related to several particle-based mul-
tiscale and hybrid methods including molecular dynam-
ics (MD), direct simulation Monte Carlo (DSMC), lattice 
Boltzmann method (LBM), dissipative particle dynamics 
(DPD) and smoothed-particle hydrodynamics (SPH). Each 
method has been discussed separately in its own section 
where a brief overview has been given on the method and 
its governing equations. Each section presents the current 
state-of-the-art research followed by an interim conclusion. 
We summarise our findings on particle-based multiscale 
and hybrid methods in the last section.

2 � Molecular dynamics method

Molecular dynamics models the movement of atoms at the 
atomistic scale. We invoke Newton’s second law for every 
atom i directly as

The inter-atomic forces are replaced by the derivative of the 
inter-atomic potential. The most used one is the 12–6 Len-
nard–Jones (LJ) potential

where ǫ is the depth of the potential well, σ is the distance at 
which the potential between two atoms is zero and rij is the 
distance between two atoms. In theory, we have to sum over 
all atoms for each atom to obtain Vij which is computationally 
expensive and proportional to O(N2). We define a cut-off dis-
tance rcut after which we neglect the inter-atomic interactions. 
This is possible because the potential [Eq. (2)] asymptotically 
approaches zero for large values of rij and therefore, the com-
putational time reduces to O(N logN). From kinetic gas the-
ory, we obtain the equipartition theorem for single atoms as

where vi is the velocity of the atom, kB is the Boltzmann 
constant and T is the temperature. While we can conserve 
the overall momentum of a system by using Eq.  (1), we 
cannot control the temperature. Therefore, it is common 
practice to rescale the velocity according to Eq.  (3) or to 
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use a thermostat. One widely used thermostat is that of Ber-
endsen et al. (1984) where the equation of motion, Eq. (1), 
is coupled to a heat bath as

where T0 is the target temperature, T is the current (com-
puted) temperature and γ is the strength at which the equa-
tion should relax towards T0. The atoms are initialised with 
a random velocity at a temperature T obeying the Max-
well–Boltzmann distribution as

Boundary conditions are not straight forward in MD simu-
lations and require special attention. Where possible, peri-
odic boundary conditions are applied. Particles can leave 
and enter the domain seamlessly. The problem arises when 
dealing with open boundary conditions. Particles may be 
inserted or removed easily; however, the force evaluation 
near the boundary results in an incorrect interaction poten-
tial due to the missing particles beyond the boundaries 
which may propagate into the domain. One remedy may be 
to sample the force near the boundary via a second simula-
tion where periodic boundaries are applied, see, for exam-
ple, Steijl and Barakos (2012). This, however, requires a 
second set of simulation data for describing correct bound-
ary conditions. Solid boundaries are less problematic to 
impose. Atoms may be placed rigidly in a lattice structure 
to model a wall. Asproulis and Drikakis (2011) pointed 
out the danger of using non-physical, high mass values to 
effectively freeze atoms into position in that it produces 
incorrect slip length behaviour. Asproulis and Drikakis 
(2010) showed that using spring potentials for atoms on 
solid boundaries produces more realistic values for the slip 
length. See also Thompson and Troian (1997) for a descrip-
tion on solid boundaries and Delgado-Buscalioni et  al. 
(2015) for an overview on open boundary conditions.

2.1 � Review on hybrid and multiscale molecular 
dynamics methods

In 1995, O’Connell and Thompson (1995) conducted the 
first coupled computation of MD and continuum mechan-
ics. Ever since there has been a broad interest in this field 
as indicated by the growing number of publications. They 
investigated the flow in a channel and split it into a con-
tinuum (Navier–Stokes) and atomistic (MD) region, sepa-
rated by a hybrid solution interface (HSI) running paral-
lel to the solid boundaries across the channel. The HSI is 
a buffer layer in which both descriptions are valid and it 
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provides boundary conditions for each other. In this way, 
information from one description is passed to the other 
and an information exchange can take place. The buffer 
region introduced by the HSI is needed to obtain smooth 
profiles for the primitive variables across the interface. The 
MD and continuum region were coupled by using con-
strained dynamics, and the exchange of variables was done 
by state, i.e. velocity and density were imposed directly at 
the HSI. Their test case was the start-up Couette flow, for 
which good agreement between MD and continuum could 
be observed. Hadjiconstantinou and Patera (1997) inves-
tigated the flow around a square cylinder inside a channel 
and coupled non-equilibrium molecular dynamics (NEMD) 
with a spectral element solver in the wake of the cylinder. 
The solution at the interface was iteratively obtained by 
the Schwarz alternating method. Since the coupling region 
was chosen away from the wall, both NEMD and Navier–
Stokes solutions were valid and could be compared against 
a full Navier–Stokes simulation. Good agreement was 
achieved between the full continuum and hybrid compu-
tation although the accuracy was limited due to statistical 
fluctuations, boundary condition imposition by NEMD and 
mismatch of the transport coefficient in the two models. 
Following up on their research, Hadjiconstantinou (1999) 
investigated the moving contact-line problem (two immis-
cible but otherwise identical fluids) in a microchannel for 
low Reynolds numbers. The continuum domain was placed 
at the channel centre, and the walls were resolved by MD. 
The initial velocity distribution was obtained via a full con-
tinuum solution, and therefore, only a few Schwartz itera-
tions were necessary to converge the multiscale approach 
to its final solution. Comparison between a full MD solu-
tion showed a similar behaviour as in their previous study 
(Hadjiconstantinou and Patera 1997), where the overall 
trend was matched with fluctuations noticeably present.

Flekkøy et  al. (2000) introduced a different approach 
to couple the atomistic and continuum region by imposing 
fluxes in the HSI. The Navier–Stokes equations are written 
in the following form

where we define � and q as follows
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where µ and � are the dynamic and bulk viscosities, T is 
the temperature and kc is the thermal conductivity. We can 
compare the differences of coupling by states and fluxes in 
Tables  1 and  2, where we have defined ρ, u and e as the 
macroscopic density, velocity and total energy, A as the 
cross-sectional area across which the flux is evaluated, Vc as 
the volume of the cell inside the HSI, n the normal vector 
on A, m as the mass of an atom, s as the number of added/
removed particles, v′i and ε′ as the velocity and energy of 
the added/removed particles, Fij as the force between two 
atoms i and j (and Fi as the force acting on a singular atom 
i ), 

〈
JQ

〉
 as the molecular energy flux, Ep,i as the potential 

energy of atom i and 〈 〉 as a time average. � and q have 
been defined in Eqs.  (9) and (10), respectively. We can 
see from Table  1 that density, momentum and energy are 
directly imposed on the atoms from the continuum when 
coupling by states is used. The macroscopic quantities 
for density, momentum and energy are obtained for each 
computational cell individually in the HSI by averaging 
over the atoms inside the cell c. Fluxes have to be calcu-
lated first before they can be imposed on the continuum or 
atomistic side, as shown in Table 2. To conserve the overall 

(10)q = −kc∇T ,

mass, momentum and energy, it is necessary to remove or 
add atoms in the HSI. Since particles are free to move and 
interact inside computational cells, their energy level will 
change locally inside the cell. The energy level is associ-
ated with the temperature of that cell and so by randomly 
inserting and deleting atoms, the temperature may change 
and the overall conservation of energy is not guaranteed. 
Delgado-Buscalioni and Coveney (2003a, b) introduced 
the USHER algorithm to remove this shortcoming. In their 
algorithm, particles are introduced into a cell at a prede-
fined energy level which has been determined by a steep-
est-descent approach so as to conserve the total energy. 
The USHER algorithm is equally applicable to coupling 
by states and fluxes. Both approaches were successfully 
applied, see O’Connell and Thompson (1995), Hadjicon-
stantinou and Patera (1997), Hadjiconstantinou (1999), Nie 
et  al. (2004), Wang and He (2007) for state coupling and 
Flekkøy et  al. (2000), Delgado-Buscalioni and Coveney 
(2003a, 2004) and Delgado-Buscalioni et al. (2005a, b) for 
flux coupling.

Delgado-Buscalioni et  al. (2005b) demonstrated the 
need to incorporate the fluctuating component of the 
fluxes as they can impact the overall solution of the cou-
pling scheme. They modified the boundary conditions for 
the continuum which did not influenced the flux conser-
vation but allowed for fluctuations during the exchange. 
Applied to the oscillatory shear flow, the influence of the 
fluctuations was clearly seen and qualitatively good results 
achieved. Markesteijn et  al. (2014) coupled the Landau-
Lifhitz fluctuating hydrodynamic (LL-FH) equations with 
MD motivated by the fact that a peptide immersed in water 
showed a strong correlation between its deformation (dihe-
dral angle) and the density fluctuation. Tested in two simu-
lations (rectangular domain with separated LL-FH and MD 
domain), one with zero mean and one with a drift velocity 
on the continuum side, while in both cases the MD domain 

Table 1   Coupling by states

Continuum → Atomistic Atomistic → Continuum

Density ρ 1
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Table 2   Coupling by fluxes Continuum → Atomistic Atomistic → Continuum
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was initialised with no net momentum, the MD solution 
was approaching the continuum solution while fluctuations 
were preserved.

O’Connell and Thompson used constrained dynam-
ics to exchange data at the HSI. They introduced a cou-
pling strength parameter ξ which in their study was set 
to ξ = 0.01. They observed that higher values negatively 
influenced the results although increasing ξ would cause 
lower computational times. Nie et al. (2004) were able to 
use a value of unity for the coupling strength in conjunction 
with an external force applied to the particles in the HSI to 
prevent them from escaping. Wang and He (2007) derived 
an equation for ξ allowing them to dynamically update the 
value of ξ, while Kamali and Kharazmi (2013) used yet 
another approach and imposed an arithmetic relation on ξ 
driven by the molecular time step. The simulation was ini-
tialised with ξ(tMD = 0) = 0.1 and increased ξ via a third-
order polynomial until ξ = 1 was reached at a user-defined 
time step. They argued that fluctuations at the beginning of 
the exchange were responsible for the divergence. Using 
a low coupling strength parameter at the beginning sup-
pressed possible divergence and the results converged as 
the coupling parameter was increased.

One of the challenges in coupling the continuum with 
an atomistic description is partially due to the imposition 
of boundary conditions from the continuum onto the atom-
istic level. While molecular data are easily averaged and 
imposed on the continuum, the reverse is not as evident due 
to the disparate degree of freedoms. Praprotnik et al. (2005) 
developed the adaptive resolution scheme (AdResS) in 
which MD is coupled with a coarse-grained version of MD 
which is able to blend between the two descriptions, chang-
ing the degrees of freedom on the fly. The inter-molecular 
force is blended between the two descriptions as

where w(x) is a blending function taking values from zero 
to unity, and α and β are the centre of masses of the two 
interacting molecules. The superscript ex denotes the 
explicit treatment (MD) and cg the coarse-grained ver-
sion. While removing degrees of freedom and effectively 
increasing the molecular size, the approach is blended 
from a microscopic to a mesoscopic level at which bound-
ary conditions may be imposed easier than on a pure MD 
boundary.

Ren (2007) investigated the stability of the state and flux 
coupling scheme as well as a combination of the two. Spe-
cifically, the VV, FV, VF and FF coupling schemes were 
investigated, where we have V = velocity (state), F = flux 
and the first letter indicates the direction from continuum 
to atomistic and the second from atomistic to continuum. 

(11)
fαβ = w(xα)w(xβ)f

ex
αβ

+ [1− w(xα)w(xβ)]f
cg

αβ ,

VV and FV were found to be stable for both small and large 
sampling intervals. VF performed well for small sampling 
intervals, while the purely flux-based FF scheme was 
claimed to be weakly stable. A stability analysis was car-
ried out which confirmed the above findings and showed an 
amplification factor of unity for the FF scheme which, in 
combination with statistical noise, caused the weakly stable 
nature.

When dealing with multiscale methods, there are sev-
eral ways to link the atomistic level with the continuum. 
The one used and discussed so far is known as the domain 
decomposition (DD), where the computational domain 
is split into sub-domains for which either an atomistic or 
continuum description is used while the coupling happens 
at the HSI. An alternative description is the heterogeneous 
multiscale method (HMM) (Weinan et al. 2003) where the 
entire domain is covered by a continuum solver and the 
microscopic part enters the computation locally at nodes 
where the continuum description is invalid. Asproulis et al. 
(2012) developed the point-wise coupling (PWC) based on 
the HMM and showed that this approach delivered good 
results for the velocity profiles in a start-up Couette flow. In 
their investigation, they placed the local atomistic regions 
at the wall nodes and analysed a range of parameter in 
the Lennard–Jones potential, as well as different channel 
heights and wall geometries. As evident, the approach lends 
itself to create bespoke multiscale flow domains and use 
the atomistic description only where it is necessary.

Borg et  al. (2013) extended the idea of PWC to field-
wise coupling (FWC). It operates in a similar fashion to the 
PWC approach and combines its strength with the domain 
decomposition. Sub-domains (fields) are placed continu-
ously in the continuum domain but do not need to coincide 
with the continuum nodes as in the PWC. In a series of 
6 steps, the continuum solver projects its solution on the 
atomistic level for which a new solution is obtained and 
imposed back onto the continuum. The stresses are cor-
rected afterwards. As with the PWC, the atomistic domain 
can be tailored to the flow field and freely placed inside the 
macroscopic domain. Applied to a 1D Poiseuille flow with 
Newtonian and non-Newtonian fluids, they showed that by 
using only one microelement (field) near the wall, the reso-
lution was enhanced while further elements needed to be 
placed inside the fluid domain to reduce the error compared 
to a full MD solution.

The Couette flow is usually used to test hybrid schemes 
as it is easy to set up and has an analytical solution. It does 
not require a complex computational domain, and hence, 
unstructured meshes, as are widely used in continuum CFD 
solvers, are not usually used. Borg and Reese (2008) set 
out to develop a framework that incorporates unstructured 
meshes and described their implementation in the open-
source CFD solver openFOAM (Open Field Operation and 
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Manipulation, http://www.openfoam.com/) towards a gen-
eral purpose coupling approach. Although the implemen-
tation has been described in detail, no actual simulations 
were presented. Macpherson and Reese (2008) introduced 
the arbitrary interacting cell algorithm (AICA) which was 
designed to obtain the particles inside the cut-off radius 
rcut , i.e. for building neighbour lists, within an unstruc-
tured framework. Geometrical constraints as well as par-
allel implementation issues have been addressed and dis-
cussed in detail. Using an unstructured mesh for a domain 
decomposition-based multiscale approach would require 
the HSI to handle complex interfaces. Borg et  al. (2010) 
used a state controller to impose macroscopic conditions 
on the atomistic level. It has an actuator which is control-
ling the atoms, e.g. changing their velocity, and a sensor 
which is measuring the atomistic properties which are then 
used to drive the actuator in an iterative procedure. They 
successfully applied this technique to handle the exchange 
of boundary data inside the HSI for a Couette flow with an 
obstacle attached to the lower wall (inside the atomistic 
region). This method is, however, not only applicable for 
(complex) multiscale boundary data exchange but could 
also be used to impose non-periodic boundary conditions in 
pure MD simulations.

Steijl and Barakos (2012) reviewed and improved the 
treatment of non-periodic boundaries. Here, the cut-off 
distance of particles close to the boundary may exceed 
the boundary itself and hence will exhibit a lower inter-
molecular force. They stated that neglecting this force could 
contribute 30–40  % in density fluctuation. To remove this 
shortcoming, a similar MD simulation is usually conducted 
for which the normal force of the particle component can 
be evaluated which is sampled and then imposed on parti-
cles in the simulation of interest. Furthermore, the authors 
also treated the tangential force component which has its 
equivalent in the continuum stress. They applied their meth-
odology to a channel flow with the continuum domain in 
the centre and MD domains at the walls and obtained good 
agreement with the analytical solution for the Poiseuille 
flow. Holland et  al. (2014) used MD to simulate a small 
portion of a channel and obtained the boundary conditions 
at the wall from it. They extended the channel to a high 
aspect ratio and imposed the boundary conditions from their 
MD data. The results showed that without the MD data, 
the continuum solver did not produce the correct physical 
behaviour, while with the MD data, a cheap pre-simulation 
technique was found to reproduce the expected results for 
geometrical similar, high aspect ratio channels. Even when 
placing an obstacle at the channel centre, the profile for 
velocity, density and pressure were accurately captured 
compared to a full MD simulation.

Alexiadis et  al. (2013) developed a novel Laplacian-
based HMM in which the shear stresses are directly 

obtained from MD computations (an alternative is to 
use the Irving–Kirkwood equation which is commonly 
employed). The idea behind their approach is to solve for 
the Laplacian term, i.e. the momentum equation of the 
Navier–Stokes equations becomes

We have simply solved for the Laplacian term and col-
lected the rest of the equation in Ω(R), where R is the mac-
roscopic position vector. We can do the same on the atom-
istic level with r being the atomistic position vector as

and thus have found a way to approximate the right-hand 
side of the Navier–Stokes equation, i.e. Ω(R) and, there-
fore, have solved for the stresses implicitly. Alexiadis et al. 
(2014) introduced the hybrid taxonomy to classify HMMs 
based on their order of approximation going from the atom-
istic to the continuum level. The order of approximation 
is equal to the order of the gradient that is being approxi-
mated. The Laplacian-based scheme is second-order in 
their taxonomy as a second-order gradient is approximated. 
HMMs approximating first-order derivatives are there-
fore first order, while zeroth-order schemes only approxi-
mated scalar transport coefficients. With increasing order, 
the noise may become dominant and they have stated that 
second-order schemes are currently the limit. To reduce 
noise, a filter may be applied as done in their study using 
the Savitzky–Golay filter which could allow higher-order 
approximation. Strictly speaking, hybrid–hybrid schemes 
are possible where, for example, velocity is obtained with 
the second-order Laplacian scheme, while the temperature 
could be supplied by a full continuum simulation without 
any coupling. This hybrid–hybrid scheme was then tested 
in a gravity driven microchannel, and good results were 
achieved after fine tuning the MD cell dimensions. It was 
found, similar to Borg et al. (2013), that the MD cells con-
figuration played a crucial part in the accuracy of the over-
all solution and could deteriorate if inadequate dimensions 
were chosen.

So far we have limited our discussion to monoatomic 
flows, but extension to multispecies flow may be simply 
achieved by accounting for each atomic mass as done by 
Kim et  al. (2012). Instead of treating each atom equally, 
summing over its mass and force due to the Lennard–Jones 
potential allows for several species to be considered. They 
validated their approach for an incompressible flow with 
argon in a Couette flow and then used the same set-up but 
different weight ratios for the two types of atoms which 
otherwise satisfied the properties of argon. Incompressible 
flows have not been widely used for multiscale simulations, 
mainly due to high statistical scatter at low-speed flows. Ko 

(12)∇

2φ = Ω(R).

