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Abstract
Purpose  To establish a nomogram integrating radiomics features based on ultrasound images and clinical parameters for 
predicting the prognosis of patients with endometrial cancer (EC).
Materials and methods  A total of 175 eligible patients with ECs were enrolled in our study between January 2011 and 
April 2018. They were divided into a training cohort (n = 122) and a validation cohort (n = 53). Least absolute shrinkage 
and selection operator (LASSO) regression were applied for selection of key features, and a radiomics score (rad-score) was 
calculated. Patients were stratified into high risk and low-risk groups according to the rad-score. Univariate and multivariable 
COX regression analysis was used to select independent clinical parameters for disease-free survival (DFS). A combined 
model based on radiomics features and clinical parameters was ultimately established, and the performance was quantified 
with respect to discrimination and calibration.
Results  Nine features were selected from 1130 features using LASSO regression in the training cohort, which yielded an 
area under the curve (AUC) of 0.823 and 0.792 to predict DFS in the training and validation cohorts, respectively. Patients 
with a higher rad-score were significantly associated with worse DFS. The combined nomogram, which was composed of 
clinically significant variables and radiomics features, showed a calibration and favorable performance for DFS prediction 
(AUC 0.893 and 0.885 in the training and validation cohorts, respectively).
Conclusion  The combined nomogram could be used as a tool in predicting DFS and may assist individualized decision 
making and clinical treatment.
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Introduction

As the leading gynecological malignancy in western 
countries, endometrial cancer (EC) ranks sixth among 
cancers in women worldwide [1, 2]. Most diagnoses are 
made at an early stage, thereby yielding favorable 5-year 
overall survival (OS), ranging from 74 to 91% [1, 3]. 
However, some patients may have dismal survival as a 
result of a delayed diagnosis. Metastasis is related to a 
worse outcome; the 5-year OS rate is 57–66% for stage III 
and only 20–26% for stage IV EC [4]. To date, the Inter-
national Federation of Gynecology and Obstetrics (FIGO) 
staging system together with histological grade and type 
classification have been proven to be prognostic factors 
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for EC [5]. Because of tumor heterogeneity, the prognosis 
of patients in the same stage varies. Therefore, difficulties 
still exist in the current EC classification system regard-
ing prognosis estimation [6]. However, many clinical and 
pathological features [7, 8] have been suggested to predict 
the prognosis of EC patients, but the prognostic accuracy 
of these factors is still uncertain. Therefore, there is an 
urgent need to find a biomarker or a model that can accu-
rately predict patients with high risk of adverse survival 
to guide postoperative management and establish follow-
up protocols.

Ultrasound is recognized as a radiation-free, readily 
available, and easy-to-use method, and is currently the 
first-line imaging modality for the detection and diag-
nosis of EC. Radiomics is a methodology that converts 
digital medical images into high-dimensional mineable 
data [9, 10]. According to previous studies, radiomics 
have been successfully shown to correlate with clinical 
outcomes and biological endpoints across a wide range 
of solid tumors [11–14], including EC [15–17]. However, 
those studies mainly focused on computed tomography 
(CT) and magnetic resonance imaging (MRI), but CT is 
limited by exposure to severe radiation and MRI is limited 
by its cost, long examination length, and long waiting lists 
at most centers. More and more research has extended 
radiomics to US imaging, showing encouraging results 
[18–20]. But to our knowledge, there are no published 
studies that have investigated whether ultrasound-based 
radiomics can be used to estimate the prognosis of EC.

Therefore, in this study, we aimed to establish and vali-
date a novel radiomics model based on US images that 
incorporates radiomics features and clinical parameters to 
estimate disease-free survival (DFS) in patients with EC.

Materials and methods

Patient data

This retrospective study was approved by the Ethics Com-
mittee of our hospital. A total of 612 patients who underwent 
surgery with pathologically confirmed EC between January 
2011 and April 2018 were enrolled in the study. Clinical 
parameters, pretreatment ultrasound imaging data, patho-
logic results, and survival data were reviewed.

