
Vol.:(0123456789)

Journal of Medical Ultrasonics 
https://doi.org/10.1007/s10396-024-01413-3

ORIGINAL ARTICLE–PHYSICS & ENGINEERING

Artifact reduction in photoacoustic images by generating virtual 
dense array sensor from hemispheric sparse array sensor using deep 
learning

Makoto Yamakawa1  · Tsuyoshi Shiina1

Received: 8 December 2023 / Accepted: 30 January 2024 
© The Author(s) 2024

Abstract
Purpose Vascular distribution is important information for diagnosing diseases and supporting surgery. Photoacoustic 
imaging is a technology that can image blood vessels noninvasively and with high resolution. In photoacoustic imaging, 
a hemispherical array sensor is especially suitable for measuring blood vessels running in various directions. However, as 
a hemispherical array sensor, a sparse array sensor is often used due to technical and cost issues, which causes artifacts in 
photoacoustic images. Therefore, in this study, we reduce these artifacts using deep learning technology to generate signals 
of virtual dense array sensors.
Methods Generating 2D virtual array sensor signals using a 3D convolutional neural network (CNN) requires huge com-
putational costs and is impractical. Therefore, we installed virtual sensors between the real sensors along the spiral pattern 
in three different directions and used a 2D CNN to generate signals of the virtual sensors in each direction. Then we recon-
structed a photoacoustic image using the signals from both the real sensors and the virtual sensors.
Results We evaluated the proposed method using simulation data and human palm measurement data. We found that these 
artifacts were significantly reduced in the images reconstructed using the proposed method, while the artifacts were strong 
in the images obtained only from the real sensor signals.
Conclusion Using the proposed method, we were able to significantly reduce artifacts, and as a result, it became possible to 
recognize deep blood vessels. In addition, the processing time of the proposed method was sufficiently applicable to clinical 
measurement.
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Introduction

Vascular distribution is important information for diagnos-
ing diseases, determining therapeutic effects, and supporting 
surgery. Therefore, there are various diagnostic devices for 
imaging blood vessel distribution. X-ray CT and MRI using 
contrast agents can image blood vessels as a 3D distribution 
with high contrast, but they require the use of a contrast 
agent and can only image relatively large blood vessels. 
Ultrasound Doppler imaging can image vascular distribution 

and blood flow velocity without using contrast agents, but 
it can only image relatively large blood vessels. In addition, 
optical coherence tomography angiography can image fine 
blood vessels without using contrast agents, but it can only 
measure blood vessels in very shallow areas. On the other 
hand, photoacoustic imaging, which has been put into practi-
cal use in recent years, is a technology that can image small 
blood vessels up to a depth of several centimeters with high 
contrast without using contrast agents [1–10]. Furthermore, 
photoacoustic imaging can also image the oxygen saturation 
distribution in blood using light of two or more wavelengths. 
However, photoacoustic imaging cannot image blood vessels 
unless light reaches the target, so it is difficult to image deep 
blood vessels compared to X-ray CT, MRI, and ultrasound 
Doppler imaging.

The photoacoustic effect is a phenomenon in which ultra-
sonic waves are generated from a light absorber when it is 
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irradiated with pulsed light. The depth that can be imaged 
with photoacoustic imaging is determined by how deep the 
irradiated light reaches. Therefore, to image the living body 
as deeply as possible, it is preferable to use light that is less 
absorbed and scattered by living tissue, that is, near-infrared 
light. In fact, many photoacoustic imaging devices that target 
living tissues use near-infrared light.

In photoacoustic imaging, ultrasound generated from a 
light absorber is a very broadband signal. For example, it 
is known that ultrasonic waves generated from spherical 
absorbers have an N-shaped waveform [3]. Furthermore, 
ultrasonic waves generated from blood vessels also contain 
extremely wide frequency components. Therefore, an ultra-
sonic sensor with a wide reception frequency band is suit-
able for photoacoustic imaging. However, even when using 
a wideband sensor, there are limits to the frequency bands 
that can be received. Therefore, in photoacoustic imaging, 
signals before frequency bandwidth limitation are restored 
by inverse filtering using the frequency characteristics of the 
sensor, and image reconstruction is often performed using 
these signals.

