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Abstract
In the field of clinical ultrasound, the full digitalization of diagnostic equipment in the 2000s enabled the technological devel-
opment of quantitative ultrasound (QUS), followed by multiple diagnostic technologies that have been put into practical use 
in recent years. In QUS, tissue characteristics are quantified and parameters are calculated by analyzing the radiofrequency 
(RF) echo signals returning to the transducer. However, the physical properties (and pathological level structure) of the 
biological tissues responsible for the imaging features and QUS parameters have not been sufficiently verified as there are 
various conditions for observing living tissue with ultrasound and inevitable discrepancies between theoretical and actual 
measurements. A major issue of QUS in clinical application is that the evaluation results depend on the acquisition condi-
tions of the RF echo signal as the source of the image information, and also vary according to the model of the diagnostic 
device. In this paper, typical examples of QUS techniques for evaluating attenuation, speed of sound, amplitude envelope 
characteristics, and backscatter coefficient in living tissues are introduced. Exemplary basic research and clinical applica-
tions related to these technologies, and initiatives currently being undertaken to establish the QUS method as a true tissue 
characterization technology, are also discussed.
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Introduction

Ultrasound has been widely used in medicine since its bio-
logical effect was confirmed by Langevin in 1917. Ultrasonic 
diagnostic equipment became widely available in the 1950s 
and is used in mainly qualitative diagnosis by the visual 
observation of signal waveforms in A-mode, tomographic 
images in B-mode, and dynamic images in M-mode. Dur-
ing the period when quantitative evaluation of blood flow 
became possible using the pulse Doppler method in the 
late 1960s, further quantitative diagnostic technologies that 
employed the physical characteristics of ultrasound waves 
as an index were proposed for development. The full digi-
talization of diagnostic equipment in the 2000s enabled the 

development of quantitative ultrasound (QUS) techniques, 
some of which have been put into practical use in recent 
years. In QUS, the radiofrequency (RF) echo signals return-
ing to the transducer are analyzed, and parameters that can 
be used to quantify the tissue characteristics are calculated. 
In-phase/quadrature-phase (IQ) data are also used instead 
of RF data.

In this paper, typical examples of QUS techniques for 
evaluating attenuation, speed of sound, amplitude envelope 
characteristics, and backscatter coefficient in living tissues 
are described, and examples are provided of exemplary basic 
research and clinical applications related to these technolo-
gies. Current work under way to establish QUS methods as 
a true tissue characterization technology are also discussed.

Recent progress in basic research useful for the interpretation of ultrasound diagnostic 
images
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Attenuation coefficient evaluation

Overview

Attenuation, defined as the loss of ultrasound signal energy 
with the propagation depth as a function of frequency, is 
essential in quantifying tissue properties. Ultrasonic waves 
that are emitted from the probe and pass through living tis-
sue are reflected and scattered by scatterers smaller than the 
ultrasonic pulse, pass through mutual interference, and are 
received by the probe as RF echo signals. The attenuation 
characteristics of the target tissue can be evaluated by evalu-
ating the backscattered signal that has returned in the same 
direction as the transmission. The accuracy of the evalua-
tion is dependent on the state of scatterers in the living tis-
sues (e.g., randomness, periodicity, relationship with pulse 
length), as well as the shape and resolution of the transmitted 
and received ultrasonic beams.

The attenuation evaluation techniques proposed by 
numerous researchers over the past decades can be broadly 
divided into the time domain approach and the frequency 
domain approach. However, because time and frequency are 
closely related in echo signals, some techniques use them in 
tandem. Although the time domain approach is simple and 
easy to implement, it is inferior in robustness, and accord-
ingly, the frequency domain approach is often used in real-
ity. The attenuation coefficient is the main index used for 
quantifying attenuation. It should be noted that the unit of 
the attenuation coefficient in the medical ultrasound field is 
generally dB/cm/MHz, but dB/m is sometimes used.