All the patients met the following inclusion criteria: (1) 
pathologically confirmed EC; (2) underwent ultrasound at 
our hospital within 2 weeks before surgery; and (3) under-
went total hysterectomy with bilateral salpingo-oophorec-
tomy, with or without nodal staging (pelvic ± para-aortic 
lymphadenectomy). The exclusion criteria were as follows: 
(1) absence of ultrasound images at our hospital before 
endometrial suction biopsy, dilatation and curettage (D&C), 
or hysteroscopy; (2) underwent neoadjuvant chemotherapy 
or radiotherapy preoperatively; (3) presence of second-
ary malignancies; (4) missing data in this study; and (5) 
absence of completely visible region of interest (ROI) on 
ultrasound images. A total of 175 patients (mean age of 
56.61 ± 8.68 years) were ultimately included in this study. 
The patient selection flowchart is shown in Fig. 1. The 175 
eligible patients were then randomly divided into two inde-
pendent cohorts at a ratio of 7:3: a training cohort (n = 122) 
and a validation cohort (n = 53).

Clinical information

The following clinical parameters were retrieved from medi-
cal records: age, menopause status, body mass index (BMI, 

Fig. 1   Recruitment pathway for 
patients in this study
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calculated as weight in kilograms divided by the square of 
height in meters), pathological type, differentiation, tumor 
size, FIGO stage, lymph node metastasis (LNM), depth of 
myometrial invasion (DMI), lymph-vascular space invasion 
(LVSI) status, CA-125, and rad-score. The endpoint of our 
study was DFS, which was defined as the time from sur-
gery to either first EC recurrence or death. Recurrence was 
defined as a biopsy-proven tumor exhibiting EC or a lesion 
deemed suspicious on imaging, such as CT, MRI, and posi-
tron emission tomography-computed tomography. Survival 
information was obtained from medical records or by tele-
phone follow-up, with the last follow-up being in April 2021.

Image acquisition and tumor segmentation

All the procedures were performed according to the Image 
Biomarker Standardization Initiative (IBSI) standards. The 
ultrasound devices used at our hospital were Hitachi or 
Philips (IU22) units with linear probes (5–14 MHz). Static 
images were stored in a picture archiving and communication 
system (PACS) (DICOM format). Eight to twelve standard 
ultrasound images were recorded for each patient, and a rep-
resentative image with the largest cross section of the tumor 
was selected. Since the images were selected using different 
ultrasound scanners, we normalized each image using resa-
mpling and gray-level discretization. The ultrasound images 
were two-dimensional images with a thickness of 1 mm; thus, 
we resampled the ultrasound images according to the voxel 
1 × 1 × 1 mm. Thereafter, we performed intensity standardi-
zation and discretized the gray level in the range of 0–255.

For the target tumor, the tumor region of interest (ROI) 
covering the whole tumor was manually segmented by a 
radiologist with 15  years of experience in gynecologi-
cal imaging using ITK-SNAP software (http://​www.​itksn​
ap. org). To extract the radiomics features, the original 
images and the ROIs were imported into A.K. software 
(Artificial Intelligence Kit, version 3.0.0, GE Healthcare). 
Each patient’s original image and ROI were automatically 
matched one by one. And the fixed bin width (default = 10) 
was set before feature extraction.

Radiomics feature extraction

A total of 1,130 radiomics features were extracted from the 
ROI, but not all of them were associated with the DFS in EC. 
A two-step feature selection method was applied for selection 
of key features that were significantly associated with DFS in 
the training cohort. First, univariate Cox regression was used 
to select radiomics features with a p value less than 0.05 in the 
training cohort, which were treated as significant prognostic 
features and selected as candidate features. Second, the least 
absolute shrinkage and selection operator (LASSO) regres-
sion algorithm was used for multivariate feature selection with 

nonzero coefficients from candidate features, with penalty 
parameter tuning conducted by tenfold cross-validation. The λ 
value that minimized standard deviation and maximum AUC of 
receiver operating characteristic (ROC) curves was selected as 
the optimal regularization parameter. The number of radiomics 
features was therefore automatically determined according to 
the λ value. Lastly, a formula for the rad-score was calculated 
by linear combination of the chosen features for further evalu-
ation of the prediction model. Kaplan–Meier survival analysis 
was used to assess the stratification ability of rad-score, and 
comparisons were constructed through log-rank test. A heat-
map was computed to analyze the correlation between the radi-
omics features and the independent clinical parameters for all 
patients. The numbers in the cells represent P values.