Furthermore, the ideal arrangement of ultrasonic array 
sensors in photoacoustic imaging is a sensor arrangement 
that can measure the object from all directions. For exam-
ple, a ring array sensor is ideal for 2D measurement. How-
ever, in 3D measurement, it is difficult to realize a sensor 
arrangement that completely covers the object. Therefore, 
array sensors with a finite aperture width are used, which 
causes a problem called the limited view problem, in which 
some blood vessels cannot be visualized. For example, a 
linear array sensor cannot receive signals from blood vessels 
running perpendicular to the sensor surface, and therefore 
cannot image them. Therefore, in 3D photoacoustic imaging, 
it is preferable to use a hemispherical array sensor arranged 
in a hemispherical shape around the object to measure the 
object with as wide an aperture angle as possible.

3D photoacoustic imaging requires a 2D array sensor. 
The 2D array sensor that can measure objects with a wide 
viewing angle requires an extremely large number of sensor 
elements. However, due to manufacturing and cost issues, 
sparse array sensors are often used in practice. Therefore, 
reconstruction artifacts occur due to sparse sensor density. 
One solution to reduce these artifacts is to measure the 
object by moving a sparse array sensor, which is virtually 
equivalent to measuring with many sensors. Although this 
solution has no problem when measuring a stationary tar-
get, it does not provide accurate images when measuring a 
moving target. Moreover, this solution is not applicable to 
observing target changes in real time.

Therefore, image reconstruction methods that reduce 
these artifact are needed when using sparse array sensors. 
In recent years, convolutional neural networks (CNN), a 
deep learning method, have been widely applied in the field 

of ultrasound measurement [11–24]. For example, research 
is being conducted on extracting blood vessels from pho-
toacoustic images using CNN [20, 21]. However, artifacts 
caused by sparse array sensors appear curvilinear, so it is 
generally difficult to distinguish these artifacts from blood 
vessels. Therefore, we use a method that generates the 
received signals at the virtual sensors before image recon-
struction. This method has been proposed for linear array 
sensors and ring array sensors [22–24]. In this method, vir-
tual sensors are provided between adjacent real sensors, and 
signals of the virtual sensors are generated by interpolat-
ing from signals of the surrounding real sensors. However, 
since it is difficult to interpolate correctly with conventional 
interpolation methods (e.g., linear interpolation, spline inter-
polation), CNN is used. For 1D array sensors such as linear 
array sensors or ring array sensors, it is possible to train a 
2D CNN for this interpolation using realistic computational 
resources (such as commercially available GPUs). In the 
case of 2D array sensors arranged in a grid on a plane, it 
is theoretically possible to generate virtual sensor signals 
using a 3D CNN. However, in this case, training a 3D CNN 
requires huge computational resources. In addition, in a 
hemispherical array sensor, the sensors are not arranged in 
a grid, so this method cannot be applied simply by expand-
ing the dimensions.

Therefore, in this study, we focused on the regularity of 
the hemispherical array sensor arrangement and proposed 
a method to install virtual sensors between real sensors 
arranged in a 1D direction and perform this processing in 
three different directions. The proposed method can evenly 
arrange virtual sensors even in a hemispherical array sen-
sor, making it possible to realize a virtual dense array sen-
sor. Furthermore, since the proposed method uses three 2D 
CNNs, the processing in our method can be executed using 
realistic computational resources. In this study, we verified 
the effectiveness of the proposed method using simulation 
and human palm measurement data.

Methods

Hemispherical array sensor coordinates and virtual 
sensor settings

In a hemispherical array sensor, there is a method using the 
golden ratio and Fibonacci sequence to arrange the sen-
sors evenly on a hemispherical surface [6, 7]. Each sensor 
coordinate (xi, yi, zi) obtained with this method is expressed 
by the following equations. In this study, we used coordi-
nates with the center of the hemisphere as the origin, and 
the hemispherical array sensor was placed in the negative 
z-axis direction (see Fig. 1).
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Here, i is the sensor number (i = 1, 2,…,N), N is the total 
number of sensors, G is the golden ratio ( G =
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z1 is the z coordinate of the first sensor (the sensor closest to 
the bottom of the hemisphere), and dz is the sensor spacing 
in the z direction. When the radius of the hemisphere is R, 
ri is expressed by the following equation.