(13)
〈
∇

2φ

〉
|r=R

∼
= Ω(R),

http://www.openfoam.com/
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et  al. (2014) proposed an array of solutions to overcome 
this shortcoming. The first approach mentioned simulated 
the same geometry with different initial conditions for a 
number of times and then averaged the results. Clearly, for 
a large number of simulations it is expected that the noise 
will substantially reduce, but this gain comes with a high 
computationally cost. The second approach made use of 
a spatial regression which took data from neighbouring 
cells to improve the results in the cell at which informa-
tion was exchanged. The third and final approach made 
use of temporal regression where data from the same cell, 
at which information was exchanged, were collected over 
the sampling time. The solution with the lowest statistical 
noise was obtained using several simulations and averag-
ing the results; however, this approach can be repeated 
arbitrarily often to arrive at a defined noise threshold. 
The spatial and temporal regression techniques are more 
difficult to converge as sampling data are not abundantly 
available. However, encouraging results were obtained for 
the Couette flow and could pave the way for incompress-
ible, hybrid schemes. Cosden and Lukes (2013) combined 
several aforementioned methods and developed an open-
source MD-CFD solver based on openFOAM for the con-
tinuum computation and LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator, http://lammps.
sandia.gov/, see also Plimpton 1995) for the MD part. Cou-
pling by state (constrained dynamics) was used, and the 
particle insertion method of Delgado-Buscalioni and Cov-
eney (2003b) was employed in the HSI. They validate their 
open-source solver against the start-up Couette flow.

In the introduction to this section, we have mentioned 
the work of Hadjiconstantinou (1999) in which the mov-
ing contact-line problem was studied using a multiscale 
approach. The contact line was created between two 
immiscible fluid phases which has been achieved, on the 
MD side, by removing the attractive force in Eq.  (2), i.e. 
by flipping the minus to a positive sign. This was only done 
for the potential between the two phases, while inter-phase 
potentials followed the standard form of Eq. (2). The topic 
of immiscible fluids is little studied in the context of mul-
tiscale simulations but has recently gained some interest 
in the field of polymer blends. Fermeglia and Pricl (2007) 
investigated the miscibility of such compounds found in 
industrial applications where MD was used to obtain coef-
ficients which were mapped onto a mesoscale model. A 
widely found polymer blend in the automotive industry is 
formed of polymethylmethacrylate and polycarbonate, also 
referred to as PC-PMMA. They investigated a 70/30 mix 
of PC-PMMA for different shear rates and found that the 
miscibility was invariant with respect to shear. The blend 
remained immiscible and only changed its morphology, 
where spherical-like structures were found for low shear 
rates which elongated under higher shear. Only using 

a compatibiliser may the two phases be mixed. Similar 
results were found for polycarbonate–acrylonitrile-buta-
diene-styrene (PC–ABS) blends. Furthermore, the inho-
mogeneous density field distribution was mapped onto a 
FEM solver which then produced homogeneously distrib-
uted variables on the macroscale. Posocco et  al. (2012), 
who investigated self-assembled monolayers composed of 
hydrocarbon and perfluorocarbon as a surfactant on gold 
nanoparticles, mentioned the importance of multiscale 
modelling in the context of immiscible flow domains. In 
their multiscale study, MD was utilised to obtain param-
eters for a mesoscale model (in this case dissipative par-
ticle dynamics, see also Sect.  5). These parameters had 
direct influence on the morphology on the mesoscale. The 
authors concluded that by influencing the parameters on the 
microscale, which can be easily done, 3D patterns can be 
controlled and created on the mesoscale. Furthermore, they 
stressed that tailored nanoparticles of complex nature may 
be studied and created for medical applications. Hence, a 
multiscale approach may offer new insight into the mor-
phology of polymer blends, but its application may be far 
reaching and enabling the creating of new materials.

Further reviews dealing exclusively with multiscale MD 
schemes can be found in Kalweit and Drikakis (2008), 
Delgado-Buscalioni (2010) and Mohamed and Mohamad 
(2010).

2.2 � Interim conclusion on hybrid and multiscale 
molecular dynamics methods

Multiscale MD computations have allowed to accurately 
capture the flow physics at the microscale while extend-
ing the computable domain into the mesoscale (Xu and 
Li 2007), where experimental measurements are feasible 
(Santiago et  al. 1998; Tretheway and Meinhart 2002) and 
could provide validation data. Experiments may be per-
formed at the microscale for low-speed flows, and hence, 
incompressible multiscale methods need to be further 
developed to cope with statistical scatter.

Most of the coupling schemes presented were either 
tested for the Couette flow (steady and unsteady), the 
oscillatory shear flow or the Poiseuille flow. Efforts 
towards more complex geometries have been presented, 
but simulations making use of complex HSIs and unstruc-
tured meshes are not known to us. This may be circum-
vented by using PWC or FWC as the underlying mesh can 
be structured or unstructured; however, the domain decom-
position approach would benefit from a more general 
description for flows where the domain can be split into 
different domains, as, for example, in the case of a wall-
bounded flow. The imposition of boundary data between 
atomistic and continuum domains remains challenging. 
We will discuss in Sects. 5 and 6 how the inclusion of a 

http://lammps.sandia.gov/
http://lammps.sandia.gov/
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description between MD and the Navier–Stokes equations 
can remove some of the noise while simplifying the over-
all coupling procedure.

3 � Direct simulation Monte Carlo method

The direct simulation Monte Carlo (DSMC) method is 
consistent with the Boltzmann equation but not derived 
directly from it (Palharini 2014; Shen 2005). It is a method 
developed for rarefied gas conditions, i.e. where the mean 
molecular diameter is much smaller than the mean molec-
ular path. In DSMC, real atoms are grouped together and 
represented by a single particle which is then used for the 
simulation. The procedure of a DSMC simulation is as 
follows:

1.	 Populate mesh with particles, initialise simulation
2.	 Advect particles
3.	 Index particles
4.	 Perform particle collisions
5.	 Sample flow properties
6.	 If t = tmax proceed, else go to step 2
7.	 Output solution

In step 1, particles are randomly seeded in the mesh obey-
ing computational constraints. Each cell should have about 
20–30 particles for low statistical noise (Bird 1994; Palhar-
ini 2014), and the time step �t needs to be small in compar-
ison with the local mean collision time (Shen 2005). In step 
2, particles are advected according to the temporal scheme 
used and could be as simple as rn+1

p = rnp + vp�t with rp 
being the particle coordinates at time n or n+ 1 and vp its 
corresponding velocity. Step 3 determines the cell in which 
each particle currently resides. The collisions between par-
ticles are carried out in step 4, and the macroscopic flow 
properties are obtained in step 5. This process is repeated 
until the maximum time step is achieved or, if a steady solu-
tion is sought, after a time asymptotic solution is achieved.

While the particles are advected deterministically, the 
collisions occur statistically. The most common collision 
technique used nowadays is the no time counter (NTC) 
method introduced by Bird (1989) which removed unrealis-
tic collisions rates found in highly non-equilibrium flows in 
its predecessor, the time counter (TC) method, previously 
introduced by the same author. First, the total number of 
collisions per cell is calculated as

where N is the number of simulated particles inside the 
cell, N  is the average number of particles during the sam-
pling time, FN is the number of real atoms represented by 

(14)Ncoll =
1

2

NNFN (σTcr)max�t

Vc
,

each simulated particle, σT is the total collision cross sec-
tion and obtained from an appropriate molecular model, cr 
is the relative speed and Vc is the cell volume. The simplest 
of molecular models to obtain σT is the Hard Sphere (HS) 
model where we have σT = πd212 and d12 = (d1 + d2)/2 , 
d1 and d2 being the diameters of the colliding particles. Its 
simplicity comes at the cost of lacking physical sound-
ness, and various models have been introduced in the past 
to overcome these shortcomings, a detailed description of 
which can be found in Shen (2005) and Bird (1994).

For each cell, we calculate Ncoll and loop over it. At each 
instance, we select a particle pair and test whether collision 
occurs via

Equation (15) gives the collision probability. It is compared 
against a random number Rn ∈ [0; 1] and if Pcoll > Rn is 
true, the selected particles are accepted for collision. We 
should note that (σTcr)max is difficult to estimate a priori 
and so is subject to be updated if (σTcr) > (σTcr)max. 
This does not tamper with the validity of the solution as it 
appears in the nominator of Eq.  (14) and denominator of 
Eq. (15).

The collision occurs elastically, and energy is conserved. 
The velocities of the particles prior to collision are

where we have the centre of mass velocity as

and the relative velocity is

The velocities after the collision for each particle can be 
expressed as

Since an elastic collision is assumed and energy is con-
served, the magnitude of relative and centre of mass 
velocity has to be conserved, i.e. we have |cr | =

∣∣c∗r
∣∣ and 

|cm| =
∣∣c∗m

∣∣ where post-collision values denote with an 
asterisk. In the HS model, the scattering occurs isotropi-
cally, and therefore, each particle’s outbound direction is 

(15)Pcoll =
σTcr

(σTcr)max

.

(16)c1 = cm +

m2

m1 + m2

cr ,

(17)c2 = cm −

m2

m1 + m2

cr ,

(18)cm =

m1c1 + m2c2

m1 + m2

,

(19)cr = c1 − c2.

(20)c∗1 = c∗m +

m2

m1 + m2

c∗r

(21)c∗2 = c∗m −

m2

m1 + m2

c∗r .
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equally likely. We can therefore randomly select collision 
directions from an appropriate distribution which yields c∗r 
and c∗m and Eqs. (20) and (21) can thus be solved.

The macroscopic flow properties are then obtained with 
the following relations

where n represents the number density. Boundary condi-
tions are easily imposed in the DSMC method. The sim-
plest form is periodic boundaries in which particles re-
enter the computational domain via a periodic interface. If 
a particle travels past a solid boundary during the advec-
tion step, its normal velocity component to the boundary 
is simply reversed and the position updated accordingly. At 
open boundaries, particles are removed when they exit the 
domain. At inflow boundaries, one needs to determine the 
velocity and number flux of particles. A popular choice to 
obtain the velocity of the particles is the acceptance–rejec-
tion method in which a random velocity is drawn from a 
suitable distribution function f(v). This velocity will be 
accepted if f (v)/fmax > Rn, where fmax is the maximum 
value of f(v) and Rn a uniformly distributed random num-
ber. The number flux of particles across an open boundary 
can be calculated as

where β is related to the most probable thermal speed as 
β = (2RT)−1/2 with R being the specific gas constant and 
T the temperature and Kt is a normalisation constant and 
given by

where S is given by S = βV , V being the normal compo-
nent of the velocity on the boundary and we have intro-
duced erf() as the error function. For further information on 
boundary conditions, the reader may wish to consult Bird 
(1994), Lilley and Macrossan (2003) and Xiaohai (2005).

At this point, we wish to emphasise that despite a com-
putational mesh is used, no information is exchanged with 
neighbouring cells, and hence, the choice of structured or 
unstructured meshes does not pose any higher implemen-
tation effort. When using unstructured grids, however, the 
neighbour cells need to be determined in order to change 
the cell ID once a particle passes from one cell to another. 
Fast neighbour search algorithms and implementation 

(22)u =

1

Nc

Nc∑

i=1

c

(23)ρ = nm

(24)p = ρ(c − c)2,

(25)˙N =

nβKt
√

π
,

(26)2β2Kt = S
√

π(1+ erf (S))+ exp(−S2),

guidelines can be found in Löhner (2008). A further in-
depth review of the DSMC method can be found in Oran 
et al. (1998).

3.1 � Review on hybrid and multiscale direct simulation 
Monte Carlo methods

The DSMC method thrives for flow condition in the rare-
fied gas regime. This is encountered at near space altitudes 
of 20–100 km (Xu et  al. 2009) and hence lends itself for 
space applications. Modelling spacecrafts re-entering the 
atmosphere requires a more complex treatment as the full 
Knudsen number range is encountered, i.e from free molec-
ular flow (Kn > 10) in the outer atmosphere to the full 
continuum (Kn < 0.001), while descending towards earth. 
La Torre et al. (2011) showed that at around Kn = 0.1 the 
error from a Navier–Stokes solution was twice that of a 
full DSMC and confirmed that the continuum description 
is invalid in this region. Although the DSMC method could 
be extended into the low Knudsen number regime, it would 
be too computational expensive in comparison with a con-
tinuum-based Navier–Stokes solver. It is here that a mul-
tiscale DSMC solver benefits from the advantages of both 
worlds and computational efficiency is gained.

Boyd et  al. (1995) introduced the gradient length local 
Knudsen number as

where φ could be any flow variable of interest. They 
referred to Bird (1970) who showed that KnGLL > 0.05 
implies a departure from the continuum behaviour. Loft-
house et al. (2007) investigated a Knudsen number range of 
0.002 < Kn ≤ 0.25 for a Mach 10 flow around a cylinder 
using two independent solver: one based on the Navier–
Stokes equations and the other on the DSMC method. 
They calculated the pressure, shear stresses and heat 
transfer on the cylinder surface and correlated the results 
with the local KnGLL to judge whether the region can be 
treated as a continuum or not. The shear stresses and heat 
transfer obtained from the Navier–Stokes solution showed 
considerable differences compared to the DSMC results 
in the KnGLL > 0.05 region. They explained this behav-
iour to be caused by the inaccurate boundary conditions 
imposed at the cylinder surface. The pressure was not as 
adversely affected and showed a better agreement. For 
Kn = 0.002, the total drag and peak heating was within 
1  % of the predicted DSMC result, while for Kn = 0.25 
the error increased to 26.2 and 32.1  %, respectively. The 
study showed the need for hybrid solvers where the fast 
Navier–Stokes solution should be applied in regions of 
KnGLL < 0.05 and the DSMC method elsewhere. This 
study crucially pointed out once more that an inaccurate 

(27)KnGLL =

�

φ
|∇φ|,
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boundary condition could cause a departure from the 
expected results despite the fact that the used method may 
be applicable away from the boundaries. We have shown 
results of Holland et  al. (2014) in Sect.  2.1 that bound-
ary conditions obtained and sampled from an appropriate 
molecular or particle approach can extend the Navier–
Stokes equation further into the smaller length scales. Thus, 
multiscale method present a cure where the exact boundary 
conditions are uncertain on the macroscale, but not on the 
microscale.

Wu et  al. (2006) developed a multiscale DSMC solver 
based on unstructured meshes. The breakdown parameter 
was based on Eq. (27), where φ was chosen to be the den-
sity, velocity and temperature so that KnGLL was obtained 
as Knmax = max

[
Knρ ,Knu,KnT

]
, and a second breakdown 

parameter was used as

where the indices Tr and R refer to the translational and 
rotational temperature. The initial solution was obtained via 
the Navier–Stokes equations, and if one of the two contin-
uum breakdown parameters exceeded a threshold value, of 
which several values were tested, the domain was flagged 
for the DSMC solver. They tested their solver against a 2D 
flow over a wedge at 25◦ of inclination and a 3D near-con-
tinuum parallel orifice jet that expanded into near-vacuum. 
Good agreement between the full and multiscale DSMC 
results were attested and further experimental data for the 
3D flow case confirmed this. Expanding on this work, Lian 
et al. (2011) used Eq. (27) with φ being the pressure. This 
has the advantage that the high-velocity gradient in the 
boundary layer, which may still be in thermal near equi-
librium, is not excluded from the continuum domain, and 
hence, a costly DSMC calculation is avoided. They applied 
this to the same 2D, 25◦ inclined wedge flow at Mach 4 and 
to a Mach 12 square cylinder flow. The L2 norm of the den-
sity and temperature showed that the error was decreasing 
faster and achieved a slightly lower overall error compared 
to the breakdown parameter used before without diminish-
ing the overall accuracy of the solver. Pantazis and Rusche 
(2014) coupled a DSMC and Navier–Stokes solver in open-
FOAM for complex, three-dimensional and unsteady flows. 
The authors emphasised that for unsteady flow coupling, 
numerical constraints become more restrictive and may 
deteriorate the solution and the efficiency of the multiscale 
scheme. Numerical noise, for example, may not as easily 
be reduced if the sampling interval is low and cannot be 
increased due to the time step requirement. The efficiency 
may suffer from a poorly designed parallel implementation. 
Any problems of this sort will build up over time and could 
cause the hybrid solver to perform worse than a monoscale 
approach (longer computational times) and diverge due to 

(28)P =

∣∣∣∣
TTr − TR

TTr

∣∣∣∣,

self-induced numerical instabilities. For geometric flexibil-
ity, unstructured meshes were supported. They tested their 
hybrid solver on the shock tube problem and the unsteady 
flow through an orifice. Their results closely matched those 
obtained with a pure DSMC solver. A comparison of the 
ideal and real speed-up further revealed good strong scaling 
capabilities.

So far in our discussion, we have only considered 
domain decomposition and heterogeneous multiscale meth-
ods and variations of these. These may not always be the 
best choices. If we consider a channel of height H that 
is of the order of the mean free path �, as is the case in a 
Knudsen compressor, then either method (DD and HMM) 
would be difficult to implement. Using a continuum mesh 
and then refine it using the HMM approach, the mesh spac-
ing inside the channel would be smaller than � and, there-
fore, microelements placed on the nodes would overlap. 
One possible solution would be to make use of the field-
wise coupling approach introduced in Sect.  2.1, which is 
what Docherty et al. (2014) have done. They used a hybrid 
Navier–Stokes DSMC code and considered the 1D micro-
Fourier flow. As has been mentioned by Borg et al. (2013), 
the size of the microelement, which consists of a sampling 
and relaxation zone, needs to be appropriately defined in 
order to not adversely affect the results. Hence, a paramet-
ric study is needed a priori which has been done by the 
authors and the size of microelements had been adjusted 
to match a full DSMC simulation. Their approach worked 
well for the tested case but is currently limited to 1D flows. 
Therefore, the reported speed-up was only marginal as a 
wide scale separation could not be achieved. Another pos-
sibility is to join all microelements along transversal lines 
together, to form one single, cross-sectional microelement. 
This has been done by Patronis et al. (2013). They refer to 
this method as the internal multiscale method (IMM). They 
applied their new technique to a converging–diverging 
channel driven by an external acceleration, a curved, high 
aspect ratio channel driven by a pressure difference and 
the developing flow confined by two eccentric cylinders at 
different rotational velocities. Their approach agreed well 
against full DSMC simulations. The computational speed-
up was reported to be 6, 50 and 300 times faster, respec-
tively. The very high speed-up was due to the steady-state 
continuum solver for the multiscale method, whereas the 
full DSMC solver was fully unsteady. Patronis and Lock-
erby (2014) extended this method to the low-variance devi-
ational simulation Monte Carlo (LVDSMC) as introduced 
by Homolle and Hadjiconstantinou (2007). It is based on 
the Boltzmann equation but retains the structure of the 
DSMC algorithm. The key idea is that the velocity distri-
bution can be decomposed into an equilibrium part which 
can be solved analytically and a deviational part which is 
solved for by the simulated particles. Since the equilibrium 
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is obtained in this way, small deviations from equilibrium 
can be simulated with higher signal-to-noise ratio and the 
overall noise decreases. For the case of the converging-
diverging channel, good agreement was obtained compared 
to the DSMC results.