Spectral difference method

The spectral difference method is the most basic technique 
for evaluating the reduction in the echo signal power spec-
tra along the propagation path of the ultrasound beam, and 
it has a long development history. Kuk proposed the basic 
theory of attenuation measurement using broadband pulses 
in 1978 [1], reported its application to the liver in 1979 [2], 
and compared it with the spectral shift method in 1985 [3], 
which is described below. These methods assume that the 
scattering characteristics to be evaluated are constant and do 
not change over the depth range. The attenuation coefficient 
is calculated from the difference or ratio of the power spec-
tra of the signal acquired in advance as reference informa-
tion (e.g., from a tissue-mimicking phantom) and the signal 
from regions of interest (ROIs) set at two different depths 
in the evaluation target. Because of the processing involved, 
the spectral difference method is sometimes referred to as 
the reference phantom method. A basic study on the depth 
dependence of attenuation evaluation using a reference 
phantom was reported by Yao [4].

Spectral shift method

The spectral shift method is the most common technique for 
evaluating the downshift of the echo signal power spectra 
of an ultrasound beam propagating through living tissues. 
This algorithm uses the downshift in center frequency of 
the power spectrum versus propagation depth to estimate 
the attenuation slope. Local attenuation is evaluated from 
the attenuation slope of the echo signal in the ROI being 
evaluated. Regarding the basic methods for determining 
the attenuation coefficient of tissues, the tissue is generally 
assumed to have linear frequency-dependent attenuation. In 
reality, however, many tissues exhibit non-linear frequency-
dependent attenuation. Ophir investigated the relationship 
between downshift of the center frequency of the spectrum 
and the attenuation coefficient (mechanism of evaluation 
error) when it is assumed that living tissue with non-linear 
characteristics is linear, and proposed an in vivo measure-
ment technique with narrow band pulses [5, 6]. Kim reported 
that the spectral shift between the power spectra obtained 
at the two different depths was linearly proportional to the 
product of the attenuation coefficient and to the difference of 
the depths at which the spectra were obtained, and that this 
shift provided a direct estimate of the attenuation coefficient 
[7]. Baldeweck proposed various methods using an autore-
gressive model for spectral analysis [8], and Fink proposed 
a method using short-time Fourier analysis [9].

Hybrid method

In general, spectral shift methods are more robust than 
the spectral difference methods at the boundary region of 
backscatter changes; however, they each have specific limi-
tations. Classical spectral shift approaches for estimating 
ultrasonic attenuation are more sensitive to local spectral 
noise artifacts and have difficulty in compensating for dif-
fraction effects due to beam focusing. In contrast, spectral 
difference approaches fail to accurately estimate attenua-
tion coefficient values at tissue boundaries that also possess 
backscatter variations [10]. Kim proposed a hybrid attenua-
tion estimation method that combines the advantages of the 
spectral difference and spectral shift methods to overcome 
the specific limitations of each. The proposed hybrid method 
initially uses the spectral difference approach to reduce the 
impact of system-dependent parameters, including diffrac-
tion effects. The normalized power spectrum that includes 
variations caused by backscatter changes is then filtered 
using a Gaussian filter centered at the transmit center fre-
quency of the system. A spectral shift method employing 
a spectral cross-correlation algorithm [6] is then used to 
compute spectral shifts from these filtered power spectra to 
estimate the attenuation coefficient [10].
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Clinical applications

The high functionality of modern ultrasonic diagnostic 
equipment has led to the practical application of high-fre-
quency and high-resolution attenuation evaluation methods. 
Dedicated diagnostic ultrasonic units have been produced 
for each of the spectral difference, spectral shift, and hybrid 
methods. The following four types of applications are in 
current use.

–	 Evaluation of attenuation based on the frequency shift of 
the received signal.

–	 Evaluation of attenuation by comparison with a phantom 
in which the attenuation and scattering coefficients are 
known.