Figure 1 shows a schematic diagram of the measurement 
system and the coordinate system used in this study. Figure 2 
shows the sensor arrangement of the 512ch hemispherical 
array sensor (Luxonus Inc., R ≅ 60 mm) used in this study. 
Figure 2a is an overhead view of the 3D sensor arrangement, 
and Fig. 2b shows the sensor arrangement projected on the 
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x–y plane. Since there is a hole for laser irradiation at the 
center of the bottom of the hemisphere, no sensor is placed 
near the center of the bottom. Also, since there is a hole for 
water supply and drainage next to the laser irradiation hole, 
there are no sensors corresponding to numbers 7 and 20, 
but instead sensors are placed at the positions correspond-
ing to numbers 513 and 514. Therefore, the total number of 
sensors is 512.

When we look at the sensors arranged on a hemisphere 
based on the golden ratio and Fibonacci sequence, we can 
see that there are three spiral patterns (Fig. 3). These spiral 
patterns are obtained by extracting sensors at intervals of 34 
(Fig. 3a), at intervals of 21 (Fig. 3b), and at intervals of 13 
(Fig. 3c). Note that the spiral pattern extracted at intervals 
of 34 has the shortest sensor distance, and the spiral pat-
tern extracted at intervals of 13 has the longest sensor dis-
tance. The numbers 34, 21, and 13 are part of the Fibonacci 

Fig. 1  Schematic diagram of the measurement system using hemi-
spherical array sensor. a Cross-section of the measurement system. b 
Overhead view of hemispherical array sensor and coordinate system 
used in this study

Fig. 2  Arrangement of hemispherical array sensor. a Overhead view 
of hemispherical array sensor arrangement. b Sensor arrangement 
projected on the x–y plane
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sequence. In this paper, we define the directions of these 
spiral patterns as direction 1 (at intervals of 34), direction 
2 (at intervals of 21), and direction 3 (at intervals of 13), 
respectively. Note that these three directions correspond to 
the vertical, horizontal, and diagonal directions in a 2D grid 
sensor. Therefore, by providing virtual sensors between adja-
cent real sensors in each of the three directions, it is possible 
to set the sensors (real sensors and virtual sensors) almost 
evenly on the hemisphere (Fig. 3d). However, the number 
of real sensors extracted in each of these three directions is 
different, and even in the same direction, the number of real 
sensors extracted is different depending on the starting sen-
sor number. Therefore, in this study, we used three CNNs 
corresponding to three directions, and determined the input 
size of each CNN based on the case where the number of 
real sensors extracted in each direction was the smallest. For 
that reason, some virtual sensors were not installed between 
the real sensors near the end of the spiral pattern (the outer 

periphery of the hemisphere). Note that the coordinates of 
the virtual sensor were determined by spline interpolation 
from the coordinates of the real sensor extracted in each 
direction and were taken as the coordinates of the center 
between adjacent real sensors. In addition, in the case of 
the 512ch hemispherical array sensor used in this study, the 
total number of sensors including real sensors and virtual 
sensors was 1897. In other words, the proposed method can 
increase the number of sensors to about four times that of 
real sensors.

CNN for virtual sensor signal generation

By extracting real sensors along the three directions men-
tioned in the previous section and arranging the received 
signals of the extracted sensors, a regular pattern is drawn 
according to the positional relationship between the light 
absorbers and the sensors (Fig. 4a). Therefore, the received 

Fig. 3  Three spiral patterns and virtual dense array sensor placement in hemispherical array sensor. a Spiral pattern in direction 1. b Spiral pat-
tern in direction 2. c Spiral pattern in direction 3. d Virtual dense array sensor placement
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Fig. 4  Examples of signal patterns along each direction. a Received 
signal pattern (real sensors only). b Linearly interpolated signal pat-
tern (real sensors and virtual sensors). c CNN interpolated signal pat-

tern (real sensors and virtual sensors). d Ideal signal pattern (real sen-
sors and virtual sensors)
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signal at the virtual sensor can be estimated from this pat-
tern. In other words, the positions of the virtual sensors are 
located between the real sensors lined up in each direction, 
so if we can successfully interpolate between the received 
signals of the real sensors, we can obtain the received sig-
nals of the virtual sensors. If there is only one absorber, 
it is possible to create virtual sensor signals by separately 
estimating the position and shape of the waveform from the 
absorber. However, in actual biological measurement, there 
are multiple absorbers and the signals from these absorbers 
overlap, so it is difficult to identify the waveform from a 
specific absorber. Therefore, in this study, we estimated the 
virtual sensor signals by interpolating the received signal 
pattern using a CNN. Note that the CNN used in this study 
does not identify the waveform from a specific absorber.