Construction and validation of the models

Univariate Cox regression analysis was used to select the 
most significant clinical parameters, and variables with sig-
nificance (P < 0.05) in the univariate analysis were quantified 
for being included in multivariate model to build the clinical 
model. To further evaluate whether the clinical parameters 
could improve the performance of the rad-score, a combined 
model incorporating the radiomics features and the clinical 
parameters was built for 3 year DFS prediction.

ROC analysis was applied to evaluate the prognostic per-
formance of each model in predicting DFS. Each model’s 
discriminative performance was displayed as the AUC. Cali-
bration was used to graphically assess agreement between 
the predicted outcome and the corresponding observed result 
(calibration curves). The diagnostic performance of the 
model for DFS prediction in EC was assessed with respect 
to AUC, sensitivity, specificity, and accuracy in both the 
training and validation cohorts.

A radiomics-based nomogram for individualized progno-
sis was created by incorporating the radiomics and clinical 
model. The total points accumulated for various variables 
corresponded to the prediction probability for a patient. Cali-
bration curves were drawn to show how close the model’s 
estimation matched the observed prognosis.

Statistical analysis

All the statistical analyses in this study were performed 
with R software (version 4.0.0, http://​www.r-​proje​ct.​org) 
and SPSS22.0. A two-sided p value of less than 0.05 was 
considered statistically significant.

Differences in the clinicopathological parameters were 
evaluated using the Student’s t-test and chi-squared (χ2) test or 
Fisher’s exact test. LASSO-based feature selection with tenfold 
cross-validation was used for radiomics feature selection. Rad-
scores were computed via a linear combination of the selected 
features weighted by each coefficient. Kaplan–Meier curves, 

http://www.itksnap
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nomogram drawings, and calibration curves were analyzed 
using the “rms” package. ROC curves were plotted with the 
“pROC” package. The AUC was calculated using the selected 
features or factors with a 95% confidence interval (CI). Accu-
racy, specificity, and sensitivity were calculated according to 
the cut-off value of the maximum Youden index.

Results

Study patients

A total of 175 EC patients were enrolled and then randomly 
divided into the training and validation cohorts at a ratio 
of 7:3, as shown in Fig. 1. Table 1 shows the clinical char-
acteristics of the patients. No significant differences were 
found between the two cohorts (p > 0.05 for all). The median 
follow-up time was 49 months (range, 1–123 months).

Radiomics feature extraction and selection

A total of 1130 imaging features were extracted with nonzero 
coefficients from each patient, and nine features were ulti-
mately selected using a LASSO regression model in the train-
ing cohort. Figure 2 shows the work flow of feature extraction 
and the model development. The formula for calculating rad-
scores is shown in Eq. 1. We further stratified the patients into 
high- and low-risk groups according to the rad-score. Patients 
with higher rad-scores were significantly associated with worse 
DFS in the training cohort, which was then confirmed in the 
validation cohort (log-rank test, P < 0.0001 and P < 0.0001 
respectively) (Fig.  3). The rad-score yielded an AUC of 
0.823 (95% CI 0.728–0.919), sensitivity of 0.776 (95% CI 
0.693–0.858), specificity of 0.750 (95% CI: 0.577–0.923), 
and accuracy of 0.770 (95% CI 0.768–0.773) in the training 
cohort, and an AUC of 0.792 (95% CI 0.621–0.962), sensitiv-
ity of 0.738 (95% CI 0.605–0.871), specificity of 0.818 (95% 
CI 0.590–1.046), and accuracy of 0.755 (95% CI 0.748–0.762) 
in the validation cohort (Table 2, Figs. 4a and b). In addition, 
the rad-score of each patient is shown in Figs. 3c and d.