–	 Evaluation of attenuation by comparison with training 
data obtained with known transmitting and receiving 
conditions.

–	 Evaluation of attenuation based on the slope of the ratio 
of signals transmitted and received at two different fre-
quencies.

Of course, even if the same theory is used, differences 
exist such as filtering and the combination of several meth-
ods depending on the manufacturer and diagnostic equip-
ment. There has been particular interest in the application 
of attenuation evaluation methods to the field of gastro-
enterology, in which the results of numerous studies have 
been reported in the past few years [11–19]. Attenuation 
evaluation is a classic example of an old technology that has 
been newly implemented in medical ultrasound. As several 
methods are used at the same time, the user needs to fully 
understand the basic theory and limits of the technique used 
and the meaning of the values presented.

Speed of sound evaluation

Overview

When ultrasound waves propagate through the living tis-
sue under observation, the speed of sound is an important 
parameter that indicates the acoustic characteristics pecu-
liar to a particular living tissue, and it greatly affects the 
imaging of echo signals in B-mode or M-mode. In general, 
ultrasonic diagnostic equipment assumes that living tissue is 
a uniform medium, and it sets the reference speed of sound 
at 37 °C as 1530 m/s according to the Japanese Industrial 
Standard (JIS) [1540 m/s according to the American Institute 
of Ultrasound in Medicine (AIUM)]. However, deviation of 
the propagation path due to the complexity of the actual tis-
sue structure in living tissue and refraction are not taken into 
consideration. Therefore, distance measurements based on 

the received echo signals and the imaged tomographic image 
will contain errors and distortions. These are considered to 
lie within the acceptable error range in practical use. How-
ever, as the frequencies of ultrasound waves used in diag-
nosis (and applied to QUS) are continuing to increase, it is 
necessary to estimate the speed of sound in the local region 
with greater accuracy. Accurate evaluation of the local speed 
of sound is also beneficial in calculation of the attenuation 
coefficient. The following section outlines the techniques for 
improving image quality by evaluating the speed of sound 
from the RF echo signal and using differences in the speed 
of sound at each local region.

Focusing method

In conventional ultrasound diagnostic equipment, an 
assumed average speed of sound is used for delay and sum 
beamforming to create a B-mode image that is generated by 
the RF signal of each received echo line. Conversely, as pro-
posed by Ogawa and Umemura [20] and Hayashi et al. [21], 
it is also possible to evaluate the average speed of sound 
from image quality. In the focusing method, beam focusing 
is repeated to optimize the local image quality and evaluate 
the speed of sound at that time. The evaluation indexes of 
image quality include amplitude as used by Cho et al. [22], 
minimum entropy as used by Mesdag et al. [23], and lateral 
sharpness as used by Napolitano et al. and Boozari et al. 
[24, 25]. Focusing methods are relatively easy to implement, 
because they directly use the existing hardware configura-
tion of commonly available diagnostic equipment. How-
ever, there are restrictions on the conditions for setting the 
propagation route between the evaluation target and each 
element of the probe, and the estimation accuracy of the 
local speed of sound can be low. Methods for solving this 
problem include the technologies proposed by Jakovljevic 
et al. [26] and Abe and Kanai et al. [27].

Spatial coherence method

In the spatial coherence method, spatial coherence is cal-
culated under various conditions, taking into account the 
number of elements in the probe used for receiving the 
echo signals, and the speed of sound in a local or wide area 
is evaluated [28–30]. Since elemental technologies were 
initially proposed until recently, various phase aberration 
correction technologies have been proposed for calculating 
spatial coherence [31–37]. Because this method requires 
individual control and signal processing for each element 
of the probe, it has more hardware restrictions compared 
with focusing methods, which may limit implementation in 
clinically available equipment. It has the advantages that 
the area in which the speed of sound is estimated can be set 
locally or globally, and guaranteed high estimation accuracy 
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of the speed of sound. In addition, Hasegawa has proposed 
an effective technique that is applicable to both conventional 
focused imaging using line-by-line transmission/reception 
and plane wave imaging [38].