There are various CNNs that can improve the resolution 
of images, but it is difficult to apply them to the data used 
in this study because the size of our data is larger than the 
typical image size handled by CNNs, and the size of each 
side is not a power of 2. Therefore, in this study, we used 
a CNN with a simple structure in which the data size did 
not change from input to output, as shown in Fig. 5a. In our 
CNN, we used multiple 2D convolutional layers, the LeRU 
function as the activation function, and a regression output 
layer that can output continuous values as the output layer. 
In addition, we used skip connections to solve the vanishing 
gradient problem and enable appropriate learning. In our 
CNN, we want the output to be data in which the virtual sen-
sor signals are arranged between the real sensor signals, so 
the input data size should be the same as the output data size. 
Therefore, we used the data obtained by inserting linearly 
interpolated signals from the adjacent signals between the 
real sensor signals as input to our CNN. Here, we used linear 

interpolation only to make the input data size the same as 
the output data size, so performance regarding interpolation 
accuracy was not required at this stage.

We need three CNNs because the number of real sensors 
extracted in each of the three directions is different. How-
ever, we used one CNN for the same direction, and the CNN 
input size was determined based on the minimum number 
of sensors extracted in each direction. That is, in this study, 
the input and output size of the CNN in direction 1 was 
(14 real sensors + 13 virtual sensors) × 1792 samples, that in 
direction 2 was (23 real sensors + 22 virtual sensors) × 1792 
samples, and that in direction 3 was (38 real sensors + 37 
virtual sensors) × 1792 samples (see Fig. 3). Note that the 
number of samples in the time direction was determined 
to be as small as possible to cover the 3D reconstruction 
area. Here, the filter size was 7 × 77 (sensor direction × time 
direction) and the number of filters was 64, and these values 
were common to the three CNNs. An example output of our 
CNNs is shown in Fig. 4c. In addition, Fig. 4d shows the 
signal pattern when ideal signals are obtained from both the 
real sensors and the virtual sensors.

Training of CNN

To train our CNN, we need input data and true output data. 
In this study, true received signals of virtual sensors were 
required for training of our CNNs. However, it is difficult 
to obtain virtual sensor signals in an actual system. There-
fore, we created a training dataset through simulation. In our 
simulations, we used the sensor coordinates of the actual 
system and calculated virtual sensor coordinates from these 
coordinates. We created 1000 light absorber patterns consist-
ing of multiple spherical absorbers and cylindrical absorbers 

Fig. 4  (continued)
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randomly distributed with the parameters shown in Table 1, 
simulated the received signals at the real sensors and vir-
tual sensors for each light absorber pattern and used them 
as training data. That is, the number of training data for 
the CNN in direction 1 was 34,000, that in direction 2 was 
21,000, and that in direction 3 was 13,000. The sampling 
frequency of the received signal was 60 MHz, the same as 
the actual system, the sample length was 1792 samples, and 
the offset time from light irradiation to signal acquisition 
was 1500 samples. Note that the sample length and offset 
time were made as small as possible to cover the 3D recon-
struction area.

Next, we simulated the received signals before sensor 
bandwidth limitation at the real and virtual sensors for 
each light absorber pattern, and then applied bandwidth 
limitation to them based on the frequency characteristics 
(center frequency: 3.5 MHz, relative bandwidth: 90%) of 
the actual sensor. Finally, we added random noise to the 

received signals so that the signal-to-noise (S/N) ratio was 
30 dB (i.e., − 30 dB noise relative to the signal amplitude 
after sensor bandwidth limitation from an absorber with an 
initial sound pressure of 100 arbitrary units at the center 
of the hemisphere). Based on the received signals from the 
real sensors obtained as described above, we used 2D data 
that were linearly interpolated from the received signals of 
the real sensors extracted in each direction as input data 
to our CNN. Furthermore, we trained the CNN using 2D 
data with the noise-free ideal received signals from the 
real sensors and virtual sensors as the ground-truth data. 
For CNN training, we used the resilient backpropagation 
(Rprop) method as the solver and set the learning rate to 
 10–5, the number of epochs to 50, and the mini-batch size 
to 50 (direction 1), 100 (direction 2), and 150 (direction 3). 
Since the CNN input/output data size differs depending on 
the direction and GPU memory is limited, the mini-batch 
size also differs depending on the direction.