(1)

Rad − score = 0.1093 ∗ "lbp − 3D − k_glrlm_RunLengthNonUniformity"

+ 0.4450 ∗ " lbp − 3D − k_ngtdm_Busyness"

+ 0.1230 ∗ "wavelet ­ HHH_glszm_LargeAreaLowGrayLevelEmphasis"

+ 0.0681 ∗ "wavelet ­ HLH_gldm_LargeDependenceLowGrayLevelEmphasis"

+ 0.2368 ∗ "wavelet ­ HLH_glszm_SizeZoneNonUniformityNormalized"

+ 0.3325 ∗ "wavelet ­ HLL_glrlm_LongRunLowGrayLevelEmphasis"

+ 0.2830 ∗ "wavelet ­ LHL_glszm_GrayLevelNonUniformity"

+ 0.0163 ∗ "wavelet ­ LLH_glrlm_ShortRunHighGrayLevelEmphasis"

+ 0.2192 ∗ "wavelet ­ LLL_gldm_DependenceEntropy"

Development and validation of prediction models

Clinical model: Univariate analysis showed that FIGO 
stage (P < 0.001), differentiation type (P < 0.001), LNM 
(P < 0.001), DMI (P = 0.001), CA-125 (P < 0.001), and 
BMI (P = 0.010) were significant predictors of DFS. After 
multivariate analysis, FIGO stage, differentiation type, 
and CA-125 level (P = 0.009, P = 0.021, and P < 0.001, 
respectively) were demonstrated as independent predic-
tors of DFS. A clinical model was constructed with the 
independent predictors, yielding an AUC of 0.821 (95% 
CI 0.728–0.914) in the training cohort and 0.809 (95% 
CI 0.662–0.956) in the validation cohort. The results of 
univariate and multivariate analyses between clinical vari-
ables are shown in Supplementary Table.

Combined model: To evaluate the incremental value 
of the rad-score, a combined model incorporating the 
rad-score and independent clinical predictors was fur-
ther developed to predict 3-year DFS. The combined 
model yielded an AUC of 0.893 (95% CI 0.827–0.959), 
sensitivity of 0.735 (95% CI 0.647–0.822), specificity of 
0.875 (95% CI 0.743–1.007), and accuracy of 0.762 (95% 
CI 0.759–0.765) in the training cohort, and an AUC of 
0.885 (95% CI 0.791–0.978), sensitivity of 0.833 (95% CI 
0.721–0.946), specificity of 0.909 (95% CI 0.739–1.079), 
and accuracy of 0.849 (95% CI 0.844–0.854) in the valida-
tion cohort (Table 2, Fig. 3), showing good performance 
improvement in 3-year DFS estimation when compared 
with the rad-score alone or clinical model alone. Moreo-
ver, the heatmap in Fig. 4c showed that some radiomics 
features were correlated with clinical parameters (P < 0.05 
in the cell).

Nomogram built from the combined model

To provide a visualized outcome measure, a nomogram 
was then built from the combined model (Fig. 5a). Each 



505Journal of Medical Ultrasonics (2023) 50:501–510	

variable can be proportionally converted into 0 to 100 
points by drawing a vertical line upward to the point axis. 
The total score was then determined by the summary of 
each variable point, which could evaluate 3-year DFS 
rate by drawing a line straight down to the outcome axis. 

According to the nomogram, rad-score has a favorable per-
formance in 3-year DFS prediction. The calibration curves 
of the nomogram revealed that the prediction values at 
3 years for the prognosis for DFS agreed with the actual 
clinical observation values (Figs. 5b and c).

Table 1   Patient characteristics 
in the training and validation 
cohorts

Training cohort (n = 122) Validation cohort (n = 53) P

Age (years) 0.727
  < 60 81 37
  ≥ 60 41 16

Menopause status 0.858
 No 35 16
 Yes 87 37
 BMI 24.2009 ± 3.4156 24.9519 ± 3.5096 0.803

FIGO 0.186
 IA 69 25
 IB 13 9
 II 22 6
 III–IV 18 13

Pathological type 0.896
 Endometrioid adenocarcinoma 100 43
 Non-endometrioid adenocarcinoma 22 10

Differentiation 0.309
 Low grade 29 17
 Middle grade 50 23
 High grade 43 13

Tumor size 0.507
   < 2 cm 18 10
   ≥ 2 cm 104 43
Lymph node metastasis(LNM) 0.063
 Non-metastasis 113 44
 Metastasis 9 9