Statistical scatter is omnipresent and will remain a chal-
lenging problem due to the inherent stochastic treatment of 
the collisions. Averaged quantities based on the particles 
contain a high variance and the restriction imposed by cur-
rent and foreseeable future generation of high-performance 
computing facilities means that researcher has to opt for 
noise reducing method to control the accuracy instead of 
increasing the particle count. Burt and Boyd (2008) intro-
duced a low diffusion variant of the DSMC which replaces 
the collision by a set of explicit deterministically steps. Par-
ticles are seeded in cells and not allowed to freely travel 
from one cell to another, which is enforced by specular 
walls on the cell. This removes the necessity to index parti-
cles at every time step but requires to transfer and exchange 
momentum in-between neighbour cells. Furthermore, the 
cells are not rigid but move with a cell velocity obtained 
from the mass averaged particle velocities. Motivated by 
the successful application to the 1D shock tube, they cou-
pled the LD variant with a conventional DSMC solver and 
simulated the flow around a cylinder at Mach 6 and a noz-
zle/plume expansion (Burt and Boyd 2009) as well as the 
flow around a cylinder at Mach 20 (Burt and Boyd 2010). 
The use of the LD-DSMC method to increase computa-
tional efficiency was justified by the fact that particle tra-
jectories were correctly integrated while moving over cell-
based length scales much larger than the mean free path. 
The results compared well to the reference solution and 
the speed-up for the Mach 20 cylinder flow was given to 
be about 2.6 higher compared to a full DSMC simulation. 
Jun et  al. (2013) calculated the flow around a cylinder as 
well, this time at Mach 10. Compared to a full DSMC sim-
ulation, their speed-up was only about 1.2 using the same 
method as described above. They argued that a consider-
ably large part of the calculation is spent finding the initial 
solution with the DSMC method which, for small Knudsen 
numbers, i.e. continuum regions, is rather time-consuming. 
Using a continuum solver instead to obtain the initial solu-
tion, improved their speed-up to a factor of 2.6.

Sun and Boyd (2005) introduced the sub-relaxation tech-
nique in which the history of a signal is removed during 
averaging once it starts to deteriorate the averaged result. 
A relaxation parameter θ can be freely set to influence the 
averaging procedure but may negatively affect the results 
and so a parametric study is advisable. Schwartzentruber 
and Boyd (2006) used the sub-relaxation technique in a 
hybrid Navier–Stokes DSMC solver and used it for bound-
ary condition imposition at the interface between DSMC 

and continuum. They tested their approach on a one-
dimensional shock tube for liquid argon and nitrogen gas. 
Their technique was able to provide smooth boundary con-
ditions for the hybrid solver which compared well to full 
DSMC and experimental data. A pure Navier–Stokes solu-
tion was also tested which gave inaccurate results with the 
reciprocal shock thickness overestimated by almost a fac-
tor of 2. This is consistent with the observation of Carlson 
et  al. (2004), who computed the flow inside a shock tube 
for Mach numbers of 1.55, 5 and 10. In their multiscale 
solver, the Navier–Stokes equations were coupled with the 
DSMC method based on the IP method (information pre-
serving, Fan and Shen 2001). In this method, each particle 
is assigned a second, information preserving, velocity. This 
velocity is solely used to obtain the macroscopic quantities 
through particle averages but does not influence the move-
ment of the particles and hence is less prone to statisti-
cal scatter. The IP velocity follows its own set of rules to 
update itself, a detailed list of which can be found in Shen 
(2005).

The results for the Mach 1.55 case yielded overall good 
agreement amongst the Navier–Stokes, DSMC and mul-
tiscale solver. Increasing the Mach number decreased the 
accuracy of the continuum solution, whereas DSMC and 
the hybrid version matched each other well. The recipro-
cal shock thickness confirmed a deviation by a factor of 
about 2 for the Navier–Stokes equations from the experi-
ment, while DSMC and the multiscale solver matched the 
experiment well. The speed-up was also mentioned, and 
despite the multiscale solver being about 1.6 times faster 
than the pure DSMC version, the Navier–Stokes equations 
still yielded results 9 times faster than the multiscale solver. 
Thus, for those cases where the Navier–Stokes equations 
can be modified to incorporate appropriate boundary con-
ditions, it is still cheaper while retaining a good degree of 
accuracy.

Boyd (2008) investigated the flow past a cylinder-flare 
and blunt planetary probe using a hybrid DSMC Navier–
Stokes solver. Different mesh densities and time steps for 
the respective solver were used in order to speed up the cal-
culation. The initial solution on which the domain has been 
separated into rarefied and continuum regime was obtained 
by the Navier–Stokes equations as they have previously 
proven to provide the initial solution in a shorter time (Jun 
et al. 2013). It has been mentioned that the mean free path 
varied over one order of magnitude for the cylinder-flare 
case (speed-up 1.4) and over two orders of magnitude for 
the blunt planetary probe (speed-up 12.5), where the speed-
up in parenthesis are comparing to full DSMC simulations. 
This shows that multiscale solvers are becoming more effi-
cient for a wide range of Knudsen number separation and it 
is under these conditions that they thrive.
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3.2 � Interim conclusion on hybrid and multiscale direct 
simulation Monte Carlo methods

Schwartzentruber and Boyd (2015) pointed out that exper-
imental studies are vital and needed for the validation of 
current DSMC codes. Currently, most multiscale and 
hybrid DSMC codes are validated against pure DSMC 
solvers, see Scanlon et al. (2010) for a range of 1D, 2D and 
3D test cases. They pointed out that MD could be used as 
a validation tool but is computational rather expensive for 
rarefied gases.

Another issue that arises when coupling DSMC with 
a second solver is the noise penalty that arises due to the 
stochastic treatment of the collision. A range of approaches 
have been presented herein (LD-DSMC, LVDSMC, IP, 
sub-relaxation) and have all been able to reduce the noise 
level. As seen in Ko et  al. (2014) (see Sect.  2.1), using 
spatial or temporal regression reduced the noise with lit-
tle extra computational effort while being independent of 
the method and hence could prove to be a viable alterna-
tive or even be used in conjunction with one of the above-
mentioned methods.

The reported computational gains were highest for the 
cases with the highest Knudsen number separations, and 
hence, applications may be limited to these sorts of flow 
regimes. However, space applications have shown to 
exhibit the free molecular to continuum regime and thus 
rendered themselves as prime candidates for multiscale 
DSMC schemes.

4 � Lattice Boltzmann method

The lattice Boltzmann method (LBM) is strictly speaking 
not a direct particle method. It is derived from the lattice 
gas cellular automata (LGCA) which in turn is based on 
physical particles. In the LGCA method, particles reside on 
so-called sites which are connected via links. It is essen-
tially a computational mesh where sites refer to nodes and 
links to edges. The governing equation simply states that 
the number of outgoing and residing particles at a site is 
equivalent to the collision occurring at the same site, i.e.

Several collision models have been introduced, most nota-
bly the one of Hardy, Pomeau and de Pazzis (HPP model, 
Hardy et  al. 1973, 1976) and Frisch, Hasslacher and 
Pomeau (FHP model, Frisch et al. 1986). Due to its binary 
nature (particles either do or do not exist at sites), the 
method is free of any numerical round-off errors. However, 
statistical noise is high and averaging over larger regions 
or several simulations is necessary to obtain macroscopic 
quantities. The model further lacks Galilean and rotational 

(29)N(r + cdt, t + dt)− N(r, t) = Ω .

invariance. The interest in the method declined once the 
problems surfaced. In the LBM, the single particles are 
replaced by a density distribution function which removes 
some issues encountered in the LGCA. That, however, also 
means that the collision operator cannot be treated explic-
itly and has to be approximated numerically. The easiest 
and still one of the most widely used model is the one of 
Bhatnagar, Gross and Krook (BGK model, Bhatnagar et al. 
1954). It is sometimes referred to in short as the LBGK 
(Lattice-BGK) model and given by

where τ is the collision time, fk is the density distribution at 
link k and f eqk  is the corresponding equilibrium distribution. 
The collision time is given by

where ν is the lattice viscosity and ω is the collision fre-
quency. The full governing equation with the BGK operator 
is

where Eq.  (32) can be seen as a simple advection equa-
tion with a source term. If we ignore the unsteady term, 
we see the similarities to the LGCA method, i.e. Eq. (29), 
where we have streaming on the LHS and collision on 
the RHS. To solve the above equation, we need to define 
c and f eqk  . The lattice speed c is determined by the speed 
model. The speed model determines how the distribu-
tion function is streamed to its neighbours. Typically on a 
2D structured mesh, there are 9 sites (nodes) to consider, 
located at rneighbour = r(rx ±�x, ry ±�y) which includes 
the site at �x = �y = 0. Therefore, the speed model would 
be termed D2Q9 (2D, 9 sites) and each site has a corre-
sponding speed ck and weight wk. The speeds stream from 
one site to another and, therefore, take integer values of 
−1, 0, 1 . They are obtained as

where

The corresponding weights are

(30)Ω(f ) =
1

τ

(
f
eq
k − fk

)
,

(31)
1

τ
=

1

(3ν + 0.5)
= ω,

(32)
∂f

∂t
+ c · ∇f = ω

(
f
eq
k − fk

)
,

(33)ci =






0 i = 0

(cos [α1], sin [α1]) i = 1, 2, 3, 4

(cos [α2], sin [α2]) i = 5, 6, 7, 8

α1 = (i − 1)π/2

α2 = (i − 5)π/2+ π/4

(34)wi =






4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8
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The weights are to some degree arbitrarily set but need to 
fulfil certain constraints, one of which is that 

∑
wk = 1 . 

More information on the weight constraints and how to 
develop higher-order speed models can be found in Succi 
(2001).

The density distribution function at equilibrium is given 
by

where we have the macroscopic density ρ(r, t) and veloc-
ity u, while the lattice speed of sound is obtained from 
cs = 1/

√

3.
The macroscopic quantities are then obtained from

Eq. (32) is now solved in the following way:

1.	 Initialise domain
2.	 Calculate f eqk  from Eq. (35)
3.	 Calculate Ω from Eq. (30)
4.	 Stream the updated density distribution function to 

their neighbour sites
5.	 Obtain macroscopic quantities for ρ and u via Eq. (36) 

and Eq. (37)
6.	 Repeat from step 2 until t = tmax

7.	 Output results

Due to the nature of the LBM in which macroscopic prop-
erties are determined via the density distribution function, 
we need to find boundary conditions for each contribution 
of the density distribution function fi on the boundaries. For 
the D2Q9 model that we have discussed above, there will 
be 3 components of fi outside the computational domain, 
3 components on the boundary itself, i.e in-plane and 3 
components pointing into the computational domain for 
which we need to formulate boundary conditions as they 
cannot stream from outside the boundary into the domain. 
There are several possibilities to find appropriate formula-
tions for the inward pointing components of fi and we will 
briefly describe the method of Zou and He (1997) which is 
one popular choice. Let us denote the inward facing com-
ponents of fi as f

−
, fc and f

+
 where fc is the component 

normal to the boundary and f
−

 and f
+

 the component to 
its left and right, respectively. We first need to evaluate the 
density, which we can write for a Cartesian domain in com-
pact form as

(35)f
eq
k = wkρ(r, t)

[
1+

ck · u

c2s
+

(ck · u)
2

2c4s
−

u2

c2s

]
,

(36)ρ(r, t) =
∑

fk

(37)ρ(r, t)u =

∑
fkck .

where ±u
⊥

 is the perpendicular velocity component on the 
boundary and the sign is positive if the normal direction 
(pointing outside the domain) of the boundary is positively 
aligned with the coordinate system. We differentiate further 
between the components of fi which are inplane, i.e. coin-
cide with the boundary and outside, i.e which are outside 
of the computational domain. With these, we can calculate 
f
−
, fc and f

+
 as

We have introduced a function opp() which returns the 
component opposite to fi, fIP+ and fIP− which are the 
inplane component of fi pointing in the positive and nega-
tive direction of the boundary with respect to the coordi-
nate system and u

‖
 as the velocity component parallel to the 

boundary. ∓2/3ρu
⊥

 in Eq. (39) and ∓1/6ρu
⊥

 in Eqs. (40) 
and (41) will be positive if the normal (pointing outside the 
domain) on the boundary is negative, and negative if the 
normal is positive. 1/2± ρu

�
 in Eq.  (40) and Eq.  (41) on 

the other hand will be positive for f
+

 and f
−

, if their direc-
tion with respect to the boundary is in positive coordinate 
direction and negative otherwise. The velocity component 
of u

⊥
 is either prescribed via Dirichlet- or Neumann-type 

boundary conditions and u
‖
 can be set for moving boundary 

problems. A comprehensive overview of various bound-
ary conditions can be found in Latt et al. (2008) and Chen 
et al. (1996). Classical and recent applications of the LBM 
can be found in Chen and Doolen (1998) and Aidun and 
Clausen (2010).

4.1 � Review on hybrid and multiscale lattice Boltzmann 
methods

The LBM has found wide acceptance and applicability 
among various research discipline, mainly due to its ease of 
implementation, handling of complex geometries and low 
computational cost along with its local behaviour which 
makes it a prime candidate for parallelisation. However, 
the LBM has also been found to work less well for flows 
involving heat transfer, compressibility and high Reyn-
olds numbers. The main reason for the low-to-moderate 

(38)ρ =

1

1± u
⊥



f0 +
inplane�

i=1

fi + 2




outside�

j=1

fj







,

(39)fc = opp(fc)∓
2

3
ρu

⊥
,

(40)f
+
= opp(f

+
)+

1

2
(fIP+ − fIP−)∓

1

6
ρu

⊥
±

1

2
ρu

�
,

(41)f
−
= opp(f

−
)−

1

2
(fIP+ − fIP−)∓

1

6
ρu

⊥
±

1

2
ρu

�
.
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Reynolds numbers that can be achieved with the classi-
cal LBGK model is due to the instability that arises with 
low lattice viscosities. One possible solution is to decrease 
the lattice spacing at the cost of increased computational 
cost. One could also use a multiple relaxation time (MRT) 
scheme (D’Humières et al. 2002) instead of the BGK oper-
ator for the collision. The main idea of the MRT scheme is 
that the collisions occur in moment space rather than veloc-
ity space and each moment is relaxed towards equilibrium 
at its own rate, while in the BGK model, all moments are 
relaxed at the same rate 1/τ. That allows for lower vis-
cosities and hence higher Reynolds numbers. Karlin et al. 
(1998) introduced the notion of the entropic lattice Boltz-
mann method (ELBM), where the H-theorem is incor-
porated into finding the equilibrium distribution function 
f
eq
k  in an attempt to adhere to the second law of thermo-

dynamic, i.e. positive entropy production. In its limit, the 
ELBM will result in the classical LBM and subsequently 
allows lower viscosities as well. Compressible effects are 
difficult to model since the small number of discrete veloci-
ties in the speed model allows only small temperature 
variations. Successful applications have been presented, 
for example, by Guangwu et  al. (1999), who simulated 
Sod’s and Lax’s shock tube problem. Despite following 
the trend of the reference solution, spurious oscillation, 
as well as numerical dispersion, was present. Compared 
to other published data obtained with the Navier–Stokes 
equations using different Riemann solvers and numeri-
cal schemes, its L1 norm in density, pressure, velocity and 
energy compared less favourable. Joshi et  al. (2010) con-
structed a hybrid LBM in conjunction with a finite volume-
based Euler solver where the primitive variables at the cell 
centres were obtained from the Euler equations, while the 
inter-cell fluxes were approximated by the LBM through a 
modified equilibrium distribution function to account for 
thermal effects. They applied their scheme to the 1D and 
2D Sod shock tube problem as done by Guangwu et  al. 
(1999). Despite the absence of tabulated data in the work 
of Joshi et al. (2010), their scheme qualitatively exhibited 
the same behaviour as the pure LBM, see Guangwu et al. 
(1999). Compared to two solutions obtained from the pure 
Euler equation making use of the Godunov and Flux Vec-
tor Splitting (FVS) scheme, their solution compared well 
to the Euler results with spurious oscillation and numeri-
cal dispersion still present. To incorporate heat transfer and 
to compute the temperature field, as stated previously, the 
equilibrium distribution function needs to be modified and 
higher-order speed models should be used, i.e those that 
take their immediate neighbours and their neighbours into 
account. Various models have been introduced to account 
for the energy and thus for the temperature (Guangwu et al. 
1999; Kataoka and Tsutahara 2004a, b; Shi et  al. 2001) 
and are reviewed in Kun (2008). Mezrhab et  al. (2004) 

discussed the thermal models available in the Lattice Boltz-
mann framework and concluded that these are still pre-
mature and need further development. They opted for a 
hybrid approach where the LBM was solved alongside an 
advection–diffusion heat equation to obtain the tempera-
ture field. They applied their coupled solver to a range of 
two- and three-dimensional cases and obtained results 
that compared well to reference data. The same approach 
was chosen by Wu et  al. (2012) to simulated forced con-
vection around a cylinder at various Reynolds numbers. 
The cylinder was resolved by the immersed boundary 
method (IBM) and its influence introduced into the advec-
tion–diffusion heat equation by a source term. Since the 
boundary itself did not coincide with the computational 
nodes as in body fitted meshes, evaluating gradients at the 
boundary was not straight forward. To calculate the Nus-
selt number, which contains the normal temperature gra-
dient at the cylinder surface, it was recast using Fourier’s 
law −Q/k = ∂T/∂n|Ω to eliminate the gradient and then 
finding an appropriate relation for the heat flux Q. Their 
results were compared against two other numerical simula-
tions, and the discrepancies were at most 5 %. Chen et al. 
(2013) extended the advection–diffusion equation approach 
to handle species transport. Their test cases were species 
convection and diffusion with bulk reactions, species dif-
fusion in a channel with surface reactions and natural 
convection inside a square cavity. The first two test cases 
were compared against analytic solutions and good agree-
ment was attested while the same could be said about the 
third test case compared to the solution of a commercial 
Navier–Stokes solver. With their methodology tested and 
validated, they set out to simulate a more complex exam-
ple of a wall-coated microreactor to simulate heat trans-
fer, mass transport and chemical reactions. The velocity 
profiles were compared to a full-scale lattice Boltzmann 
simulation for which good agreement was obtained. To 
further accelerate the procedure, the grid spacing for the 
continuum domain was increased while keeping the spac-
ing of the lattice Boltzmann domain the same. It has been 
found that at a grid spacing ratio of 10:1, results were still 
good while maximising the computational turnaround time. 
Yet another study has been done by Filippova and Hähnel 
(2000), using the same approach as chosen by the authors 
in the previous studies, and extended their approach to vari-
able density flows in order to simulate chemical reacting 
flows. The LBM was further extended with adaptive mesh 
refinement capabilities and boundary fitting to account for 
the misalignment of the boundaries. They have applied 
their method to the flow around a porous burner, where the 
burner itself (cylindrical shaped) has been resolved with a 
refined grid. The ratio tested was 3 and 6 times finer than 
the far field grid. Since the time step is directly propor-
tional to the lattice spacing, i.e. �xk/�t = ck = const., a 
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refined grid means that the time step decreases as well. For 
reactive flows, this becomes important as the timescales 
for reactions are rather small. Studies were conducted for 
a range of Reynolds and Damköhler numbers, matching the 
results of full Navier–Stokes solutions.