Fig. 5  CNN used in this study 
and flowchart of photoacoustic 
image reconstruction using the 
proposed method. a CNN used 
in this study. b Flowchart of 
photoacoustic image reconstruc-
tion using the proposed method
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Processing during actual measurement

Figure 5b shows a flowchart of photoacoustic image recon-
struction using the proposed method during actual measure-
ment. First, we measure the received signals from the target 
with the real sensors, extract the received signals in each 
direction, and linearly interpolate the extracted signal pat-
tern to create input data to the CNN. Then we process them 
with the CNN to obtain the output data (signals of real and 
virtual sensors). Next, we perform inverse filtering of the 
sensor frequency characteristics on the signals of real and 
virtual sensors to obtain signals before sensor bandwidth 
limitation. Here, this inverse filter processing is the process 
of applying a filter with characteristics that are the recipro-
cal of the sensor reception frequency characteristics and a 
low-pass filter to the received signals. Note that the purpose 
of using a low-pass filter is to not amplify high-frequency 
noise, and in this study, we used a low-pass filter with a 
cutoff frequency of 5 MHz. Finally, we reconstruct the 3D 
initial sound pressure distribution from those signals using 
a universal back-projection (UBP) algorithm [25]. Since 
the spatial resolution of the system used in this study was 
approximately 0.2 mm [6], we set the voxel size in recon-
struction to 0.1 mm × 0.1 mm × 0.1 mm. Note that the UBP 
method is an image reconstruction method commonly used 
in photoacoustic imaging. The UBP method assumes that 
there is no refraction of ultrasound waves, and that attenua-
tion is only diffusion attenuation, and performs image recon-
struction based on the thermal diffusion equation and wave 
equation, like the filtered back-projection method used in 

CT image reconstruction. The UBP method is often used in 
other studies using a hemispherical array sensor [6–10, 26, 
27]. However, there are also studies using the delay-and-
sum method or delay-multiply-and-sum method [28] as the 
reconstruction method [29, 30].

The output data from the CNN also include signals corre-
sponding to real sensors. However, although the signals cor-
responding to the real sensor output from the CNN are sig-
nals with reduced noise, the signal waveform also changes 
slightly (see Fig. S1 in the Electronic Supplementary). Since 
this change in signal waveform contains a smoothing effect, 
the reconstructed initial sound pressure may be underesti-
mated. Therefore, we think that if the received signals have 
little noise, it is better to use the received signals themselves, 
and if the received signals have a lot of noise, it is better to 
use the signal output from the CNN. In this study, we wanted 
to compare the reconstruction results using only the real 
sensor signals and the reconstruction results by adding the 
virtual sensor signals to the real sensor signals, so we used 
the received signals themselves as the real sensor signals.

Simulation experiment results

First, we conducted a simulation experiment to confirm the 
effectiveness of the proposed method. As a light absorber 
model for evaluation, we used a model in which three cyl-
inders with a diameter of 1.0 mm, a length of 50 mm, and 
an initial sound pressure of 100 arbitrary units were lined 
up parallel to the y-axis. Here, the center coordinates of the 

Table 1  The conditions of light absorbers used for CNN training

Type of light absorber Parameter Value range

Spherical absorber Number 1–4
Diameter 0.2–1.2 mm
Initial sound pressure 50–100 arb. units
Center coordinates Within a radius of 10 mm from the center of hemisphere

Short cylindrical absorber Number 1–4
Diameter 0.2–1.2 mm
Length 10–20 mm
Initial sound pressure 50–100 arb. units
Center coordinates Within a radius of 10 mm from the center of hemisphere
Orientation of the cylinder in x–y plane − 180 to 180 deg
Angle with x–y plane − 70 to 70 deg

Long cylindrical absorber Number 1–4
Diameter 0.2–1.2 mm
Length 50 mm
Initial sound pressure 50–100 arb. units
Center coordinates Within a radius of 10 mm from the center of hemisphere
Orientation of the cylinder in x–y plane − 180 to 180 deg
Angle with x–y plane − 5 to 5 deg
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three cylinders were (x, y, z) = (0 mm, − 5 mm, − 5 mm), 
(0 mm, 0 mm, 0 mm), and (0 mm, 5 mm, 5 mm), respec-
tively. The coordinate arrangement and frequency charac-
teristics of the hemispherical array sensors were the same 
as those used in the actual system and in creating training 
data. We also added random noise with the same amplitude 
as the training data (S/N ratio = 30 dB). In this paper, ‘noise 
in the received signal’ refers to only electrical noise (random 
noise), and ‘noise in the reconstructed distribution’ refers 
to noise due to electrical noise in the received signal and 
artifacts due to the reconstruction method.