Compounding method

In the compounding method, the speed of sound is evaluated 
directly by searching for spatial shifts in images between 
different transmission and reception angles. Specifically, the 
discrepancy between the speed of sound used for beamform-
ing and the speed of sound of actual living tissue is used as 
a reference. If the speed of sound mismatch is high, a spatial 
error occurs, because the optical path length changes when 
different angles are used. When the magnitude and direc-
tion of the shift are optimized, the difference between the 
assumed speed of sound and the actual speed of sound is 
minimized [39–43]. The advantage of this method is the 
direct estimation of the speed of sound; however, it has the 
disadvantage of low robustness.

Clinical applications

Technologies for evaluation of the speed of sound (and thus 
image quality improvement) have also been implemented in 
clinical ultrasound diagnostic equipment, and various appli-
cations have been reported. Hirooka has reported the clinical 
applications of this technology, since the early stages of its 
development [44]. Imbault has reported clinical data and 
proposed various methods for improving the accuracy of 
speed of sound evaluation technology [45–47]. As described 
by López-Haro [48], this technology is also being used in 
therapeutic applications. At present, compounding methods 
have not been implemented in clinical equipment. The high 
accuracy of signal processing in current diagnostic equip-
ment has benefitted methods used for evaluating the speed of 
sound. Further developments expected in the future include 
improvements in accuracy in evaluating the speed of sound 
and image quality by utilizing acoustic physical quantities. 

In one of the most recent studies in this area of research, 
Nitta used a computer simulation to verify the accuracy of 
speed of sound evaluation for a medium such as the liver, 
which contains multiple types of scattering sources that have 
different speeds of sound, as shown in Fig. 1 [49].

Amplitude envelope statistics

Overview

In actual living tissues, signals from a small target tissue can 
become buried by scattered signals from the minute scat-
terers that are often randomly and densely present over a 
wide area of surrounding tissues in the medium. In a situ-
ation where there are 10 or more scatterers in the resolu-
tion cell, which is the resolution of the ultrasound beam, 
an extremely weak scattering signal is generated in each 
microscatterer, and received by the probe. The received sig-
nal includes a noise signal produced as the result of their 
interference. Accordingly, a speckle pattern is observed in 
the final B-mode image. The size of the mottled speckle pat-
tern is determined by the sound field characteristics of the 
irradiated ultrasound, and there is no correlation between the 
structure of scatterers in the living tissue and the speckle pat-
tern. In other words, if the observation area contains speckle, 
then the tissue is in a dense and homogeneous state. Many 
researchers have proposed the use of probability density 
functions to express the properties of RF echo signals that 
exhibit a speckle pattern. Amplitude envelope statistics is a 
QUS method that normalizes the amplitude envelope char-
acteristics of RF (or IQ) echo signals with the probability 
density functions. This technology has a long history with 
ultrasonics in medicine.

Rayleigh distribution

The Rayleigh distribution, which is a probability density 
function [50], has been applied to the field of ultrasound 

Fig. 1   Speed of sound evalua-
tion in a medium that contains 
multiple types of scattering 
sources having different speeds 
of sound. Numerical liver phan-
tom (left) in which the speed of 
sound of the scattering source 
varies by an average μ and 
standard deviation σ, and results 
of evaluation (right). This figure 
was newly created by N. Nitta 
from data reported in Reference 
[49]
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as a mathematical model for showing the amplitude enve-
lope characteristics of echo signals that exhibit speckle. This 
basic model has been widely applied both in basic studies 
and in clinical applications following its verification with 
clinical data by Burckhardt [51], and evaluation of applica-
tion conditions by Wagner [52]. Focusing on the fact that 
the deviation from the Rayleigh distribution in living tissue 
indicates inhomogeneity of the tissue, several attempts have 
been made to realize QUS by indexing the degree of non-
Rayleigh distribution. Representative examples of this work 
include techniques that use signal-to-noise ratio (SNR) as 
the index, as proposed by Shankar [53, 54] and Fujii [55]; 
and methods that use variance as the index, as proposed 
by Kamiyama, which have been implemented in clinical 
devices [56]. Yamaguchi and Hachiya have proposed multi-
Rayleigh distributions that combine two or three Rayleigh 
distributions to eliminate the constraint of expressing the 
amplitude envelope characteristics of the echo signal only 
by the Rayleigh distribution [57, 58].