Lymphovascular space invasion (LVSI) 0.150
 Non-LVSI 109 43
 LVSI 13 10

Depth of myometrial invasion (DMI) 0.579
  < 1/2 91 37
  ≥ 1/2 31 16

CA125 0.678
  < 35 U/ml 100 42
  ≥ 35 U/ml 22 11
  Rad-score 0.02364 − 0.05443 0.337

Recurrence 0.638
 Yes 26 13
 No 96 40

Death 0.615
 Yes 15 8
 No 107 45
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Fig. 2   Flow diagram of radiomics model construction

Fig. 3   a Kaplan–Meier curves of the radiomics score in the training cohort. b Kaplan–Meier curves of the radiomics score in the validation 
cohort. c Radiomics score for each EC patient in the training cohort. d Radiomics score for each EC patient in the validation cohort
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Table 2   Model performance on predicting DFS

CI represents confidence interval. C-Index represents Harrell’s concordance index, which measures the performance of the DFS prediction. AUC 
represents area under the receiver operating characteristic curve, and ACC is accuracy. AUC and ACC evaluate the performance of the 3-year 
DFS prediction

C-index (95% CI) AUC (95% CI) ACC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Clinical model training 0.838 (0.760–0.916) 0.821 (0.728–0.914) 0.738 (0.735–0.741) 0.735 (0.647–0.822) 0.750 (0.577–0.923)
Clinical model validation 0.807 (0.674–0.940) 0.809 (0.662–0.956) 0.849 (0.844–0.854) 0.905 (0.816–0.994) 0.636 (0.352–0.921)
Radiomic score training 0.782 (0.692–0.872) 0.823 (0.728–0.919) 0.770 (0.768–0.773) 0.776 (0.693–0.858) 0.750 (0.577–0.923)
Radiomic score validation 0.778 (0.659–0.896) 0.792 (0.621–0.962) 0.755 (0.748–0.762) 0.738 (0.605–0.871) 0.818 (0.590–1.046)
Combined model training 0.883 (0.830–0.936) 0.893 (0.827–0.959) 0.762 (0.759–0.765) 0.735 (0.647–0.822) 0.875 (0.743–1.007)
Combined model validation 0.883 (0.831–0.936) 0.885 (0.791–0.978) 0.849 (0.844–0.854) 0.833 (0.721–0.946) 0.909 (0.739–1.079)

Fig. 4   a ROC of three models for 3-year DFS in the training cohort. b ROC of three models for 3-year DFS in the testing cohort. c A heatmap 
shows the correlations between radiomics features and clinical parameters
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Discussion

In the present study, we developed a model that combined 
FIGO, differentiation, CA-125 level, and significant radi-
omics features to predict the recurrence risk and achieved 
a good predictive value, as evidenced by the AUC of 
0.893 and 0.885 in the training and validation cohorts, 
respectively. A visualized nomogram demonstrated that 
rad-score had favorable predictive performance in DFS 
prediction.

Radiomics features [18, 21] have been shown to be 
closely related to genetic and biological characteristics of a 
tumor, reflecting the texture information of the tumor, which 
is an important marker of intra-tumor homogeneity. Accord-
ing to some studies, tumors with greater intra-tumoral heter-
ogeneity are correlated with more aggressive behavior such 
as angiogenesis, proliferation, and metastasis [18, 21–23]. 
Texture analysis as a post-processing tool may complement 
the prognostic information obtained from standard imaging.

Concerning the relationship between outcomes in patients 
with EC and texture features from medical images, Jacob 
et al. [24] showed that MRI imaging-based texture features 
were significantly associated with disease-specific survival. 
Kurtosis in T1c images at filter level 2 (T1c_Kurtosis2) from 

MRI images was proven by Ytre-Hauge et al. [25] to predict 
the survival of EC patients independently when adjusted for 
high-risk status of poor prognosis based on MRI-measured 
tumor volume. Studies of EC prediction using radiomics 
from PET are still rare in the literature. The combination of 
18F-FDG PET performed in 74 EC patients and machine 
learning investigated by Nakajo [26] yielded a good result 
for survival analyses, but it was limited by its small sam-
ple size and the fact that it was time consuming. Given this 
background, it seemed that texture features could be used for 
risk stratification and prognosis prediction in EC patients.