The simulation experiment results are as shown in Fig. 6. 
Figure 6 shows maximum intensity projection (MIP) images 
of the 3D reconstructed initial sound pressure distribution 
onto the x–y plane (left), x–z plane (center), and y–z plane 
(right), respectively. Figure 6a is the reconstructed image 
using only the real sensor signals, Fig. 6b is the result using 
only the noise-free ideal real sensor signals, Fig. 6c is the 
result when the virtual sensor signals were interpolated with 
linear interpolation, Fig. 6d is the result when the virtual 
sensor signals were generated using CNNs, and Fig. 6e is the 
result using the noise-free ideal signals at both the real and 
the virtual sensors. That is, the noise in the reconstructed 
images in Fig. 6b and e is only due to artifacts.

First, images reconstructed using the received signals 
only from the real sensors had strong artifacts because the 
sensor density was sparse (Fig. 6a). On the other hand, the 
reconstructed images when using CNN to interpolate the 
virtual sensor signals had reduced artifacts and increased 
absorber contrast (Fig. 6d). Moreover, the results of CNN 
interpolation were very close to the results when ideal 
received signals were obtained at both the real and the vir-
tual sensors. Therefore, it is thought that CNNs can estimate 
signals close to the ideal signals in the virtual sensors. Note 
that the correlation coefficient between the signals estimated 
using the CNNs and the ideal signals at the virtual sensors 
was 0.933. This also indicates that the virtual sensor sig-
nals were estimated with high accuracy with the proposed 
method. The results of interpolating the virtual sensor sig-
nals using linear interpolation showed that the artifacts were 
reduced due to the increased number of sensors, but since 
the virtual sensor signals were incorrect, the absorber dis-
tribution was also incorrect (Fig. 6c). It is difficult to cor-
rectly interpolate virtual sensor signals using conventional 
interpolation methods (e.g., bi-cubic interpolation, spline 
interpolation) including linear interpolation. Therefore, in 
this paper, we showed the results using liner interpolation, 
which is one of the conventional interpolation methods and 
is also the input data to our CNN.

To quantitatively evaluate the results of the reconstructed 
3D distribution, we calculated the S/N ratio using the mean 
intensity value in the light absorber as the signal amplitude 
and the standard deviation value of the background as the 

noise level. The S/N ratio results are shown in Table 2. This 
result confirms that the proposed method improves the S/N 
ratio by + 7.7 dB compared to the original result using only 
real sensor signals. On the other hand, the S/N ratio improved 
by + 6.1 dB by increasing the number of sensors under condi-
tions using ideal signals. When using ideal signals, the noise 
in the reconstructed distribution is artifact only. Based on the 
results in Table 2, the main reason for improvement in S/N 
ratio with the proposed method is the reduction of artifacts.

Results in human palm measurement

Next, we used palm measurement data from healthy vol-
unteers provided by Luxonus Inc. to confirm the effective-
ness of the proposed method with real data. The data used 
in this study were measured using light with a wavelength 
of 797 nm and a hemispherical array sensor (center fre-
quency: 3.5 MHz, relative bandwidth: 90%) with the sensor 
arrangement shown in Fig. 2. Figure 7 shows the results of 
measurements taken at three locations on the same palm. 
In all instances, we can see that the results of the proposed 
method show reduced artifacts compared to the original 
results of reconstruction from only the real sensor signals. 
Furthermore, deep blood vessels that were hidden by strong 
artifacts of superficial blood vessels in the original image 
became recognizable in the image obtained using the pro-
posed method (arrows in Fig. 7).