Li et al. (2014) simulated the melting and solidification 
process in a 2D rectangular domain where the west wall 
was above the melting temperature, the east wall below 
the melting temperature and the north and south wall adi-
abatic, i.e. ∂T/∂n|Ω = 0. The velocities were obtained by 
the LBM, while the temperature was calculated from the 
energy equation which was solved by a finite volume-
based SIMPLE (semi-implicit method for pressure linked 
equations, Patankar and Spalding 1972) scheme, see also 
Patankar (1980), Versteeg and Malalasekera (2007) for a 
detailed description of the SIMPLE scheme and its deriva-
tives. The variables for the finite volume solver were stored 
at the cell centres while the LBM stored its variables at the 
vertices. In order to provide face-centred velocity compo-
nents for the SIMPLE algorithm, the velocity needed to 
be interpolated to its required location. The interface was 
obtained via the interfacial tracking method. The method 
identifies the cells in which the interface currently resides 
and assumes that the cell temperature is at the melting con-
dition, Tm. This is, however, only the case if the interface 
is exactly at the cell centre and, therefore, a correction was 
introduced to allow the interface to be off-centre. Simu-
lations were then carried out for various Stefan numbers, 
Ste = cp�T/L where L is the latent heat, and compared to 
experimental data. The bulk of the interface was agreeing 
well with the experiment. At the wall, discrepancies were 
observed and attested to the difficulties to maintain the adi-
abatic condition in experiments, as well as the assumption 
made in the numerical simulation, that the volume change 
during the phase transition can be neglected. Brent et  al. 
(1988) developed an enthalpy–porosity technique for melt-
ing and solidification processes in which the Navier–Stokes 
equations remain valid throughout the flow for the liquid, 
transition and solid phase. The energy equation contains 
an additional source term in which the latent heat evolu-
tion is modelled for T > Tm; otherwise, the source term is 
zero. The momentum equation is equipped with a source 
term that mimics the Kozeny–Carman equation. It is zero 
for the liquid phase and increases in the transition region. 
For a fully solidified solution, its value is great enough to 
force all the other terms to vanish, enforcing a zero velocity 
field. The advantage of this approach is that the interface 
comes out as a product of the solution and does not need 
to be explicitly tracked. Chatterjee and Chakraborty (2006) 
reported results of a dendrite growth in an undercooled 
melt making use of the enthalpy–porosity technique. They 
used a modified thermal LBM from which hydrodynamic 
variables were computed and coupled it with an enthalpy 

density distribution function from which the thermody-
namic variables were derived. Their results were reported 
to compare well against reference data although only quali-
tative figures were presented. However, their approach cou-
pled the fast, modified (hybrid) LBM with the elegance of 
the enthalpy–porosity technique and hence lent itself to fast 
computational times for complex interfaces.

Ladd (1994a, b) developed a general framework and 
solver (SUSP3D) to simulate suspended particles. Forces 
are imposed on the particles via fluctuating stresses rather 
than applying random forces directly to the particles. They 
are advected using classical Newtonian dynamics including 
angular momentum of the particles. The solver has been 
developed with an emphasis on good scalability for a large 
number of particles and hence has been subsequently used 
by various other researchers. Beetstra et  al. (2006) made 
use of Ladd’s solver and investigated the drag behaviour 
of various particle formations. They observed that parti-
cles in a cluster formation exhibited a lower average drag 
force per particle than a single particle. This was explained 
by the increased surface-to-volume ratio as each individ-
ual particle, on average, has less surface area to resist the 
oncoming flow. For a cluster of particles whose formation 
represented that of a sphere, at the closest packing possi-
ble (r/d = 1 ), the average drag force per particle was only 
about 20 % of that of a single particle and only reached the 
same level of drag per particle for an inter-particle distance 
of r/d = 7 . Hence, the effect of clustering felt by each par-
ticle sustained several inter-particle distances away. Simi-
lar results were observed for other shaped clusters. They 
further investigated how the drag behaviour changed by 
increasing the Reynolds number and compared that against 
a single-particle drag law presented in Clift et  al. (1978). 
They showed that for increasing Reynolds numbers, larger 
deviations from the drag law were observed. Following 
their work, Beetstra et  al. (2007) investigated mono- and 
bidispersed particle systems, the latter with diameter ratios 
of 1:1.5–1:4. They derived a drag force relation for both 
cases and showed that failing to include the bidisperse 
nature in the drag law yielded significant differences. Their 
results were able to not only match the trend but also to 
accurately predict the particle drag for various Reynolds 
numbers and inter-particle distances. Furthermore, they 
showed that their model and simulation data could dif-
fer by as much as 3 times from current drag laws which, 
despite their shortcomings, are still widely used. Shah et al. 
(2013) investigated the drag behaviour of particle clus-
ters using SUSP3D. Their cluster was surrounded by ran-
domly seeded particles and, therefore, two voidages, that 
of the cluster and that of the surrounding cell, was defined. 
They explored an extensive range of various parameters, 
confirming that compared to the Ergun and Wen-Yu drag 
law, particle clusters exhibit a different drag behaviour. 



	 Microfluid Nanofluid (2016) 20:68

1 3

68  Page 16 of 38

Furthermore for a constant cluster voidage of 0.7, they 
found that a minimum for the drag existed at an over-
all (cell) voidage of 0.96. Increasing the overall voidage 
further resulted in the drag to approach that of randomly 
seeded particles while decreasing the voidage resulted in a 
similar behaviour at a voidage of 0.85, which again dem-
onstrated the importance of cluster formation in particle 
driven flows, such as the fluidised bed reactor. Usta et  al. 
(2006) studied the migration of polymers in microchan-
nels using SUSP3D, where polymers were modelled via 
particles connected by stiff linear Fraenkel springs. Their 
work was motivated by the discrepancies in the literature 
where polymers were reported to either migrate towards the 
channel centreline (including hydrodynamic interactions) 
or wall (without hydrodynamic interactions). From a ther-
modynamic perspective, no migration preference in a uni-
form shear flow is expected. Kinetic theory, on the other 
hand, predicts migration towards the centreline for uniform 
shear and Poiseuille flows. Their findings showed that for 
uniform shear flow the polymer migrated towards the cen-
tre of the channel as long as the channel height was large 
enough. Decreasing the size increased the influence of the 
walls, and for small enough channels, the polymer could 
migrate towards the walls as observed by previous stud-
ies. It is worthwhile to point out that this study presented 
an opportunity to study micro- and nanoscale phenomena 
using a mesoscale approach by simply incorporating a 
suitable polymer model into the solver making it a hybrid 
method. Thus, in comparison with a full molecular or mul-
tiscale approach, even more computational savings are to 
be expected while extending the capability of the solver to 
handle polymeric effects.

Ollila et  al. (2011) mentioned that for thermal fluctua-
tions to be present, the density needs to fluctuate as well. 
Using a squared speed of sound (as, for example, in Ladd 
1994a) will zero out the viscosity which is relevant for fluc-
tuating density flows. They incorporated their fluctuations 
via a forcing (source) term on the RHS of Eq.  (32) and 
showed that the variance of the fluctuation is related to the 
fluctuation–dissipation in the stress tensor. They applied 
the new thermal fluctuating LBM (TFLBM) in a multi-
scale approach in Ollila et  al. (2013c). Here they showed 
results, among other particle drag related studies, for MD 
particle in a cubic box where the solvent was modelled 
by their TFLBM. Tracking the mean square displacement 
over time of each particle, they were able to calculate the 
macroscopic diffusion coefficient without Langevin noise 
added to the system. Although the diffusion coefficient was 
observed to be smaller than anticipated, it has been attrib-
uted to the finite size of the simulation domain. Ollila et al. 
(2013b) further explored the effect of confined polymers 
using either the TFLBM or Langevin Dynamics (LD) in 2D 
and 3D. First, they studied the radius of gyration (a measure 

of how far the polymer is stretching) and the static structure 
factor (a measure of the equilibrium size of the polymer) in 
both planar and perpendicular direction with respect to the 
confinement and showed their different behaviours for vari-
ous confinement levels. They showed that the TFLBM was 
able to capture the decrease in planar diffusion coefficient 
for increasing confinement levels, while LD was not able 
to accurately describe the polymers migration due to the 
absence of hydrodynamic interactions. In yet another study, 
Ollila et al. (2013a) investigated a microfluidic T-junction 
with one inlet at the south and two outlets at the east and 
west side. They showed that the separating streamline, i.e. 
the streamline which separates the streamlines going to the 
outlet to the east or west, can be controlled by adjusting the 
outlet pressure at both boundaries, which thus influenced 
the influx-to-outflux ratio (mass per unit time). Being able 
to control the separating streamline, they placed two par-
ticles in the channel downstream of the inlet with differ-
ent geometrical parameters (initial separation of the two 
particles, distance of their centre of mass to the separat-
ing streamline, radius and channel geometry) and stud-
ied which outlet they would choose to exit. This has been 
validated against experimental data. In fact, they showed 
their findings in a phase diagram which made it possible to 
predict which outlet the particle preferred, based on their 
initial state. Their findings can thus be used to construct a 
microfluidic NOT gate (one particle) or NAND gate (two 
particles). Mackay and Denniston (2013) used the TFLBM 
to couple it via local forces, conserving momentum and 
energy, to MD particles. Here, the mass at the lattice nodes 
was used and coupled with the MD particles directly. MD 
particles were used to construct spheres so fluid could be 
captured inside. By changing the mass of the MD particles, 
either the mass of the fluid inside the spheres was much 
larger or smaller than the overall mass of the sphere (com-
bined MD particles). Studying the velocity autocorrelation 
function (VACF), they showed that the long-time asymp-
totic behaviour was independent of the particles mass and 
agreed with theoretical findings. The particle mass only 
influenced the short-term behaviour of the VACF. Mackay 
et al. (2013) implemented the TFLBM into the open-source 
solver LAMMPS and validated their solver against drag 
on a single spherical particle, particle motion near a solid 
wall, hydrodynamic interactions between four particles 
without collision, two particles with collisions (hard sphere 
interactions) and a confined colloid undergoing a Couette 
flow. They supplemented their validated cases with a scal-
ability analysis based on two high-performance computing 
clusters.

Cui et al. (2012) simulated the cavity formation in a par-
ticle covered domain, resembling a pipe leakage that ini-
tially was covered by soil particles. They used the discrete 
element method (DEM) for the particle motion, with and 
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without surface energy for particle cohesion, and the LBM 
for the fluid surrounding the particles. The particle veloc-
ity and force were obtained from the fluid motion which 
in turn was influenced by the particle motion. They used 
a rectangular computational domain with an orifice at the 
bottom wall, located in the middle from which fluid was 
injected. The domain above was covered by particles. For 
relatively low exit velocities, the pore pressure was found 
to rise and stabilise over time. Increasing the exit velocity 
showed the formation of a cavity which was accompanied 
by a sudden drop in pore pressure. For even higher veloci-
ties, a blow out failure was observed where the fluid was 
flowing in a straight path to the particle surface, ruptur-
ing the layers of particles above. For moderate velocities, 
the cavity reached a stable size and stopped growing. The 
inter-particle cohesion was found to have no influence on 
the rate of orifice pressure build up. A greater pressure was, 
however, required to initiate the cavity formation as the 
inter-particle attraction forces needed to be overcome.

So far in our discussion, the particles suspended in 
the fluid have been modelled as rigid bodies. Dupin et al. 
(2007) coupled the LBM with deformable particle (DP) 
dynamics. The advantages of DP are that their membrane 
deforms as a direct response to the fluid motion. This 
approach is favourable in cases where the particle proper-
ties need to be resolved explicitly and influence the flow, 
however, that comes at an increased computational cost. 
Coarse meshes for a single DP have been reported to have 
approximately 500 nodes. Three types of particles were 
considered; capsules, spherical in shape, having a finite 
thickness and unbreakable membrane; vesicles, spherical in 
shape, having an infinite thickness and unbreakable mem-
brane and red blood cells (RBCs), biconcave in shape. The 
motivation for this study was driven by the fact that stud-
ies up to date, using the computationally more expensive 
membrane potential function, only allowed small domains 
to be simulated. They validated their approach against sev-
eral test cases and used their solver to simulate 200 RBC 
at low Reynolds numbers in a microchannel. RBC were 
initially placed 1 micron apart in a regular formation and 
then allowed to reach an equilibrium state. They found that 
the pressure field varies significantly in time and space. 
This fact is usually ignored in biological models and cells 
subjected to this pressure filed showed great deformation 
which could have a significant impact on biological pro-
cesses such as gene expression, a process in which gene 
information are used to synthesis a functional gene such as 
a protein. Despite the focus on high scalability, with cur-
rent limitation imposed by HPC facilities, simulations over 
the order of 100 cell diameters were not possible. How-
ever, it was argued that for such length scales the effect 
of the particles on the fluid can be modelled and used as 
a mesoscopic model to formulate boundary conditions for 

macroscopic simulations, as seen, for example, in Holland 
et al. (2014), Sect. 2.1.

Driven by the same motivation, to construct a highly effi-
cient solver for general fluid dynamics applications, Zou 
et  al. (2014) combined the efficient velocity, pressure and 
density computation of the LBM with the Navier–Stokes 
equations for the constitutive relations. They validated their 
solver against a Poiseuille flow, Taylor-Green vortex and 
sudden contraction with a ratio of 4:1 and obtained good 
agreement. Their focus then shifted to the computational 
efficiency of the hybrid solver. Comparisons for all three test 
cases showed that the solver coupling lattice Boltzmann and 
Navier–Stokes needed 20–25 % of the time compared to a 
full Navier–Stokes solution. The reduction was attributed to 
the removal of the pressure correction loop inside the PISO 
(pressure implicit with splitting of operator, Issa et al. 1986) 
algorithm that has been employed in the full Navier–Stokes 
solution. This is in accordance with the findings of Premnath 
et al. (2005) who commented that the pressure calculation in 
the Navier–Stokes equations usually takes about 80 % of the 
whole computational time. Salimi et al. (2015) presented a 
hybrid lattice Boltzmann/Navier–Stokes solver incorporat-
ing thermal effects directly into the LBM. Here the thermal 
LBM was coupled with the Navier–Stokes equations and 
the temperature, and the other hydrodynamic variables were 
exchanged at an interface. One of the goals was to elucidate 
the efficiency of the hybrid LBM solver, for which they first 
validated it against reference data for different Reynolds 
numbers, porosity levels, solid to fluid thermal conductiv-
ity and blockage ratios. They then simulated a fixed size 
domain with a pure LBM, pure Navier–Stokes and hybrid 
LBM for one lift cycle. When the time step in the hybrid 
and pure Navier–Stokes solver was set to that of the pure 
LBM, they needed 6.14 and 8.48 more computational time 
compared to the pure LBM solver. This is to be expected as 
the LBM itself performs less floating point operations per 
time step. At a ratio of approximately �tNS/�tLBM = 50, 
the hybrid and continuum Navier–Stokes solver performed 
as fast as the pure LBM solver, taking only 0.92 and 0.84 
of its time, respectively. Pushing the time step ratio fur-
ther to �tNS/�tLBM = 200, the computational time further 
decreased and took 0.55 for the hybrid and 0.33 for Navier–
Stokes solver compared to the full LBM solver. This is not 
surprising as both methods had to perform fewer time steps 
to advance to the next time level. It is interesting to note 
that the pure continuum solver performed better for larger 
time steps than the hybrid solver. This indicates that for true 
macroscopic simulations the Navier–Stokes equations are 
still computationally efficient. In contrast, the hybrid solver 
was able to incorporate multiphysics phenomena on smaller 
scales at only slightly higher computational costs which 
may not be easily achieved with a conventional Navier–
Stokes approach.



	 Microfluid Nanofluid (2016) 20:68

1 3

68  Page 18 of 38

Thus far, we have seen applications in which the LBM 
was successfully coupled with particle and continuum 
domains. Due to its mesoscopic nature, however, it is a 
prime candidate for coupling with a microscale approach. 
Dupuis et al. (2007) coupled a LBM solver with MD and 
applied it for the flow past and through a carbon nano tube 
(CNT). The domain decomposition technique was used in 
conjunction with the Schwartz alternating method. State 
coupling was employed and the influence of imposing only 
velocities from MD to LBM and velocity gradients from 
MD to LBM investigated. Compared to a full MD solution, 
the error decreased for about 10 Schwartz iterations after 
which no considerable gain in accuracy could be achieved. 
The velocity gradient imposition was 3 times closer to the 
full MD solution than the solution in which only the veloci-
ties were exchanged. Using this approach, for the flow past 
and through a CNT, the average error (based on velocity dif-
ferences) was 1.3 and 2.1 %, respectively. The speed-up for 
both cases was reported to be 7 and 2.4 times faster using 
the multiscale approach. This is due to the reduced compu-
tational demand away from the CNT where inter-molecular 
motions are adequately resolved by the LBM. Lobaskin 
and Dünweg (2004) used MD to simulate a charged col-
loidal system. Here the MD particles used the Lennard–
Jones potential for the inter-particle forces and additionally 
finitely extendable nonlinear elastic (FENE) springs. Two 
test cases were presented, the first in which the colloid was 
given an initial horizontal velocity and the second with an 
initial angular velocity. For the first case, the colloid veloc-
ity autocorrelation function exhibited the expected long-
term asymptotic behaviour in which momentum is trans-
ported away by diffusion. The colloid with initial rotation 
showed that its decay of angular velocity agreed well with 
Debye’s law and again showed the expected long-term 
asymptotic behaviour. Results were then presented for a 
charged colloid during a self-diffusion process. Counteri-
ons were placed around the colloid to give a neutral overall 
charge. The velocity autocorrelation function of the centre 
of mass velocity showed good agreement with reference 
data for both neutral and charged colloid. Farahpour et al. 
(2013) investigate the translocation process of a single-
stranded DNA (ssDNA) in which the ssDNA was passing 
through a pore, driven by an electrical field. The hydrody-
namic interactions were captured with the LBM and the 
ssDNA was represented by a monomer through a MD sim-
ulation. The Laplace equation has been solved for the elec-
tric potential and counterions were added to overall balance 
the charge of the simulated system. By studying the veloc-
ity gradient tensor by its eigenvalues and eigenvectors, 
the principle axes of extension and compression could be 
obtained. It was found that the monomer stretched before 
approaching the pore, aligning itself with the electric field 
lines. It then compressed once passed through the pore. 