Considering the increasing use of ultrasound imaging 
in decision making for EC and satisfactory application of 
ultrasound radiomics in tumors [18, 19, 27], therefore, we 
hypothesized that texture analysis on the basis of ultra-
sound could allow DFS prediction in EC. In our study, nine 
radiomics features were extracted from ultrasound images. 
Among these nine parameters, seven wavelet-related fea-
tures were selected, which were extracted from images 
decomposed by undecimated 3D wavelet transforms and 
may not suffer from information loss due to quantiza-
tion. Fine and coarse textures extracted from the wavelet 
decomposed images enabled us to design the spatial het-
erogeneity at multiple scales within tumor regions [28]. 

Fig. 5   a The nomogram was made to predict the risk of DFS in 
patients with EC. b The calibration curves of the nomogram dem-
onstrate the predictive performance for 3-year DFS in the training 

cohort. c The calibration curves of the nomogram demonstrate the 
predictive performance for 3-year DFS (color green) in the validation 
cohort
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This observation was in line with previous studies that 
used wavelet-based features in the radiomics models [29, 
30]. Zhang et al. [29] developed a prediction model for 
biomarkers of immunophenotyping and survival prognosis 
based on four features in intrahepatic cholangiocarcinoma 
patients, three of which were wavelet features. A radiomics 
study was conducted by Liang et al. [30] for identification 
of pathological grades in patients with pancreatic neuroen-
docrine tumors. Seven out of eight features included in 
the present model were wavelet features. Therefore, these 
studies along with our results confirmed that wavelet fea-
tures were significant features in reflecting the biologi-
cal behavior of tumors. A rad-score was then established 
based on these nine features, and was demonstrated inde-
pendently to be associated with DFS and yielded an AUC 
of 0.823 in the training cohort and 0.792 in the validation 
cohort, which supported the notion that radiomics has the 
ability to reflect intra-tumoral heterogeneity.

In addition, the rad-score calculated in our study allowed 
us to stratify patients into high- and low-risk groups and 
helped us identify EC patients with worse DFS for whom 
adjuvant treatment and a close follow-up schedule were 
needed. Furthermore, patients with EC at low risk could 
avoid over-treatment. Our study suggested that higher rad- 
scores were associated with a poor prognosis. These findings 
will enable clinicians to tailor individual treatment on the 
basis of the clinical and radiomics features for high risk and 
low-risk patients with EC.

In our study, FIGO stage, CA-125, and differentiation 
were demonstrated to be significant independent clinical 
risk predictors and were incorporated into our nomogram. 
Previous studies [31] have shown that FIGO stage is the 
most commonly used system to predict EC outcomes. EC 
patients in stage I-II may have favorable outcomes, whereas 
those in stage III or IV may have adverse DFS. CA-125 
level is known to be an independent risk factor for predicting 
hematogenous EC recurrence [32], and CA-125 levels are 
significantly higher in patients with advanced FIGO stage 
[33]. Our study demonstrated that differentiation was a sig-
nificant independent prognostic factor for DFS, which was 
consistent with previous studies [34]. We ultimately devel-
oped a combined model that integrated ultrasound radiomics 
signatures with clinical parameters to further improve the 
predictive accuracy for DFS, which yielded a favorable out-
come (AUC of 0.893 and 0.885 in the training and validation 
cohorts, respectively). Furthermore, the radiomics signatures 
also yielded comparable results concerning clinical param-
eters in our study.

Our study had several limitations. First, it was a retro-
spective study in which most of the recorded images were 
discrete three-dimensional images. Only a few images were 
analyzed per patient. In some cases, the most representa-
tive part of the tumor may not have been captured. Second, 

the sample size was relatively small since patients without 
ultrasound images in our hospital before endometrial suc-
tion biopsy, dilatation and curettage (D&C), or hysteros-
copy were excluded. Selection bias may occur when such 
strict inclusion criteria are used. Third, our models were 
performed in a single hospital and without external valida-
tion, which could have reduced the confirmation strength of 
the model accuracy. Future studies involving a larger sample 
should be carried out, and multicenter external validation 
will be needed.

Conclusion

In conclusion, patients with higher rad-scores were sig-
nificantly associated with worse DFS. The nomogram that 
incorporated the radiomics signature and clinical parameters 
showed good predictive performance and potential to predict 
DFS in patients with EC.
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