To quantitatively evaluate these palm measurement 
results, we calculated the S/N ratio. However, since the cor-
rect blood vessel distribution cannot be determined from 
actual measurement data, we set the area with a threshold 
value of 40 or higher in the reconstruction distribution of 
the proposed method as a blood vessel area and set the area 
(− 15 mm ≤ z < − 11 mm) outside the palm as a background. 
Then we calculated the S/N ratio by dividing the average 
intensity of the blood vessel area (the blood vessel area iden-
tified with the proposed method was used even in the evalu-
ation of the original results) by the standard deviation of 
the background. The S/N ratio results are shown in Table 3, 
and in all measurement results, the proposed method had a 
higher S/N ratio than the original results. The improvement 
of the S/N ratio yielded by the proposed method was also 
large in actual measurements, confirming that the proposed 
method is just as effective in the actual measurement data 
as in the simulation.

Discussion

First, the results of simulation experiments confirmed that 
the proposed method can significantly reduce artifacts 
caused by sparse sensor density, and the S/N ratio can be 
significantly improved to + 7.7 dB. Note that the artifacts 
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caused by the sparse sensor density in the UBP method are 
like those caused by the small number of projections in the 
filtered back-projection method for X-ray CT. That is, as the 

number of sensors increases, the number of back projections 
from each sensor in the absorber region increases, whereas 
in regions other than the absorber, the back projections from 

Fig. 6  Simulation experiment results. a Reconstructed image using 
only real sensor signals. b Reconstructed image using only noise-free 
ideal real sensor signals. c Reconstructed image using real sensor sig-
nals and linearly interpolated virtual sensor signals. d Reconstructed 

image using real sensor signals and CNN interpolated virtual sensor 
signals. e Reconstructed image using noise-free ideal signals obtained 
from both real and virtual sensors. f Profile at x = 5 mm in x–z MIP 
images of each method
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Fig. 6  (continued)



 Journal of Medical Ultrasonics

each sensor do not overlap. Therefore, as the number of sen-
sors increases, the value of the absorber region becomes 
relatively larger, and artifacts (back projections to regions 
other than the absorber) are reduced. Here, the method of 
interpolating virtual sensor signals using simple linear inter-
polation was also effective in reducing artifacts because the 
number of sensors is increasing. However, because the linear 
interpolation cannot create correct virtual sensor signals, the 
reconstructed distribution was not the correct distribution, 
and the error increased as the distance from the center of the 
hemisphere increased. This is thought to be because signals 
from near the center of the hemisphere arrive at all sensors 
almost simultaneously, so even the linear interpolation was 
able to interpolate the virtual sensor signals relatively accu-
rately. However, for all virtual sensor signals, the correlation 
coefficient between the linearly interpolated signal and the 
ideal signal was 0.061.

In addition, the quantitative evaluation results of simula-
tion experiments showed that the S/N ratio of the proposed 
method was almost the same as the result using ideal sen-
sor signals, and it was confirmed that the proposed method 
was able to interpolate the virtual sensor signals accurately 
for the most part. However, the S/N ratio of the proposed 
method was slightly lower than the result using ideal vir-
tual sensor signals. One of the reasons for this is thought to 
be that the virtual sensor signals yielded by the proposed 
method were slightly different from the ideal signals (see 
Fig. S2 in the electronic supplementary). That is, the vir-
tual sensor signals yielded by the proposed method had a 
slightly smaller amplitude than the ideal signals and were 
also slightly shifted in the time direction, so it is thought that 
the value of the absorber region was estimated to be slightly 
smaller. Another reason is that the proposed method uses 
slightly noisy received signals in the reconstruction, whereas 
the result from ideal signals uses noise-free signals (at both 
real and virtual sensor signals).

In the simulation experiments, the initial sound pressure 
of the absorber reconstructed using only real sensor signals 
was higher than the set value (true value), while the initial 
sound pressure reconstructed using the proposed method 
was close to the set value. Similar results were obtained 
when ideal signals were used. Therefore, this is mainly 
caused by the difference in the number of sensors used for 

reconstruction. In other words, it is considered that there 
were not enough projections to perform correct reconstruc-
tion even in the absorber region using only the signals from 
the real sensor.

Regarding the palm measurement results, it was con-
firmed that artifacts could be significantly reduced using 
the proposed method in actual measurements as well as in 
simulations, and the S/N ratio was also improved to the same 
extent as in simulations. Even in the palm measurements, the 
initial sound pressure of the absorber reconstructed using the 
proposed method was lower than that reconstructed using 
only real sensor signals. These are also considered to be due 
to the same reason as in the simulation experiments.