Further investigations revealed that replacing the coun-
terions by a charged monomer alone produced incorrect 
approaching probabilities of the monomer to the pore. If 
the hydrodynamic interactions were further neglected, then 
field gradient effects were overestimated. Thus, the inclu-
sion of both counterions and hydrodynamic interactions via 
a multiscale approach was deemed necessary to accurately 
predict the correct translocation behaviour of the ssDNA. 
Mackay et  al. (2014) investigated the effect of shear flow 
on colloidal particles in a microchannel. Particles were 
initially placed in ordered layers into the channel, and 
each layer had the same volume fraction. An order param-
eter was defined as ψ6(rjk) = 1/n

∑n
k=1 exp[i6θ(rjk)].  

Here, θ(rjk) is the angle between an arbitrary fixed vector 
and the vector from particle j to k. For �|ψ6|� = 1.0, per-
fect order is achieved in the particle layer. A threshold was 
defined for �|ψ6|� = 0.6 above which an ordered state was 
still encountered. Systems with a lower value of �|ψ6|� were 
consequently classified as disordered states. Their results 
showed that �|ψ6|� dropped rapidly at the start, reaching a 
steady state shortly after. The linear shear imposed by the 
opposite moving walls allowed particles close to the wall 
to move faster on average, allowing particles in their adja-
cent layers to jump into the layer due to the inter-particle 
forces. This behaviour caused a change of volume fraction 
in each layer, and it was identified as a main cause for a 
drop in the order parameter. For a greater amount of par-
ticle exchanges, the order parameter eventually dropped 
below the critical value of 0.6 and disorder started to form. 
Particles close to the wall generally stayed in an ordered 
formation even though disorder was possible at the chan-
nel centre. Their findings have been summarised in a phase 
diagram showing the disordered, ordered and the coexist-
ence layer for different shear rates and volume fractions.

4.2 � Interim conclusion on hybrid and multiscale lattice 
Boltzmann methods

In our discussion, we have outlined that the thermal LBM 
is still immature and a great amount of hybrid solvers have 
been developed to use continuum mechanics to solve the 
temperature field on the mesoscopic scale. This is a valid 
approach which, however, is more concerned with over-
coming the inherent shortcomings of the LBM rather than 
increasing the computational efficiency. Therefore, most 
studies discussed herein were concerned with hybrid solv-
ers, while true multiscale approaches with bespoke flow 
domains in a domain decomposition fashion were less 
common. In a similar way, high Reynolds number flows 
are challenging due to the inherent numerical instabilities 
of the LBM. We have mentioned the MRT collision opera-
tor and the entropic LBM which currently extend the range 
of Reynolds number but do not remove the instabilities. 
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For applications, however, in which solver efficiency is of 
importance and the temperature does not need to be com-
puted, LBM enjoys a reputation of being easy to implement 
for complex geometries and handling multiphysics effects, 
while it outperforms comparable methods at the same reso-
lution in terms of computational time.

5 � Dissipative particle dynamics method

Dissipative particle dynamics (DPD) is a particle-based 
method and has high resemblance to MD which can be 
regarded as a coarse-grained version of it. By grouping 
atoms together into representative DPD particles, length 
and timescales are extended into the mesoscopic regime. 
DPD has evolved as an application driven need to simu-
late molecular systems for which the current limitations in 
space and time for MD are too restrictive. We can use DPD 
if we are only interested in the mesoscopic manifestation of 
the underlying molecular details. The governing equation is 
similar to that of MD as

where we have assumed DPD particles of same mass mi 
and unity in magnitude. We see the difference to MD in 
the splitting of the force into internal and external forces. 
External forces are those imposed to particles by the sys-
tem, such as gravitational forces. Internal forces arise due 
to the inter-particle interactions. We can further decompose 
the internal forces into

where the superscripts C, D and R stand for conservative, 
dissipative and random, respectively.

The conservative force models the particle interactions 
and is given by

where aij is the maximum repulsion force and the weight 
function wC(r) is defined as

Here, rij is the distance between two particle centre of masses 
and r̂ij the vector between particle i and j of unit length.

The dissipative force mimics the effect of viscosity at 
the atomistic level and is given by

(42)
∂2r

∂t2
= F = Fint

+ Fext,

(43)Fint
=

∑

j �=i

(
FC
ij + FD

ij + FR
ij

)
,

(44)FC
ij = aijw

C(rij),

(45)wC(rij) =

{
(1− rij)r̂ij rij < 1

0 rij ≥ 1

(46)FD
ij = −γwD(rij)(r̂ij · vij)r̂ij,

where vij is the particle velocity, γ a coefficient and again 
wD(rij) a weight function. The random force is given by

where σ is a coefficient, ξij is a random number satisfying 
a Gaussian distribution with a variance of unity, and wR(rij) 
is a weight function. The coefficient γ and σ of Eqs.  (46) 
and (47) are related by

and their weight functions are

Different values of s can lead to different dynamic behav-
iours of the system but for conventional DPD simulations, 
s = 2 is chosen in general.

Much of what has been said about the boundary treat-
ment for MD is applicable to DPD as well. Periodic bound-
ary conditions are easily imposed, while open or solid 
boundaries require an appropriate treatment of the con-
servative, dissipative and random force. We refer the reader 
to Revenga et  al. (1999), Mehboudi and Saidi (2014) and 
references therein for a detailed treatment of boundary con-
ditions. We have outlined the similarities between DPD 
and MD and the coarse-grained nature of it. In addition 
to the conservative force, which essentially replaces the 
inter-particle potential as seen in MD, we have a dissipa-
tive and random force term. The random force adds heat to 
the system, while the dissipative force is reducing the parti-
cle velocities. Their effect together causes the temperature 
to be approximately constant accompanied by small fluc-
tuations. Hence, DPD is an implicitly thermostated coarse-
grained MD version.

An in-depth review of the DPD method and recent 
developments has been given by Liu et al. (2014).

5.1 � Review on hybrid and multiscale dissipative 
particle dynamics methods

Although DPD and the LBM are both mesoscopic in 
nature, they have been used for different multiscale appli-
cations due to their inherent different descriptions. While 
the LBM is Eulerian based, DPD is a true Lagrangian 
method and due to its MD background, but upscaled meso-
scopic regime, it has primarily found applications in medi-
cal and biological flows. Symeonidis et  al. (2005) devel-
oped a new time integration technique and reported that 
DPD simulations can be 106 times faster than conventional 

(47)FR
ij = σwR(rij)ξij r̂ij,

(48)γ =

σ 2

2kBT
,

(49)

wD(rij) =
[
wR(rij)

]2

=

{
(1− rij/rc)

s rij < rc
0 rij ≥ rc
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MD simulations. In its limit, it adheres to both microscopic 
and macroscopic properties, making it a prime candidate 
for coupling in both directions.

Natural occurring molecules such as wax, fat and vita-
mins are referred to as lipids, which consist of a head and 
a tail. In water, lipids form bilayered membrane where the 
hydrophilic lipid heads form the surface of the membrane 
with their hydrophilic tails pointing inwards. Biological 
membranes are made up of different lipids, proteins and 
other molecules, contributing to the membrane proper-
ties. Mercker et  al. (2012) studied the curvature modu-
lated sorting of lipids in such a membrane. In the absence 
of chemical interactions, no sorting is to be expected, but 
they showed that sorting of lipids occur if one of the mac-
roscopically defined elastic moduli for either lipid or pro-
teins were different. Surface curvature and properties influ-
enced the membrane’s structure. Increasing the difference 
of lipid and protein elastic moduli increased the stability 
of the formed membrane patterns. The membranes them-
selves were simulated by a finite element-based membrane 
dynamics approach. The macroscopic parameters were 
directly derived from a DPD simulation that was coupled 
with the FE solver. They concluded that in the absence of a 
multiscale approach, results could deteriorate and produce 
incorrect physical systems. Thus, an intermediate DPD 
solver was needed to feed the macroscopic solver with 
micro/mesoscale information in order to capture the cor-
rect membrane dynamics. A similar approach was adopted 
by Ghoufi and Malfreyt (2012) who studied the effect of 
salt concentration in water on its surface tension. They used 
a method called many-body dissipative particle dynamics 
(MDPD) which at its core is essentially the DPD method, 
but the inter-particle force, i.e. Eq. (44), includes not only 
the inter-particle interactions but also a local particle den-
sity. This poses the difficulties that model parameters are 
not readily available. Therefore, atomistic Monte Carlo 
simulations were performed for a fixed parameter space for 
which a linear relationship could be established. This rela-
tion was then used in their MDPD simulation to derive the 
required parameters for which they simulated various salt 
concentration for two salts (NaCl and NaF) and showed 
that with an increase in salt concentration, the surface ten-
sion increased correspondingly. Their trends were matched 
by experimental data. The approach is similar to that of 
Holland et al. (2014), discussed in Sect. 2.1.

Fedosov and Karniadakis (2009) introduced their so-
called triple-decker approach where they coupled MD, 
DPD and a Navier–Stokes solver. This allows a continu-
ous description from microscopic through the mesoscopic 
regime up to the macroscopic layer. Not only is the length 
scale separation reduced via an intermediate, mesoscopic 
layer as seen in Sect. 2.1 where the microscale was directly 
coupled with the macroscale, but also this approach 

benefited from the fact that the mesoscopic solver, here 
using DPD, was particle based which made the coupling 
to the microscopic level simpler. On the other hand, the 
increase in time and length scale of the DPD method also 
meant that statistical scatter, in comparison with its MD 
counterpart, was reduced which made it easier to couple 
to a macroscopic solver. In their approach, MD particles 
were removed and inserted using the USHER algorithm 
(Delgado-Buscalioni and Coveney 2003a, b) and DPD par-
ticles randomly inserted near the boundary. MD boundary 
conditions were enforced by specular walls, pressure forces 
to reduce density fluctuations and shear forces for the tan-
gential velocity component. They applied their approach to 
low Reynolds number for Couette, Poiseuille and lid-driven 
cavity flows using a domain decomposition approach. 
Comparison against a full Navier–Stokes solution showed 
the applicability of the method. From a qualitative point 
of view, statistical scatter was low and profiles at the HSI 
were smooth for all cases. Reducing the HSI to zero, i.e. 
exchanging information directly at an interface without 
overlap, was also investigated for the Couette flow. They 
showed that their multiscale approach started to deviate 
from the analytical solution and showed a maximum dis-
crepancy of about 15 % at the interface which subsequently 
reduced towards the channel walls.

Reducing the length scales even further, Kacar et  al. 
(2010) also used a three-layer interaction model, here cou-
pling quantum mechanics (QM) with MD and DPD. QM 
was employed to find the atomistic interaction energies 
which in turn were used on the molecular level to obtain 
the parameters for the DPD solver, specifically the solu-
bility and cohesive energy densities. The results obtained 
on the mesoscopic level were then mapped back onto the 
microscopic level which completed one coupling cycle. 
They investigated styrene-co-fluorinated acrylate oligom-
ers and found that an increase in oligomer concentration 
caused the system to self-assemble from spherical micelles 
to hexagonal cylinder-shaped structures. The use of a mul-
tiscale approach made it possible to reveal structures on the 
mesoscale that were influenced by the molecular motion on 
much smaller scales. Furthermore, the study showed that in 
certain cases a MD description might not be enough and 
information from even smaller scales are needed as quan-
tum effects may have an impact on the solution at much 
larger scales, as seen here on the mesoscale.

Dzwinel et  al. (2002) also investigated the self-assem-
bly of micelles into hexagonal structures and further the 
Rayleigh-Taylor instabilities using a three-way coupling 
approach. Here, MD and DPD were used as well as the 
fluid particle model (FPM) which was introduced by Espa-
ñol (1998). The FPM is similar to DPD but further accounts 
for a non-central (shear) force. This is necessary as an 
orbiting particle around a central particle would not feel 
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any drag, which is eliminated with the non-central force 
in the FPM and so conserves angular momentum. As the 
FPM is slightly more complex, it is best suited for length 
scales above those of DPD so that FPM particles are large 
enough to only influence their immediate neighbours. Simi-
lar to Kacar et al. (2010), Dzwinel et al. (2002) found that 
the self-assembly of colloidal particles into hexagonal, 
worm-like structures depends on its interaction parameters 
(here, the Lennard–Jones interaction potentials). Further-
more, they investigated the cluster growth rate and found a 
power law behaviour where the exponent initially took val-
ues of 1/2, whereas for longer times a transition towards an 
exponent of unity was observed which was consistent with 
theoretical predictions. In the case of the Rayleigh-Taylor 
instability, they showed that cluster fragmentation occurred 
over time where larger clusters separated into smaller ones 
while the average cluster size increased over time, which is 
characteristic for a mixing problem.

Li et al. (2013) used DPD and constructed a multiscale 
approach containing MD and a Monte Carlo-like poly-
merising model to study the effect of crosslink reactions 
and diffusion on the formation of carbon fibre and epoxy 
resin. They constructed a simple rectangular domain with 
a carbon surface at the bottom and periodic boundary con-
ditions on the side. Initially, the hardener and epoxy resin 
were grouped together, away from the carbon surface and 
separated by a sizing agent. The simulation was then car-
ried out at a constant temperature of 423  K and results 
presented at 60 min of simulation time. All three compo-
nents, hardener, resin and sizing agent diffused into their 
neighbouring domain and combined into epoxy. The hard-
ener was found to be chemically inadequate near the sur-
face to form epoxy which was accompanied by a drop in 
crosslink density, compared to the bulk matrix density. The 
interface region, separated by the matrix and carbon fibres, 
was found to agree with experimental data. DPD presents 
a valid approach for studying larger atomistic groups but 
has shown to be inadequate for epoxy as greater molecu-
lar details were needed, and hence, MD was used in con-
junction with a polymerising model to adequately represent 
such components.

A vesicle is a fluid-filled cell constructed from bilayered 
lipid membranes as described previously. They are involved 
in metabolism, transport processes or chemical reactions, 
which take place inside the vesicle. Sevink et al. (2013) used 
a DPD description to study vesicles with a radius of approxi-
mately 0.45  nm containing O(104) lipids for a duration of 
O(106) time steps. DPD was used to resolve the membrane 
structure and lipid interactions, conserving the necessary 
molecular details. The solvent surrounding the membrane 
was resolved by a combination of Brownian dynamics 
(BD) and dynamic density functional theory (DDFT) which 
allowed the solvent to be purely expressed by a continuous 

concentration variable. As a proof of concept, they tested 
their approach by initially placing lipids in a water solution 
with two lipid volume fractions. Lipids of approximately 
5  v% transitioned into small aggregates which, due to the 
low percentage of lipids, remained at their initial small size. 
Increasing the volume fraction to approximately 23  v%, 
the results were substantially different. The lipids formed a 
discontinuous network, i.e. a membrane-like structure, but 
were prevented to form a fully closed membrane. Finally, 
they investigated a fully pre-assembled vesicle and removed 
a cylindrical portion of lipids at the membrane wall. After 
equilibration, the simulation showed that vesicle healing 
occurred by means of lipid reordering in the membrane to 
achieve a lower-energy state associated with a closed mem-
brane. They concluded that the multiscale approach was 
needed to remove the unnecessary solvent details, which 
could be represented by a continuous field, in order to sim-
ulate realistic dimensions. Driven by the same motivation, 
Berezkin and Kudryavtsev (2013) studied reaction–diffusion 
flows. Their approach consisted of DPD which accounted for 
all the molecular reactions taking place, as a result of diffu-
sion processes of initially separated particles or polymers. 
DPD was used and covered the entirety of the first particle/
polymer domain and extended into the second particle/pol-
ymer domain, covering the interface. From there, a simple 
finite element-based diffusion equation was solved for the 
concentration in the form of ct = Dcxx where D is the dif-
fusion coefficient and c is the concentration field variable. 
The coupling, including an overlap region, was achieved by 
matching the continuum concentration field with the number 
density of the DPD particles. They validated their approach 
for a single reaction of different particles for which an ana-
lytical solution for the concentration/number density can be 
found. The FE solution showed a smooth profile through-
out the domain and overlap region, while the DPD number 
density was subject to small fluctuations, however, over-
all matching the analytical solution. They then tested their 
approach on reactive coupling of immiscible polymer melts 
and interfacial polymerisation of two different monomers. In 
the first case, the number of copolymers per unit area nc at 
the interface was observed to increase initially with time as 
nc ∼ t and then slowed down to scale with the square root of 
time as nc ∼ t1/2. The fast built up of nc is explained in the 
reaction process taking place, while once the reaction had 
finished, diffusion became dominant and reduced the scaling 
behaviour. The same trends were observed for the second test 
case, in which monomer conversion into polymers exhibit 
the same time scaling law, as did the number-averaged and 
weight-averaged degree of polymerisation. Their simple cou-
pling procedure allowed for greater computational efficiency 
by removing unnecessary molecular details in favour of a 
macroscopic concentration field description which is solely 
governed by diffusion.
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A network of polymers can exhibit a loaded stage when 
external shear or normal forces act on the system. This 
behaviour can be observed in tissue engineering, paper 
manufacturing or biological systems. Masoud and Alexeev 
(2010) investigated such loaded polymer networks to study 
the permeation and hindered diffusion using DPD where 
polymer dynamics were obtained by a bond-bending lat-
tice spring model. They validated their approach against 
experimental data for a non-loaded network for which they 
matched the data for permeability and diffusivity over a 
range of porosity values. For loaded networks, they found 
that the permeability and diffusion along the parallel direc-
tion to the normal forces experienced an increased rate 
compared to its non-loaded stage, while the components 
perpendicular to the force direction decreased. Under shear, 
greater permeability was observed for the components in 
the shear plane, i.e. for a shear force γzx, the components 
in x and z were increased, while it had no influence on the 
permeability normal to the shear plane, here the y direction. 
The diffusivity only increased for the x component, while 
both y and z direction exhibit a decrease in diffusion. To 
characterise the degree of network alignment, they intro-
duced a second-order tensor for which an isotropic net-
work (no loading) showed each main diagonal component 
to equal 1/3 of the tensor’s trace, while the off-diagonal 
components were zero (and nonzero for an anisotropic net-
work). Normal forces only altered the main diagonal com-
ponents while shearing introduced nonzero, off-diagonal 
components. Aligning the main axis of deformation with 
the coordinate system by transformation revealed a quasi-
linear master curve onto which all main diagonal compo-
nents fell. Fedosov et  al. (2012) considered only loaded 
networks under shear and investigated structural and rheo-
logical properties of star polymers for various Weissenberg 
numbers. These consist of f identical polymers which all 
connect to a centre node. The star polymers were mod-
elled using a simple spring potential, and the excluded 
volume interactions were approximated by the shifted 
Lennard–Jones potential. The coupling occurred through 
forces in the DPD equations. They considered two hybrid 
approaches: one of which coupled DPD with the polymer 
chains and another using multiparticle collision dynamics 
(MCD). We will focus on the DPD results here although 
both MCD and DPD produced very similar results. The 
relative deformation of the star polymer showed to scale 
with Wi2 up until Wi ≃ 1, after which it reached a saturated 
state and reduced. The alignment with the flow scaled ini-
tially with Wi−1 and then reduced to Wi−0.43 for Wi greater 
than unity since these polymers, for high shear rates, were 
able to align with the flow. Interestingly, the shear rate only 
scaled as Wi1 until Wi ≃ 1 after which a weaker scaling was 
observed, hinting that some shear energy at higher rates 
was transformed. All of the above findings were tested for 

five different concentration levels and two different number 
of nodes making up the polymer; however, they all fell onto 
one single master curve.