Higher order distributions

The Rice distribution, which was proposed by Nakagami 
[59] and by Rice [60] as a model of wave propagation, 
describes the diffuse signal component due to a high den-
sity of random scatterers. In 1986, Insana proposed its use in 
combination with a coherent signal component [61]. K-dis-
tribution was first introduced by Lord [62] in the context of 
random walks. K-distribution corresponds to a variable den-
sity of random scatterers, with no coherent signal compo-
nent, and was introduced to ultrasound imaging by Shankar 
[53, 63], and by Narayanan [64]. Homodyned K-distribution 
was introduced by Jakeman [65] to model weak scattering. 
In 1994, Dutt and Greenleaf verified that homodyned K-dis-
tribution corresponds to the general case of a variable effec-
tive density of random scatterers with or without a coherent 
signal component [66]. The Nakagami distribution, defined 
by Nakagami [67, 68], is highly versatile, being applicable in 
cases where the scatterer to be evaluated is sparse or dense, 
and also in cases where scatterer density has periodicity. The 
series of studies conducted by Shankar [53, 63, 64, 69, 70] 
is useful for comparing these statistical models.

Clinical applications

The QUS technique based on the Rayleigh distribution has 
already been implemented in clinical equipment, primarily 
for the purpose of assessing liver fibrosis [56, 71–73], and 
it has also been applied to other diseases [74]. In subse-
quent development, Kuroda proposed the effectiveness of 
this technique for evaluating steatosis [75], which was veri-
fied pathologically and using MR microscopy by Lee [76].

K-distribution and homodyned K-distribution are of par-
ticular value in evaluating tumors. In a pioneering study, 
Shankar developed a method of breast tumor classification 
for clinical application [53, 54] using K-distribution, and 
Hao applied homodyned K-distribution for the characteri-
zation of cardiac tissue [77]. Mamou and Oelze developed 
a technique for evaluating tumors in lymph nodes in three 
dimensions [78, 79]. Omura and Yamaguchi developed a 
tissue characterization method for the follow-up of healing 
in ulcers by diagnosing the properties of collagen fibers [80], 
which is evolving as a technique for evaluating the histologi-
cal properties of skin diseases, including lymphedema.

Currently, basic studies that use clinical data most com-
monly employ the Nakagami model. A wide variety of tar-
gets have been evaluated in such studies, including vascular 
studies by Huang [81], ophthalmology and breast cancer by 
Tsui [82, 83], and the liver by Tsui and Yamaguchi [84, 85]. 
In the most recent research, the Nakagami distribution has 
been applied to evaluating the temperature of living tissues 
by Hasegawa [86, 87], and Tamura and Yamaguchi have 
combined multiple distributions to evaluate fat and fiber in 
the liver simultaneously [88, 89]. Figure 2 shows an example 
of the evaluation results of liver steatosis using the double-
Nakagami model, a complex probability density function 
that enables quantification of the degree and distribution of 
fat mass in the liver [84]. The images in the figure indicate 
that the amount and density of adipose tissue (fat droplets) 
in the liver increase with progression of fatty liver. Previ-
ous techniques have been unable to obtain information on 
multiple types of scatterers under observation at once, but 
these recent studies may enable high-speed evaluation of 
the dynamics and properties of various tissues. However, 
improvements in signal processing technology and multi-
faceted verification are required to realize this capability.