In addition, the results for the proposed method using 
palm measurement data showed a tendency for meander-
ing blood vessels to become slightly straighter. The reason 
for this is thought to be that only spherical and cylindrical 
absorbers were used in the training data. In other words, 
this is because the training data did not have information 
about the meandering absorber, so the signals at the virtual 
sensors were generated to approximate the cylindrical shape 
included in the training data. Therefore, we believe that this 
problem will be improved in the future by training the CNN 
using an absorber distribution that is closer to the actual 
blood vessel distribution.

Because the proposed method significantly reduced the 
computational cost during CNN training and execution, 
we were able to run the proposed method on a commer-
cially available GPU (NVIDIA RTX A6000 was used in 
this study). Even if the proposed method is used, it takes 
a long time (about 1 month) to train our CNNs. Although 
CNN training takes a lot of time, the calculation time during 
measurement was approximately 7.5 s (using NVIDIA RTX 
A6000), so we think there is no problem in practical use. 
Furthermore, if CNNs are applied completely in parallel, 
the processing time will be 0.11 s (= 7.5 s/(34 + 21 + 13)), 
making real-time processing possible.

In this study, the proposed method was applied to a 
hemispherical array sensor based on the golden ratio and 
Fibonacci sequence, but the proposed method can also be 
applied to sensors such as a 2D grid array sensor on a plane. 
Furthermore, although the proposed method was applied to 
photoacoustic imaging in this study, it can also be applied 
to other measurements using similar hemispherical array 
sensor, such as ultrasound imaging. Therefore, we believe 
that the proposed method has a wide range of applications. 
On the other hand, even in systems that currently use dense 
array sensors, it is possible to reduce costs without reducing 
image quality using sparse array sensors and the proposed 
method.

One of the limitations of the proposed method is that it 
cannot be applied to two-dimensional array sensors where 
the sensors are not regularly arranged. For example, the 

Table 2  S/N ratio results in simulation experiments

Method S/N ratio (dB)

Original (512 ch) 16.0
Ideal signal (512 ch) 18.7
Linear interpolation (1897 ch) 19.1
CNN interpolation (1897 ch) 23.7
Ideal signal (1897 ch) 24.8
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Fig. 7  Human palm measurement results. The upper row shows 
images reconstructed from only real sensor signals, and the lower 
row shows images reconstructed using the proposed method. Arrows 

indicate deep blood vessels that are easier to recognize using the pro-
posed method. a Example 1. b Example 2. c Example 3
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proposed method cannot be applied to a 2D array sensor 
with randomly distributed sensors. In addition, although it 
was possible to generate virtual sensor signals by interpolat-
ing between real sensors, it is considered difficult to gener-
ate virtual sensor signals by extrapolating outside the real 
sensors.

Conclusion

In this paper, we proposed a method to realize a virtual 
dense hemispherical array sensor by setting virtual sensors 
between the real sensors in three directions and generating 
virtual sensor signals using deep learning. We also applied 
the proposed method to simulations and human palm meas-
urement data and confirmed that the proposed method can 
significantly reduce artifacts caused by sparse sensor density. 

The proposed method is a method that can reduce the cal-
culation cost by performing 2D CNN processing in each of 
the three directions even for a hemispherical array sensor, 
and we showed that the proposed method can be executed 
on commercially available GPUs. Therefore, using our pro-
posed method, high-quality photoacoustic images can be 
acquired without moving the hemispherical array sensor, 
and we will be able to observe the moving targets in real 
time. We hope that this will provide useful information for 
the development of medicine.

In the future, we plan to improve the accuracy of image 
reconstruction for clinical data by creating CNN train-
ing data based on actual blood vessel shapes. In addition, 
although we used a CNN with a simple structure in this 
study, we plan to investigate CNNs with deeper and more 
complex structures that can perform highly accurate estima-
tion, and optimize each parameter related to CNNs. We also 
want to examine the possibility of real-time measurement of 
photoacoustic imaging in clinical applications.
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tary material available at https:// doi. org/ 10. 1007/ s10396- 024- 01413-3.
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Fig. 7  (continued)

Table 3  S/N ratio results in human palm measurement

Method S/N ratio of 
example 1 
(dB)

S/N ratio of 
example 2 
(dB)

S/N ratio of 
example 3 
(dB)

Original (512 ch) 17.2 18.3 17.2
Proposed method 

(1897 ch)
22.8 25.8 22.7
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