We saw in Eq.  (44) that a maximum repulsion force 
needs to be provided in order to calculate the conservative 
force. This parameter is a microscopic dependent value 
and for complex systems best derived directly from MD 
simulations. This was done, for example, by Maly et  al. 
(2008) who studied the morphology of self-assembling 
nanoparticles in copolymer mixtures, which are made up 
only of two different monomers. When mixing polymers, 
the energy associated with the mixing process is measured 
by the dimensionless Flory–Huggins interaction parameter 
χAB. For lamellar polymers, that is, layers of pure poly-
mers stacked on top of each other, and the parameter aij of 
Eq. (44) can be assumed to be aAA = aBB, where we have 
two polymers of types A and B. The solubility parameters 
δi for both type A and B were obtained from MD simula-
tions. With that knowledge, the Flory–Huggins param-
eter could be obtained as χAB = VDPD(δA − δB)

2/(kBT) 
where VDPD is the volume of one segment of a DPD 
bead. This led to an empirical equation for aAB as 
aAB = aAA + 3.27(1+ (3.9/N0.51

DPD))χAB. We refer the 
reader to Maly et  al. (2008) for a detailed derivation on 
how to obtain the Flory–Huggins parameter and briefly 
discuss their findings (see also Fermeglia and Pricl 2007) 
for a general description on how to obtain the Flory–Hug-
gins parameter from MD simulations). They constructed 
nanoparticles with a central, neutral DPD particle covered 
by 12 DPD particles of different combinations of A and 
B. They showed that the introduction of these nanoparti-
cles initiated their self-assembly into distinct cylindrical 
shapes for various combinations of type A and B, cover-
ing the central DPD particle. Scocchi et  al. (2007) inves-
tigated polymer–clay nanocomposites (PCNs) and used a 
similar multiscale approach by coupling MD to their DPD 
solver. PCN is a material that exhibit increased mechani-
cal strength, heat resistance and reduced permeability for 
gases in comparison with a pure polymer matrix while 
having only a fraction of the weight. Using conventional 
macroscopic FE solvers, PCNs are of interest to material 
engineers but depend on their microscopic interactions, 
which are not fully understood. Critical parameters remain 
uncertain, making mesoscopic solvers a prime candidate 
for which the critical parameters are derived directly from 
MD simulations. They studied and compared the struc-
ture of a Nylon-6-MMT PCN to published data and found 
close agreement with expected results, paving the way 
for Toth et  al. (2009) who studied different PCNs using 
MD and DPD and further added a macroscale FE solver. 
Microscopic details were preserved and passed from the 
lowest scale through the mesoscale up to the macroscale, 
and thus, no model constants needed to be defined. Careful 
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validation of each stage showed the applicability of MD 
and DPD at the micro- and mesoscale. Results on the mac-
roscale were then used to derive parameters of macroscopic 
interest, here the coefficients of thermal expansion and 
electrical conductivity. Four different polymer sizes in the 
PCNs were tested and showed that the thermal expansion 
coefficient decreased for all PCNs over the clay loading, 
while the rate of decrease was the steepest for the smallest 
polymer. The electrical conductivity, however, showed an 
increase over the clay loading, independent of the polymer 
size. The importance of this study was the elimination of 
model constants at the cost of a triple-decker approach. A 
trade-off in accuracy and computational speed has always 
to be found and assessed for each case individually. How-
ever, where accuracy is the sole motivation, this approach 
presents an excellent coupling procedure that involves all 
physical scales.

Biological and medical flow applications are often dom-
inated by mesoscopic cell transport, such as red blood cells 
and vesicles. Filipovic et al. (2012) simulated different par-
ticle flow scenarios using a multiscale solver consisting of 
a macroscopic FE, and a DPD or LBM solver at the mes-
oscale. Their influence was introduced at the macroscale 
through forces at the mesh nodes which were then incorpo-
rated into the FE equations. They considered four different 
test cases: (1) one cylinder and (2) two cylinders depositing 
in a channel, (3) four elliptical particle subjected to shear 
flow and (4) particles in an arterial geometry of different 
shapes. For the first case, the drag force exerted on the cyl-
inder agreed well with Oseen’s approximation for both FE-
DPD and FE-LBM. Comparison with experimental data of 
the cylinder displacement showed an initial, undisturbed 
settlement which was gradually disrupted by harmonic 
oscillation due to the vortex street forming at higher Reyn-
olds numbers. Results for the second case were only pre-
sented qualitatively. For the shear flow, the FE-DPD results 
were compared to a pure FE solution and the trends were 
matched, and finally, the arterial geometry, essentially a 
Y-channel, was qualitatively simulated for cylindrical and 
elliptical particles. In their proof of concept study, they 
presented simplified flow geometries (often at the core of 
biomedical flows) and showed that mesoscopic quanti-
ties could successfully be projected onto the macroscopic 
domain. In fact, not in the spirit of multiscale methods, 
yet important to our discussion, Feng et  al. (2012) inves-
tigated arterial (channel) flows with different values of ste-
nosis (channel contraction) using independently a Navier–
Stokes-based macroscopic solver and DPD. The transversal 
velocity profiles at different axial locations agreed well and 
both Navier–Stokes and DPD matched experimental data. 
The authors also investigated the recirculation zone just 
behind the stenosis, caused by the quasi sudden expan-
sion. Smooth results were obtained from the Navier–Stokes 

solution while DPD suffered from larger statistical scatter, 
although still reproducing a distinct recirculation zone. The 
velocity magnitude was integrated in a plane covering the 
whole recirculation area for different stenosis values. For 
a stenosis of up to 40 %, the vorticity magnitude differed 
by a factor of two and only at higher values approached 
each other. The agreement at 75  % stenosis was within a 
few per cent. The standard deviation, due to the statistical 
scatter, was also higher for the DPD solution than for the 
Navier–Stokes part. The integrated backflow for 64 and 
75  % stenosis showed a difference by a factor of 4 and 
1.5, respectively, which was explained by the fact that the 
density immediately behind the stenosis varied while the 
incompressible Navier–Stokes solution assumed a constant 
density flow. Their study showed that DPD was able to cap-
ture the trend of the Navier–Stokes equation while being 
prone to statistical scatter. Therefore, it can be concluded 
that DPD possesses the ability to reproduce continuum 
effects while containing a larger level of noise compared 
to the Navier–Stokes equations. For a smooth solution, a 
hybrid or multiscale method is expected to work best, while 
details on the mesoscale are retained.

Platelets are small parts which are transported in the 
blood. They are smaller than red or white blood cells and 
are responsible to stop bleeding by coagulating (clotting) 
around wounds which on a macroscopic scale can be inter-
preted as changing from a liquid to a solid state. This pro-
cess is referred to as haemostasis, and platelets are said to 
form a haemostatic plug. Zhang et  al. (2014) investigated 
the platelet dynamics using DPD to solve for the blood 
and coarse-grained MD to study the platelets. The cou-
pling was done by forces. Platelets needed to get activated 
before they attached to an opening in the endothelium (the 
inner most layer in the blood vessel) which was done via 
the platelet stresses. Therefore, the authors investigated 
rigid and deformable platelets and compared their shear 
stress distribution on the surface. The particles were sub-
jected to a shear flow with moving walls applied to both 
upper and lower wall, equal in magnitude but opposite in 
direction. Initially, they compared the angular velocity and 
angular acceleration for which differences as high as a fac-
tor of 2 were observed. The average induced stresses on 
the membrane surface were 2.5 times higher for the rigid 
body than for the deformable one. Since the rigid body 
would not yield, it resisted the flow and hence higher val-
ues were possible. The stresses were also faster accumu-
lated on the rigid platelet than on the deformable one. Their 
study showed the importance of accurately describing the 
platelets as the reduced shear stresses on the surfaces not 
only altered their flow behaviour subjected to shear flows 
but also suggested that rigid models, overestimating the 
shear stresses, yielded incorrect activation potentials which 
can have a significant impact on the correct modelling of 
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the haemostasis. Tosenberger et  al. (2013) investigated 
the mechanism of clot growth (coagulation) as the mecha-
nism is still not fully understood and current theories were 
rendered inaccurate. In a first simulation, they only mod-
elled the platelets in a blood flow where inter-platelet con-
nections strengthened over time, while platelets already 
attached for a sufficient amount of time were not able to 
attach new ones. In this model, the essential process of clot 
growth was reproduced where a substance known as fibrin 
is implicitly included as the connections between platelets 
were growing over time. Fibrin is a protein that forms the 
haemostatic plug with the platelets. It can be regarded as 
the glue holding the platelets together. They showed that 
the obstacle formed by the clot disturbed the velocity dis-
tribution, while for large aggregates, the weak forces were 
not able to resist the drag caused by the platelet clot and 
ruptured, leaving a smaller platelet clot of only strong con-
nections. In a second investigation, DPD was coupled with 
a reaction–diffusion–advection equation which was used 
to calculate the fibrin concentration explicitly. The second 
simulation was similar to the first one, in which platelets 
were not able to attach to other platelets in the clot if their 
fibrin concentration exceeded a threshold value, irrespec-
tive of the time they were in the clot. The mechanism of 
coagulation was essentially the same, while the added level 
of information available through the fibrin concentration 
field revealed a constant growing platelet clot. Ruptures of 
aggregates were still possible, however, a much finer dis-
tinction could be made between weak and strong connec-
tions. Furthermore, it was possible to show whether the 
platelets were covered by fibrin or not. Kojic et al. (2008) 
coupled DPD with a finite element representation of the 
Navier–Stokes equations. Here, DPD cells were locally 
introduced in the FE mesh and coincided in a way that 
the FE mesh edges were the boundary of the DPD region, 
which could span over several FE cells. This approach 
resembled the heterogeneous multiscale approach (HMM) 
as described in Sect. 2.1, where mesoscopic details are only 
locally computed. The FE solver covered the whole domain 
and the locally introduced DPD region was coupled to it by 
forces. This allowed for further computational savings by 
only considering mesoscopic details where necessary. They 
applied their approach for two simple benchmark cases: 
the channel and lid-driven cavity flow. For the channel, 
the DPD region was placed inside the centre of the chan-
nel, without contact to the wall. Compared to an unsteady 
channel flow, the multiscale approach matched the results 
of the analytical solution. For the lid-driven cavity, the top 
right corner (in this case the lid was moving from the right 
to the left) was presented by the DPD region and veloc-
ity profiles compared to the pure FE solution showed very 
good agreement. In fact, DPD provided very smooth veloc-
ity profiles for both cases, while no extra smoothing apart 

from averaging was done. It is interesting to note that the 
Reynolds numbers were of the order of 101−102 for which 
high statistical noise would be expected. Even spatial and 
temporal regression as discussed in Sect. 2.1 were not able 
to achieve similar level of noise reduction. This approach 
was recommended for use to study platelet dynamics as the 
clot region can effectively be modelled by DPD (and fur-
ther coupled to a microscopic description if needed), while 
the vast majority of the blood can be modelled with an 
inexpensive continuum solver. In this approach, one would 
simplify the computations in favour of computational 
resources. The opposite approach would be to retain all 
molecular details in favour of high-fidelity results. For sys-
tems of realistic real-world sizes, however, simulations and 
high-performance computing (HPC) must go hand in hand. 
For that matter, Grinberg et  al. (2011) investigated blood 
flow in a brain with an aneurysm (a sack-shaped expanded 
blood vessel). The geometry came from an MRI scan, and 
a coupled DPD/Navier–Stokes solver was developed from 
open-source tools. LAMMPS was used for the DPD sim-
ulation, calculating the blood plasma, red blood cells and 
platelets, while NekTar (http://www.nektar.info/, see also 
Cantwell et  al. (2015) for NekTar++, its successor), a 
spectral element solver, was used on the continuum side for 
the blood flow. The mesoscopic side contained 1011 parti-
cles and the continuum solver 3× 109 unknowns. In their 
study, they used up to 2× 106 CPU cores on two different 
clusters, namely a Blue Gene/P and Cray XT5 cluster. For 
both systems, the strong scaling followed a linear trend up 
to about 106 CPUs. Only at 186,624 cores, run on the Cray 
XT5, the strong scaling dropped to 68 % efficiency. Their 
work was important towards efficient code design and cou-
pling. Due to its general nature, it is equally applicable for 
a broader range of applications and is not limited to medi-
cal flows.

 Mukhopadhyay and Abraham (2009) coupled a DPD 
and MD solver to study the flow over a square obstacle in 
a two-dimensional channel. The geometry was the same as 
studied by Nie et  al. (2004). The domain was split in two 
parts: the bottom one containing the square obstacle was 
modelled using MD and the bulk flow above using DPD. 
While their validation showed good agreement to an ana-
lytical solution (Poiseuille flow without obstacle), they 
revealed further insight into the efficiency of multiscale 
methods (in this case for the Poiseuille flow). There were 
essentially two mechanisms that can increase the computa-
tional time: coarse graining, i.e. using different length scales 
and thus fewer particles (as is the case for DPD particles 
compared to MD particles) and considering timescale sepa-
ration, for which fewer integrations need to be performed in 
order to advance to a given time level. They showed that the 
speed-up to be expected from only considering length scale 
separation scales with O{[((Nm + κ)/(1+ κ)Nm)]

2
} where 

http://www.nektar.info/
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the ratio of particle masses of each respective simulation is 
given by Nm = mDPD/mMD, and κ is the ratio of the volume 
of the DPD and MD region. Further introducing timescale 
separation yields O{[((Nm

√

τ + κ)/(1+ κ)Nm

√

τ)]2}, 
where τ is the relative timescale between DPD and MD. For 
different time steps of MD and DPD, i.e. tDPD > tMD, the 
numerator is growing faster than the denominator and fur-
ther computational savings can be achieved.

5.2 � Interim conclusion on hybrid and multiscale 
dissipative particle dynamics methods

We have shown some examples of hybrid and multiscale 
DPD applications. Due to its mesoscale nature, it can pro-
vide coarse-grained atomistic details for a macroscopic 
description or speed up a microscopic solver by extending 
the length scale. DPD is a versatile particle approach that 
can handle molecular details but provides less statistical 
noise as its MD counterpart. We have seen that coupling 
between DPD to either the microscopic or macroscopic 
level can be achieved by exchanging forces between the 
solvers. Furthermore, while coupling to the macroscale 
produced less fluctuations, coupling to the microscale was 
easily achieved due to the similarities of DPD and MD. 
Hence, the triple-decker approach used here by various 
authors coupled successfully the microscale with the mac-
roscale, without experimental data input (i.e. the interaction 
parameter aij for the DPD solution) and provided a way to 
couple complex systems.

6 � Smoothed‑particle hydrodynamics method

Smoothed-particle hydrodynamics (SPH), originally intro-
duced and used for astrophysical applications (Gingold and 
Monaghan 1977; Lucy 1977), is a particle-based, meshless 
approach for the solution of the Navier–Stokes equations. 
The underlying approach is the integral representation 
method that in steps is approximated to yield the final form 
of the governing equations of the SPH framework. We will 
briefly explain the key equations and concepts, while full 
derivations can be found in Liu and Liu (2003).

We start with a trivial mathematical expression which 
is the underlying core of SPH. We can recast any function 
into an integral form as

where the Dirac delta function is defined as

(50)f (x) =

∫

Ω

f (x′)δ(x − x′)dx′,

(51)δ(x − x′) =

{
1 x = x′

0 x �= x′

As long as f (x) is continuous in Ω, Eq. (50) is an exact rep-
resentation. In the SPH framework, the Dirac delta function 
is replaced by a smoothing function, also referred to as the 
kernel, which yields

Here, W(x − x′, h) is the kernel with a support domain h, 
which is the region where the kernel is active and can be 
freely chosen. It needs to fulfil the following requirements:

1.	 Its integrated value needs to be unity, i.e. 

2.	 It needs to be positively defined, i.e. 

3.	 It needs to have compact support, i.e. W(x − x′) = 0 if 
|x − x′| > κh where κ is a scaling factor

4.	 It should approach the Dirac delta function in its limit, 
i.e. limh→0 W(x − x′, h) = δ(x − x′)

5.	 It needs to be sufficiently smooth, be symmetric about 
its origin and decay away with increasing distance.

A Gaussian kernel may be used but only approaches zero 
at infinity. Research has been dedicated to find appropri-
ate kernel functions; for example, the B-spline function is 
defined as

where R = |x − x′|/h and α depend on the computational 
dimension with values of 1/h, 15/7πh2 and 3/2πh3 for one, 
two and three dimensions, respectively.

Note that in Eq. (52) we follow the SPH convention and 
used the kernel approximation operator 〈 〉 to indicate that 
we approximate Eq.  (50) with a kernel. We make further 
use of a particle approximation in which we replace the 
integral by a summation over all particles within Ω as

where N is the number of particles within h and a short-
hand notation can be introduced as Wij = W(xi − xj, h).  
By particle approximation, we mean that we fill the domain 
Ω with a sufficient amount of particles and solve Eq. (54) 
for each one of them. The integral 

∫
Ω
dx′ reduces to the 

volume of each particle Vj and is replaced by its mass 
and density in Eq.  (54). The first derivative is found by 

(52)�f (x)� =

∫

Ω

f (x′)W(x − x′, h)dx′.

∫

Ω

W(x − x′, h)dx′ = 1

W(x − x′) ≥ 0 ∀x ∈ h

(53)W(R, h) = α






2
3
− R2

+

1
2
R3 0 ≤ R ≤ 1

1
6
(2− R)3 1 ≤ R ≤ 2

0 R ≥ 2

(54)�f (xi)� =

N∑

j=1

mj

ρj
f (xj) ·Wij,



	 Microfluid Nanofluid (2016) 20:68

1 3

68  Page 26 of 38

differentiating both sides. Applying the Gauss theorem and 
dropping terms which are zero, one arrives at

We see from Eq. (55) that in order to find the derivative of 
f (xi), we need to find the derivative of Wij which is analyti-
cally known and therefore readily available.