Backscatter coefficient estimation

Overview

The backscatter coefficient (BSC) is defined as the time-
averaged scattered intensity in the backward direction per 
unit solid angle per unit volume, normalized by the time-
averaged incident intensity. General B-mode generation and 
amplitude envelope statistics mainly use time information. 
However, backscattered signals are converted into the fre-
quency domain for analysis in BSC estimation. BSC is fre-
quency dependent, because ultrasonic scattering is affected 
by the intrinsic acoustic impedance and size of the scattering 
medium. In other words, BSC evaluation is a key method 
for estimating microstructural characteristics such as the 
shape, size, composition, and concentration of the tissue to 
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be observed, as well as the impedance ratio between the 
scatterer and the surrounding medium.

Evaluation of tissue structure

Sigelmann and Reid first developed a method for estimating 
backscatter power from a volume of randomly distributed 
scatterers using a single-element planar transducer [90]. 
Subsequently, D’Astous determined BSC by plane wave 
evaluation [91], and Insana and Hall further improved the 
accuracy of estimation [92, 93]. Insana proposed a BSC esti-
mation method employing array transducers [94]. BSC is 
generally estimated as a parameter related to attenuation, as 
proposed by Yao [95] and by Huisman and Thijssen [96]. It 
is also possible to evaluate the effective scatterer diameter 
(ESD) and effective acoustic concentration (EAC) by param-
eterizing the BSC as a function of frequency [92, 93, 96–98].

Clinical applications

BSC-based QUS has been applied to characterizing the tis-
sue microstructure of the liver, prostate, pancreas, spleen, 
eye, and lymph nodes, among others [78, 79, 99–103]. 
Good results have been obtained by the diagnostic equip-
ment (or specially developed scanners) available in each 
era from the 1980s to the present. However, the BSC eval-
uation method has continued to evolve as the frequency 
band of ultrasound used clinically has become extremely 
wide (on the high-frequency side), and as the acquisition 

accuracy of RF signals has improved due to digitaliza-
tion. For example, Lavarello mentioned the limitations of 
traditional methods and proposed a new theory [104], and 
Franceschini and Cloutier proposed the effective medium 
theory combined with the polydisperse structure factor 
model to incorporate the polydispersity of aggregate size 
[105, 106].

Franceschini also proposed a method for calculating the 
BSC under arbitrary conditions in which the actual struc-
ture of living tissue is prepared and the acoustic impedance 
of each tissue is presented as a two-dimensional or three-
dimensional computer model [105, 107]. This technology 
makes it possible to understand the frequency characteristics 
of the BSC in living tissues that have complex structures and 
were previously difficult to verify. Furthermore, because the 
BSC evaluation method including various attenuation cor-
rections proposed so far and the verification of the evaluation 
accuracy of ESD and EAC will be realized, it is expected 
that the BSC evaluation method will be implemented in 
clinical equipment in the future.

Figure 3 shows an example of evaluation of human skin 
dermis with and without lymphedema [108], which con-
firms that BSC values are high in regions of high acoustic 
impedance. Verification of the relationship between acous-
tic impedance and BSC by Franceschini’s two-dimensional 
impedance map method confirms that the microacoustic 
characteristics at the microscopic level depend on the char-
acteristics of the echo signal acquired by the diagnostic 
equipment.

Fig. 2   Parametric images of the 
double-Nakagami distribution 
parameter for various grades of 
hepatic steatosis. The color bar 
indicates the density of adipose 
tissue
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Challenges and prospects

Ultrasonic biomarkers

Several QUS methods (including shear wave elastography 
and transient elastography) that use the acoustic proper-
ties of living tissues as evaluation parameters have been 
proposed and realized, as described in the present review. 
However, the relationships between the types of physical 
properties (or pathological level structure) of the biological 
tissue responsible for the image features and QUS param-
eters have not been sufficiently verified because of the vari-
ety of conditions under which living tissue is observed with 
ultrasound. In addition, discrepancies always exist between 
theoretical and actual measurements. A major problem in 
the clinical application of QUS is the dependency of the 
evaluation result on the acquisition conditions of the RF 
echo signal, which is the source of the image information 
and varies among diagnostic equipment. Dependency on the 
acquisition conditions and equipment has been a longstand-
ing concern in medical imaging modalities such as CT and 
MRI, as well as in ultrasound. However, QUS studies have 
most commonly been conducted by independent researchers, 
and a comprehensive study has not been completed.