To this point, we have only approximated Eq.  (50) by 
particles which is applicable to a general set of differential 
equations. We apply this methodology now to the Navier–
Stokes equations for which we first write them in Lagran-
gian coordinates. Denoting the spatial coordinates by α and 
β, we have the continuity equation as

the momentum equation (without external forces) as

and finally the energy equation as

The total stress tensor is decomposed into its pressure and 
viscous contribution as

We now combine Eqs. (56–58) with Eqs. (54) and (55) to 
arrive at the final equations for the SPH method. The full 
mathematical derivation is omitted but can be found in Liu 
and Liu (2003).

The continuity equation becomes

for the momentum equation we have

and for the energy equation we obtain

Boundary conditions are not as easily implemented in the 
SPH framework as in other particle-based methods. Similar 

(55)�∇ · f (xi)� = −

N∑

j=1

mj

ρj
f (xj) · ∇iWij.

(56)
Dρ

Dt
+ ρ

∂vβ

∂xβ
= 0,

(57)
Dvα

Dt
=

1

ρ

∂σαβ

∂xβ
,

(58)
De

Dt
=

σαβ

ρ

∂vα

∂xβ
.

(59)σαβ
= −pδαβ + ταβ .

(60)
Dρi

Dt
=

N∑

j=1

mjv
β
ij ·

∂Wij

∂x
β
i

,

(61)
Dvαi
Dt

=

N∑

j=1

mj

σ
αβ
i + σ

αβ
j

ρiρj

∂Wij

∂x
β
i

,

(62)

Dei

Dt
=

1

2

N∑

j=1

mj

(
pi

ρ2
i

+

pj

ρ2
j

)
v
β
ij

∂Wij

∂x
β
i

+

µi

2ρi
ǫ
αβ
i ǫ

αβ
i .

as with MD in which particles interact with their neigh-
bours, SPH particles interact with those in their support 
domain. There are no particles outside of the boundaries, 
and hence, the kernel will be truncated. The idea is simi-
lar to MD to place other particles outside of the bounda-
ries which are also called ghost particles in the SPH 
framework. However, these ghost particles do not possess 
a well-defined physical property and need to be modelled 
via any reasonable physical assumption about their nature. 
Liu and Liu (2003) reviewed and presented a novel tech-
nique by combining existing treatments for solid bounda-
ries. They introduced two new sets of ghost particles, the 
first of which is residing on the solid boundary itself. These 
particles repel particles within their vicinity back into the 
computational domain via a repulsive force. The second 
set of particles is residing outside of the boundaries and 
ensures that the support domain will not be truncated for 
particles near the solid boundary. They are mirrored par-
ticles of the real particles near the boundary and have the 
same physical properties except for the velocity component 
which is opposite in the boundary normal direction. Keat 
et  al. (2015) reviewed various open boundary conditions 
and showed that there is still active research in this field 
due to the difficult nature of imposing correct open bound-
ary conditions. Federico et al. (2012) provided an easy and 
intuitive approach in which two new sets of ghost particles 
were introduced, resulting in a total of four particle sets, 
i.e. fluid, ghost, inflow and outflow particles. Each of these 
inflow and outflow particles are placed at the open bounda-
ries and have several layers, just as the ghost particles, to 
prevent a truncated support domain. The inflow particles 
are assigned with the desired pressure and velocity, while 
the physical properties for the outflow particles are fro-
zen. The inflow particle are advected in the same manner 
as the fluid particles and change their set from inflow to 
fluid once they cross the open boundary. New particles are 
inserted into the inflow particle set to conserve mass. Simi-
larly, the outflow particles are advected with their frozen 
velocity until they reach the end of the outflow domain and 
are then deleted. Each particle evolves with the equations 
given above for which standard CFD time stepping proce-
dures can be used. Note that due to its Lagrangian parti-
cle nature, SPH represents a meshfree method for solving 
the Navier–Stokes equations and thus particles can easily 
be refined in regions of interest. This adaptive behaviour is 
easily done, in contrast to classical CFD techniques, where, 
for example, either structured meshes with hanging nodes 
or tetrahedral elements on unstructured grids need to be 
employed. This requires further solver modification which 
is not the case in the SPH method. Multi species transport 
is easily achieved by defining particles of different proper-
ties. However, it has been found that higher-order kernels 
may not conserve physical quantities as Wij may locally 
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have negative values. For the approximation of non-neg-
ative quantities such as the density, this could yield non-
physical results. Stability, accuracy and convergence have 
been mainly tested for simple applications with equispaced 
particles in lower-dimensional space so that it is difficult to 
fully assess the strength and weaknesses of the method. We 
refer to Monaghan (2005) for a detailed discussion about 
the advantages and disadvantages as well as applications.

6.1 � Review on hybrid and multiscale smoothed‑particle 
hydrodynamics methods

The breakdown of the Navier–Stokes equations and flow 
phenomena at either very small length scales or rarefied 
gas conditions has fuelled research on particle methods. 
Inevitably, some applications can be described using sev-
eral methods at comparable accuracy and computational 
cost. For a range of industrial applications, channel, pipe 
and flow through co-axial cylinders are often encountered. 
Filipovic et  al. (2009) investigated those applications and 
compared DPD and SPH results independently to elucidate 
their strength and shortcomings in comparison. They inves-
tigated two laminar, low Reynolds number flow cases. The 
first was a simple Poiseuille flow and comparison with an 
analytical solution showed that there was little difference 
between the two methods, both showing accurate results. 
The second test case was the flow through a co-axial cyl-
inder for three different conditions. The first set-up saw 
both cylinders rotate at the same angular velocity and 
the second only the outer cylinder, and for the third case, 
both cylinders were rotating with the same angular veloc-
ity but in opposite directions. The agreement with the ana-
lytical velocity profile was good for both methods and the 
tabulated error revealed that DPD, at best, was marginally 
more accurate than SPH. The density profile, on the other 
hand, showed variations between the cylinder walls for the 
DPD results which were absent in the SPH solution. They 
showed, however, that the computational time was about 
two orders of magnitude less for the SPH method which 
was due to the larger time step permissible as thermal fluc-
tuations were not resolved as in the DPD method. There-
fore, while maintaining a comparable level of accuracy, 
SPH is a fast method and may possess advantages features 
to be exploited by multiscale applications.

Unlike the continuous description of the Navier–Stokes 
equations, SPH models the same physical process as a 
particle which makes it easier to couple it to other parti-
cle methods. Liu et al. (2002) coupled SPH directly to MD 
without the need for an HSI. This coupling, compared to 
direct Navier–Stokes/MD coupling, has several advan-
tages. For instance, particles do not need to be inserted or 
deleted, and the initial SPH particle density can be matched 
at the interface and then smoothly decrease away from the 

interface. By further making SPH particles at the interface 
interact with MD particles through an interaction poten-
tial, MD particle does not feel a sudden loss of interaction 
potential at the interface, as on open boundaries, and hence, 
no correction needs to be done. Since SPH particles have 
an in-build smoothing ability by averaging over neigh-
bouring particles, thermodynamic properties are constant 
across the interface. They tested a simple Poiseuille flow 
for which the wall regions were modelled by 1600 MD 
particles, while the centre part of the domain was covered 
with 600 SPH particles. The results matched the analytical 
solution, and indeed, a smooth profile across the contact 
interface could be observed. Jorn and Voth (2012) argued 
that MD is a very versatile approach but leads to dispa-
rate length scales for proton exchange membranes (PEM) 
which are found in fuel cells. Therefore, they developed a 
hybrid DPD-SPH approach in which DPD was modelling 
the water and polymers, while SPH accounted for the pro-
ton transport through the membrane. They validated their 
approach for a simple lamellar test case for which the pro-
ton concentration was fixed at both ends, i.e. high proton 
concentration at the anode (proton production) and low 
concentration at the cathode (proton consumption) and 
showed good agreement with an analytical solution for 
both concentration and proton flux profiles. They applied 
their hybrid model to a PEM geometry to study the con-
ductivity behaviour with various water contents, which 
is the number of water molecules per sulphonate group. 
Their results revealed that explicitly accounting for the 
proton produced a linear increasing relationship between 
conductivity and water content, while excluding electro-
static effects yielded a nonlinear relationship. Furthermore, 
the conductivity was approximately two times greater for 
the highest water content when including the electrostatic 
effects, while for the lowest water content, no difference 
was noticeable which showed that electrostatic effects 
have an important influence on the conductivity. Experi-
mental results for the conductivity were approximately 
a third higher and also showed a linear increase over the 
water content suggesting that proton exchange needs to be 
included for a correct physical representation. Murashima 
and Taniguchi (2010) used the modified smoothed-particle 
hydrodynamics (MSPH) method, introduced by Zhang and 
Batra (2004), and coupled it to a dumbbell model to obtain 
the stresses in a dilute polymeric fluid. MSPH is an exten-
sion of the conventional SPH method in which 〈f (xi)〉 and 
its derivative is obtained via SPH and a set of equations, 
derived from a Taylor series expansion, are satisfied lead-
ing to more accurate results in the vicinity of boundaries 
compared to the classical SPH approach. The dumbbell 
model is a simple evolution equation of the end-to-end 
vector of a polymer chain, i.e. the distance between the 
end points of the polymer. The hybrid procedure was as 
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follows: velocity, pressure and the new location of parti-
cles were calculated via MSPH and the divergence of the 
velocity then calculated. The dumbbell model was used to 
obtain the stresses and MSPH again to find its derivative. 
This procedure was repeated until tmax was reached. For a 
simple channel geometry, they showed that if the relaxation 
parameter is chosen too small, thermal fluctuations become 
dominant. Increasing the relaxation parameter reduced this 
behaviour and qualitative agreement with a pure macro-
scopic solution showed the expected velocity profile. Yuan 
et al. (2009) investigated several approaches to simulate the 
deposition behaviour of metal particles in low temperature, 
high-velocity air fuel spraying. The surface and impinging 
particles were modelled either continuously with finite ele-
ments or particle based with SPH, and thus for surface–par-
ticle interaction, the following three methods were applied: 
FE–FE, FE–SPH and SPH–SPH. They found for increas-
ing particle temperature and velocity that the interface 
temperature and plastic strain were locally affected by the 
impinging particles. Due to the high particle energy, upon 
impact, particles deformed and thus heated/strained the 
surface over time. The effective plastic strain was further 
found to be a function of the impact velocity as particles 
below a critical velocity remained mostly intact, while for 
higher velocities, scattering was observed. Comparison 
between the different simulation approaches, i.e. SPH and 
FE for particles and surface, showed similar behaviour. 
Tartakovsky et  al. (2008) used the core idea of SPH, i.e. 
Eqs. (54) and (55), and applied that to a reaction–diffusion 
equation (RDE), which solves for a concentration field, to 
simulate flow through porous media. Two mixing solutes A 
and B were used which formed a precipitate product C. It 
was assumed that C only accumulates at pores, and thus, a 
domain decomposition strategy could be adopted in which 
one RDE was solved at the pore level, while an averaged 
version of the RDE was solved on the macroscopic level. 
Since precipitation growth only occurred at the pores, reac-
tions only needed to be captured with the RDE at the pores, 
while reactions were absent in the macroscopic counter-
part. Different levels of resolutions were therefore used to 
reduce the computational time. The coupling was easily 
achieved in a non-iterative manner as both descriptions 
solved the same underlying equation. Ghost particles were 
introduced that could accumulate mass over time. They 
were transformed into solid particles if their mass exceeded 
a threshold value, and thus, precipitation growth could 
occur. They validated the approach against analytical solu-
tions for planar and circular precipitation growth and tested 
the multiresolution scheme against a single resolution sim-
ulation of a passive scalar in porous media. Finally, they 
tested their approach in a porous medium using the hybrid 
scheme which showed that the porosity decreased over 
time due to precipitation accumulation in the pores. They 

tested it against a full-scale simulation which matched their 
hybrid approach. The advantage of their study was that the 
interface did not need explicit tracking but rather was a 
product of the solution.

Apart from molecular and particle-based applications, 
SPH has also been used to investigate geophysical prob-
lems. In rock removal for mines or tunnel excavation, rock 
blasting has become an important alternative to drilling. 
Fakhimi and Lanari (2014) used a hybrid solver compris-
ing of SPH for gas dynamics and discrete element method 
(DEM) to model rock specimens. Rock particles were rep-
resented by circular discs and attached to each other. The 
domain was circular and housed DEM rock particles in its 
entire domain except for the centre, at which SPH particle 
resided. After a simulated explosion occurred, SPH parti-
cles expanded into the rock material. Collision via SPH and 
DEM particles were accounted for by conserving momen-
tum through ideal plastic collisions. Once the contact nor-
mal and shear stresses of DEM particles were exceeded, 
bond break ups and microcracks were formed. By further 
introducing a plane in a second simulation, located off-cen-
tre and slicing the circular domain into two parts at which 
the rock parameters were 1  % of that of the intact rock, 
simulations showed that the shockwave was not strong 
enough to cause further damage beyond the plane. Micro-
crack growth drastically reduced while the waves that had 
been reflected at the plane caused substantial damage to 
the rock material. Another geophysical example is that of a 
breaking dam. Hilton and Cleary (2012) constructed a mul-
tiscale method from SPH and the shallow water (SW) equa-
tions. Their initial study, to investigate each method on its 
own and compare it to experimental data and a multiscale 
method, was a simple dam break scenario. Here, water was 
initially held at a height h for a small portion of the domain, 
whereas the rest of the domain was left empty. Downstream 
of the water box was a pillar that interacted with the water. 
Velocity measurements were taking just upstream of the 
pillar and showed that all methods followed the experimen-
tal data. The pure SPH implementation was more computa-
tional expensive than the SW method so that the multiscale 
method was able to reduce the computational cost. Infor-
mation exchanged between SPH and SW was the velocity 
and water height which were imposed at a single interface. 
With their multiscale approach validated, they applied it to 
a realistic scenario based on the Gordon dam in Australia 
spanning a region of approximately 71 × 62  km. They 
reported results for various intervals and showed that after 
a period of 80 min, a secondary lake formed due to flooding 
that spanned over 15 km. For such applications involving 
large length and timescales, a multiscale approach is nec-
essary to capture the small and necessary details to accu-
rately predict the outcome. The use of a multiscale method 
meant that, for a particle spacing of 15 m, the number of 
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particles could be reduced by two orders of magnitudes 
(from 2× 107 for a full SPH simulation to 1.5−2× 105 for 
the multiscale simulation).

SPH has proven itself to be a very robust and fast 
method for visual applications and has been used in major 
movie productions (Monaghan 2005). Raveendran et  al. 
(2011) noticed that due to the kernel approximation, sud-
den changes in pressure are not transferred instantaneously, 
as only the region within the kernel is updated. Hence, 
pressure changes manifest themselves as artificial acoustic 
waves which can be suppressed by increasing the stiffness 
or reducing the time step. They introduced a new hybrid 
approach where a coarse grid was superimposed onto 
the SPH domain and the pressure was solved via a Poi-
son equation. In this way, the pressure could be obtained 
directly by interpolation, while a density correction proce-
dure ensured that a constant density was kept throughout 
the domain. Their approach required 10 and 18  % more 
computational time for an incompressible and weakly com-
pressible SPH solver; however, since numerical artefacts 
such as the spurious acoustic waves were reduced, much 
greater time steps could be employed, overall increasing 
the efficiency of the proposed algorithm. They applied their 
solver to several different water splashing cases using 105 
to 5× 105 particles and showed that their speed-up was 3–4 
times compared to a standard SPH algorithm. Despite the 
visual effects orientated approach, the inclusion of a Poi-
son solver on a coarser grid represented an elegant way to 
include the elliptic nature of pressure in the SPH method. 
Wang et  al. (2013) followed a different approach for vis-
ual applications in which the fluid phase was solved by a 
fast LBM-based solver. The emphasis has been on the free 
surface dynamics, and hence, the use of LBM removed 
the problems encountered in Raveendran et  al. (2011). 
The free surface front was tracked with massless particles 
where a coupling band existed that separated the fluid from 
the gas phase. Its centreline coincided with the free sur-
face and expanded a distance d into both phases. Particles 
were inserted into the coupling band and were simulated 
via SPH. The velocity was imposed onto the particles via 
a weighted interpolation, gradually blending from a pure 
LBM velocity to a pure SPH velocity. The purpose of the 
added SPH particles was for visual effects only. Particles 
penetrating into the LBM domain from the coupling band 
were rendered as bubbles, while particles inside the cou-
pling band were rendered as foam. Particles escaping the 
coupling band, outside the fluid domain, were subsequently 
rendered as spray. Their hybrid solver produced similar 
results compared to other visual approaches for various 
scenarios, while the computational speed, owing to the fast 
LBM solver, was among the fastest.

We now turn our attention to a new, hybrid method that 
has emerged in the last decade and has successfully been 

applied to various cases. In the introduction to this sec-
tion, we have mentioned the work of Filipovic et al. (2009) 
and showed the close relation of SPH and DPD. Español 
and Revenga (2003) introduced a new method based on 
both SPH and DPD to harvest their respective advantages 
and termed it the smoothed dissipative particle dynam-
ics (SDPD). This hybrid method reproduces the behav-
iour of the Navier–Stokes equations (SPH part), while 
thermal fluctuations on the mesoscopic level are retained 
(DPD part). Hence, the new method is able to be used for a 
broader range of scale separation, whereas no explicit cou-
pling is needed in-between methods. The introduction of 
SPH into the DPD framework also means that SDPD parti-
cles have a physical dimension, unlike the arbitrary size of 
DPD particles. Vázquez-Quesada et al. (2009) investigated 
the scaling behaviour of the SDPD method for particles 
and polymers undergoing Brownian motion in suspension. 
In the case of a single colloidal particle (constant volume) 
surrounded by solvent particles that have been tested for 
different solvent particle volumes (by refinement), the ther-
mal fluctuation of the colloidal particle has been shown to 
be scale invariant (over the solvent particle volume), while 
the thermal fluctuation of solvent particles showed a square 
root dependency over its volume. This behaviour is to be 
expected as the thermal fluctuation should only depend on 
the size of the particle and not on that of the surrounding 
ones. This mechanism is not observed in DPD as no scale 
information is available. Alternatively, either MD has to be 
employed to derive accurate microscopic parameter that 
can be imposed on the mesoscopic level or a trial and error 
approach with fine tuning parameters a posteriori. These 
are two common choices to circumvent this shortcoming of 
the DPD method.

Due to the DPD nature of the SDPD method, it can 
also be applied to microscale flows. Litvinov et al. (2008) 
investigated a suspended polymer chain in solution where 
the solvent and polymer molecules were modelled using 
SDPD, while polymer beads were bonded by a FENE 
spring model. First, they tested a two-dimensional poly-
mer with zero imposed velocity and studied the stochas-
tic motion of the polymer. The radius of gyration, which 
is the trace of the gyration tensor, increased linearly with 
the number of beads as expected from the theory. Here, the 
gyration tensor is a measure of how far the molecules of 
the polymer are apart, i.e. G = 1/2N2

∑
i,j

〈
rijrij

〉
 where 

N is the number of beads. In a second simulation, they 
applied their method to a polymer in a microchannel and 
altered the channel height to study the behaviour of con-
finement. Decomposing the radius of gyration to take only 
the x and y components of the polymer chain into account, 
i.e. the radius of gyration parallel and normal to the chan-
nel wall, showed anisotropic behaviour for channel heights 
H < 10 where H was normalised by the unconfined radius 
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of gyration. For H > 10, both parallel and normal compo-
nent collapsed onto one single curve, showing the dimin-
ishing effect of channel confinement and return to isotropic 
behaviour. In a similar study, Bian et al. (2012) investigated 
a single particle in suspension and applied it to several 
test cases ranging from typical examples found in micro- 
to macroscale flows which included flow through porous 
media, a particle with initially imposed velocity (kick 
started), particles under shear, interaction of two approach-
ing spheres and a neutrally buoyant particle under Brown-
ian motion close to and sufficiently far away from a solid 
boundary. Their test cases agreed well with reference data. 
In their last test case of a particle suspended near the solid 
surface, they also investigated the anisotropic behaviour 
of a single particle based on its diffusion coefficient. They 
decomposed it into diffusion parallel and normal to the 
wall, but unlike in Litvinov et al. (2008), they changed the 
position of the particle from the wall, while the second wall 
on the other side was placed sufficiently far away so that 
only the influence of the closest wall was felt by the par-
ticle. They observed that the diffusion parallel to the wall 
was always greater than normal to it, independent of the 
distance from the wall. When placed directly on the wall, 
the normal component was zero, while diffusion parallel to 
the wall was still permissible. When placed further away, 
the diffusion coefficient approached each other. Compari-
son with theoretical results showed that close to the wall 
(up to a couple of particle radii), SDPD and theory showed 
discrepancies of up to 30 % which vanished with increas-
ing distance away from the wall. Hence despite the loss 
in accuracy close to the wall, the general behaviour of the 
microscale (anisotropic behaviour) was captured in both 
approaches. Accuracy close to the wall may be increased 
by using MD for near-wall regions and SDPD for the rest 
of the domain. Litvinov et  al. (2009) derived an analytic 
expression for the diffusion coefficient to be used in con-
junction with SDPD liquids. An accurate knowledge of the 
diffusion coefficient a priori is important for cases where 
the Schmidt number Sc influences the flow, as, for example, 
in the study of non-equilibrium polymer properties. They 
applied it to a periodic box and showed that flow properties 
were accurately captured. Furthermore, they showed that 
no secondary structures were formed during the simulation 
(crystallisation) by showing the mean square displacement 
to monotonically increase without plateauing (indicating 
solidification, decrease in diffusion). The radial distribution 
function followed the expected behaviour without second-
ary peaks, which would have indicated particle clustering.

SDPD in itself can be regarded as a hybrid approach 
combining SPH and DPD. However, it can be further cou-
pled with a microscopic or continuum solver to further 
enhance details or gain computational efficiency. Moreno 
et  al. (2013) presented a preliminary multiscale approach 

in which finite elements for the macroscopic Navier–
Stokes equations were coupled with SDPD for biomedi-
cal applications. Fine scales were locally resolved with 
SDPD, while the majority of the domain could be repre-
sented by the FE method. Although a two-way coupling 
has been implemented, the coarse scale has been assumed 
to be steady as the time to reach equilibrium on the small-
est scale was less than the macroscopic time step, i.e. 
�tfine ≪ teq ≪ �tcoarse . Their test case was the lid-driven 
cavity, and they showed that the horizontal velocity profile 
of coarse and coupled velocity matched well. The exten-
sion to non-Newtonian fluids is necessary to study true 
biomedical applications such as blood flow which has 
been left for future work. Kulkarni et  al. (2013) further 
investigated the scaling behaviour of the SDPD method 
and introduced a novel multiresolution scheme. First, they 
reported on the equilibrium properties of SDPD particles 
in a three-dimensional box. They showed that for different 
particle resolutions, the density stayed constant throughout 
the domain and the temperature stayed within 2  % of its 
imposed value. The velocity PDFs of the different particle 
systems showed that with increasing the particle resolution, 
the Maxwell–Boltzmann distribution showed narrower tails 
and higher peaks, approaching the Dirac delta function in 
its limit. This, again, showed the correct scaling behaviour 
of SDPD. They devised a multiresolution scheme in which 
particles were able to change their resolution from one 
domain to another. For example, if a particle was refined by 
a factor of 2, once it entered the refined domain, it would 
be deleted and two new particles inserted. To conserve 
mass and momentum, both would need to contain half the 
mass of the original particle while sharing the same, origi-
nal velocity. One has to note that boundary conditions are 
sensitive to scale changes and, for such an approach, need 
to be considered carefully. They applied the multiresolution 
approach to an equilibrium test case showing that while the 
particle resolution was changed smoothly, the density was 
not adversely affected in the refinement region and showed 
a constant profile across the domain. The second test case 
was the Couette flow for which a fine resolution was chosen 
near the stationary, bottom wall, while a coarser representa-
tion was chosen at the moving, upper wall. The resolution 
was changed at the channel centreline in a region of finite 
thickness. They were able to match the analytical solution 
in this way. The ability to smoothly change between reso-
lutions, while SDPD is applicable over a range of length 
scales, makes it a powerful and computational efficient 
method. Petsev et al. (2015) extended the idea of Kulkarni 
et al. to a multiscale, multiresolution SDPD-MD algorithm. 
First, they derived a multiscale approach based on the 
AdResS scheme of Praprotnik et  al. (2005), see Sect.  2.1 
for a detailed discussion, in which the pairwise force evalu-
ation was blended between both description for a smooth 
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change. Applied to an equilibrium test case, they showed 
that the temperature and density profile across the domain 
differed by 1.8 and 3.2 % at most, where the domain was 
divided into MD and SDPD with a buffer in-between. They 
applied it to the Couette flow where the moving wall was 
set along the MD domain in the first set-up and along all 
three domains (MD, SDPD and buffer layer) in the second 
set-up. For both cases, the correct start-up behaviour was 
observed with minor statistical scatter. In another simula-
tion, they divided the SDPD region into a fine and coarse 
region where the fine region was located near the MD inter-
face to match its resolution. The moving wall was only 
applied to the MD domain, and again a good comparison 
with the analytical solution was observed with minor noise. 
Although the resolution was successfully changed within 
the SDPD domain, decreasing the computational demand, 
the same time step had to be used across all domains which 
removed some of the potential computational savings. A 
remedy could be the use of multiple timescale integrators 
which were not investigated. However, the ease of blend-
ing between MD and SDPD via the AdResS scheme and 
the multiresolution character of the SDPD method showed 
great potential of the SDPD method to be accurately used 
on the smallest scale, while upscaling showed the results to 
converge to the Navier–Stokes equations.

6.2 � Interim conclusion on hybrid and multiscale 
smoothed‑particle hydrodynamics methods

We have briefly discussed the progress in hybrid and multi-
scale SPH methods. Its drawback in accuracy has favoured 
other comparable methods; however, its ease of imple-
mentation and computational efficiency has led to applica-
tions such as visual effects. However, SPH remains a pure 
particle-based method that adheres to the Navier–Stokes 
equations [Eqs.  (60–62)] and hence has shown supe-
rior coupling properties to other particle-based method, 
most prominently MD and DPD. The recent introduction 
of SDPD, a combination of the favour-able properties of 
SPH and DPD, provided new research interest into the 
SPH method, especially for the mesoscopic domain. It is, 
however, not limited to this regime as microscopic details 
are captured as well, although the inclusion of MD on the 
smallest scale has shown to be beneficial. In the study of 
Petsev et  al. (2015), using the AdResS scheme, SDPD 
(and therefore SPH) showed that each simulated particle 
can be seen as a system carrying a set of equations which 
govern its dynamic behaviour. Changing from the micro- 
to a meso- or macroscale description and vice versa does 
not mean that the particles need to be destroyed or new 
particles inserted as in a Navier–Stokes-based coupling 
approach with MD particles. Instead, they may smoothly 
change from one description to another (changing the 

equations of motion via blending). This behaviour is truly 
advantages compared to traditional, grid-based Navier–
Stokes algorithms, and further research into particle-based 
Navier–Stokes methods, such as the SDPD approach, could 
prove to simplify current challenges arising at the coupling 
interface.

7 � Summary and conclusions

In the previous five sections, we have looked at different 
hybrid and multiscale methods that were developed and 
used in recent years. Two features are commonly the driv-
ing motivation for opting to a multiscale or hybrid descrip-
tion over a monoscale approach, to increase the computa-
tional efficiency and to enhance details at smaller scales. 
We have focused our attention in this review on the most 
recent and most cited work so as to give an overview of 
the current state of research. In this spirit, we have not lim-
ited ourselves to just one single hybrid/multiscale approach 
but rather have tried to give a comprehensive overview in 
various particle-based methods. This also implies that it is 
not feasible to consider all published literature but rather 
to give an overview of what each method has achieved to 
date. It is hoped that the presented studies show an array 
of different approaches to tackle similar problems and that 
each method has advantages and disadvantages which may 
dictate the most suited approach for a particular problem. 
We have included the lattice Boltzmann and dissipative 
particle dynamics method in our discussion as two mes-
oscale representatives. We saw that coupling to other length 
scales, especially DPD to other particle-based methods, 
was easily achieved. Molecular dynamics, on the other 
hand, coupled directly to the Navier–Stokes equations 
presented difficulties due to disparate degrees of freedom 
arising from the length and timescale separation. Further-
more, due to the continuum–particle nature in multiscale 
MD simulations, particles need to be restricted or added/
removed in the hybrid solution interface (HSI) in order to 
properly model the particle behaviour in the overlap region. 
This is not a trivial task, and various approaches have been 
discussed herein. We have discussed possibilities where 
more than two methods have been combined as seen in 
the triple-decker approach. MD to Navier–Stokes coupling 
may benefit from a mesoscopic middleman to reduce the 
effort to link both descriptions. For example, one could 
use MD at the atomistic level and couple it with the SDPD 
method. The SDPD method can then be blended from 
small to large scales (as done by Kulkarni et al. 2013) and 
then be coupled with the Navier–Stokes equations on the 
macroscale. Boundary conditions between MD and SDPD 
as well as SDPD and Navier–Stokes are easier to impose 
compared to a direct MD and Navier–Stokes coupling. 
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At the macroscale, SDPD particles could easily exchange 
macroscopic quantities such as velocity, pressure and tem-
perature, while on the smaller scales, they could make use 
of their particle nature to interact with MD particles. This 
approach presents a simpler coupling between descriptions, 
and indeed, a trend towards multiscale schemes that make 
use of more than two methods can be seen. The combina-
tion of micro, meso and macroscale together into one single 
approach may prove to yield more accurate and stable cou-
pling methods, while physical phenomena are adequately 
modelled across all scales.

A different approach was proposed by Asproulis and 
Drikakis (2013) in which a microscale model was trained 
by using an artificial neural network (ANN). These are net-
works aiming to mimic the human’s neural network. When 
presented with training input and knowing the correspond-
ing output, an ANN can be trained to reproduce results for 
similar data (inside its confidence interval). ANNs are usu-
ally used for pattern recognition tasks, for example trans-
forming handwriting into digital text or face recognition. 
However, Asproulis and Drikakis recognised that in MD 
to Navier–Stokes coupling, most of the MD simulations 
on the small scales are presented with similar input from 
the macroscale (Navier–Stokes solution) and thus pro-
duce similar outputs. They trained an ANN with MD data 
for a Couette flow and showed that it could speed up the 
computational time by disregarding computationally simi-
lar calculations and using the ANN to predict the micro-
scopic properties. The benefit of an ANN is that it can take 
an arbitrary amount of input data and transform it into an 
arbitrary amount of output data. Latino et al. (2007) inves-
tigated the accuracy of ANNs for various parameters to 
predict the potential energy surface (PES) by training two 
different network architectures with MD simulations. They 
found that for a sufficient amount of training data, the error 
was less than 1  %. Studies in solid mechanics have also 
been presented that made successful use of ANNs, see, for 
example, Hambli (2011) for human bone geometry adap-
tation over time where long-time intervals prohibit micro-
scale simulations and Unger and Könke (2009) for crack 
propagation in a reinforced concrete beam.

Returning to multiscale simulations, coupling two 
descriptions may prove to be a cumbersome task, especially 
deriving an efficient communication algorithm that works 
across processors. Tang et  al. (2015) recently introduced 
the multiscale universal interface (MUI), which is a header-
only library that takes most of the programming-related 
issues off the user’s hands. A data sampler, derived from 
texture sampling concepts, is implemented which allows 
for spatial data interpolation between descriptions. This 
is needed in regions where there is a geometric mismatch 
between the two coupled schemes. The library operates in 
a multiple program, multiple data (MPMD) approach and 

uses point-to-point, non-blocking, asynchronous communi-
cation protocols for greater flexibility and efficiency. Fur-
thermore, the concept of frames has been introduced which 
allows the storage of several time steps. This is needed to 
preserve time information, especially in cases where two 
solvers iterate at a different pace. Time information can 
be exchanged at different stages during the execution and 
the frames can also be used to calculate average quantities. 
These are sometimes needed where average flow quantities 
are imposed in the HSI. They applied it to a simple Couette 
flow and coupled two LAMMPS solver (SPH). Less than 
100 lines of code were needed to establish the coupling. 
The computational efficiency showed good strong scal-
ing over a range of up to 512 cores. In times where open-
source fluid dynamic tools are readily available, their MUI 
library may provide a handy tool to couple different solvers 
at high efficiency.

In Fig. 1, we have summarised the length scale separa-
tions that have been achieved by the different particle-based 
multiscale methods discussed in the previous sections. Here 
we plot the smallest characteristic length scales against 
the size of simulation domain. The smallest characteris-
tic length scales are: molecular diameter (for MD), mean 
free path � (for DSMC), mesh spacing �xmin (for LBM), 
particle diameter (for DPD) and average distance between 
particles (for SPH). These characteristic length scales are 
chosen arbitrarily but have been found to be a good indica-
tor for the minimum resolution required for each respective 
method. Since simulations can be done using either dimen-
sional or non-dimensional units, only those studies stating 
the physical length scales explicitly were considered. In 
some cases, the smallest characteristic length scales were 
approximated based on other geometrical information. A 
few observations can be made by studying Fig. 1. All the 
molecular dynamics-based multiscale simulations have 
the same smallest length scale (0.34× 10−9 m) since all 
studies used liquid argon as their working fluid. This is a 
common choice and fixes the smallest scale, however, the 
domain size varied in orders of magnitude. A linear trend 
(in the log–log plot) is evident which shows that all pre-
sented studies operated at the same order of length scale 
separations of approximately O(102)−O(103). This is also 
largely true for the non-dimensional simulations which 
were not considered in Fig.  1. This is explained by the 
fact that the channel flow is primarily used which in turn 
indicates that multiscale methods to date are still under 
development and primarily validated but less frequently 
applied to complex geometries. The channel flow offers a 
well understood example for which an analytic formula is 
available for both the Poiseuille and Couette flow. Hence, 
the expected scale separation does not change drasti-
cally for different particle-based method as the underly-
ing geometry is not changing. However, to make the most 
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use of multiscale simulations that range across scales, new 
methodologies need to be developed to couple the micro-
scopic with the macroscopic world. It should be mentioned 
at this point that only those multiscale methods combining 
two approaches have been considered. We have addressed 
various studies combining more than two methods, see, 
for example, Fedosov and Karniadakis (2009), Kacar 
et  al. (2010), Petsev et  al. (2015), and it is expected that 
by combing more than two approaches, further length 
scale separation can be achieved. In terms of Fig. 1, multi-
scale approaches ranging over several length scales would 
be situated in the upper left part of the plot. There is only 
one example which can be considered a true multiscale 
approach which bridges the microscale O(10−9) with the 

macroscale O(10−1). This is the study of Grinberg et  al. 
(2011) who elaborated on the difficulties of parallel com-
putations that occur at these length scale separation. See 
Sect. 5.1 for a more detailed description. Another observa-
tion can be made from Fig. 1: if we define the micro- and 
macroscale to be approximately of the order of O(10−9) 
and O(100), respectively, we can define the mesoscale to 
sit in-between these two scales. As seen from the plot, all 
methods, except for molecular dynamics, are located in this 
area. The DSMC and SPH methods are able to simulated 
flows on the macroscale as well but also seem to be suc-
cessful on much smaller scales. In fact, the SPH method 
ranges from O(10−9) to O(102) (here we include the SDPD 
method which makes it possible to be used on such small 

Table 3   Advantages, disadvantages and applications of the particle methods presented in this review

Advantages Disadvantages Applications

MD Explicit molecular structure Computationally expensive (O(N2)) Medical and biological systems

Open boundaries difficult to treat Coatings

Surface-bounded flows

Fundamental atomistic research

DSMC Applicable to micro- and macroscales High statistical scatter Rarefied gas

Easy treatment of complex geometries Limited to high Knudsen numbers Space related systems

LBM Computational fast classic LBM limited to low Mach numbers Multiphase

Applicable to meso- and macroscale Thermal behaviour difficult to treat Porous media

Easy treatment of complex geometries Multiphysics

DPD Mesoscopic particle description, easy link to 
micro- and macroscale

Length scales of DPD particles not defined Medical and biological systems

Solvents explicitly treated (molecular structure) Morphology of materials

Coarse-grained molecular behaviour

SPH Navier–Stokes in particle form Still ongoing research on Boundary conditions High speed flows

Easy coupling due to particle nature May not conserve properties for higher-order 
schemes

Explosions

Navier–Stokes on the mesoscale

Fig. 1   Length scale separations 
achieved with various particle-
based multiscale methods. Only 
those methods that combine 
two different approaches are 
considered
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scales), the DSMC method from O(10−8) to O(10−1) and 
the DPD method from O(10−9) to O(10−4). These methods 
are valid over a wide range, but their capabilities are not 
leveraged due to HPC limitations and limited knowledge 
available on coupling approaches for complex geometries. 
We have summarised the advantages, disadvantages and 
applications of each presented particle method in Table 3. It 
may be consulted together with Fig. 1 to choose a suitable 
particle method to construct a multiscale scheme.

Finally, we would like to mention the work of Martin 
Karplus, Michael Levitt and Arieh Warshel who in 2013 
received the Noble prize in chemistry for having devised 
a physical sound manner to communicate information 
between quantum and classical mechanics in complex 
chemical systems. Multiscale schemes haven risen over 
the past decades and have demonstrated that current prob-
lems may be successfully simulated with such an approach. 
They have established themselves, and it is expected that 
their research interest will continue to grow, helping to 
demystify current and future challenges in fluid mechanics 
and beyond.
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