The Quantitative Imaging Biomarkers Alliance (QIBA) 
[109] was established in 2007 under the leadership of the 
Radiological Society of North America (RSNA) to over-
come the problem of medical imaging modalities being 
unable to progress beyond the stage of subjective evaluation. 
QIBA is a network of health care workers such as medical 
doctors, as well as engineering researchers and equipment 
development manufacturers, that carries out major activities 
aimed at the establishment of medical imaging biomark-
ers. Three committees have been established in collabora-
tion with the AIUM: the Contrast-Enhanced Ultrasound 

(CEUS), Ultrasound Shear Wave Speed (SWS), and Ultra-
sound Volume Blood Flow biomarker committees. In Japan, 
J-QIBA was established in 2015 as an initiative of the Japan 
Radiological Society (JRS) [110]. The Japanese Society of 
Ultrasonics in Medicine (JSUM) collaborates mainly on the 
standardization of shear wave elastography and also carries 
out its own activities [111–113]. QIBA and J-QIBA activi-
ties to standardize QUS parameters and establish ultrasonic 
biomarkers include evaluation of clinical data collected 
at various clinical facilities; in addition, these entities are 
active in the construction of standardized phantoms, estab-
lishment of computer simulation methods, and standardiza-
tion of diagnostic protocols. In 2020, the Pulse-Echo Quan-
titative Ultrasound (PEQUS) Biomarker Committee [114] 
was established within QIBA in response to the successive 
implementation of attenuation and speed of sound evalua-
tion technologies in ultrasonic diagnostic equipment. The 
PEQUS committee undertakes evaluation of attenuation and 
speed of sound methods that have already been implemented 
in clinical equipment, as well as examination of BSC and RF 
data collection methods.

Micro‑specific acoustic characteristics

To verify the accuracy of QUS methods for evaluating the 
properties of echo signals, it is necessary to understand the 
intrinsic acoustic characteristics of individual living tissues. 
Ultrasonic observation with a higher resolution than is possi-
ble at the clinical level is indispensable for this purpose, and 
is realized by scanning acoustic microscopy (SAM). SAM 
uses ultrasound frequencies of 100 MHz or higher. Spatial 
resolutions of 15 and 1.5 µm are obtained at frequencies 
of 100 MHz and 1 GHz, respectively, and it is possible to 
observe organelles at frequencies above 200–300 MHz.

Fig. 3   Parametric images 
(top) of integrated backscat-
ter and acoustic impedance 
maps (bottom) of human skin 
dermis with (+) and without (−) 
lymphedema
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Liquid media or unstained tissue specimens sliced to 
4–20 µm are commonly used to assess attenuation and 
speed of sound [115–118]. SAM can also be used to directly 
evaluate the acoustic impedance of extracted raw biologi-
cal samples including living tissues such as cultured cells 
or acids, which is one of the main acoustic characteristics 
that determine the degree of attenuation and backscattering 

[119–122]. Figure 4 shows the relationship between the 
speed of sound, acoustic impedance, and amount of fatty 
acid content in control, simple steatosis, and nonalcoholic 
fatty liver disease (NASH) livers [119]. The figure confirms 
that compared with other liver types, NASH liver has a 
slower speed of sound and lower acoustic impedance, and 
an extremely high ratio of oleic acid to the total amount of 
fatty acids. This characteristic may enable the evaluation of 
canceration tendency using ultrasound.

In recent years, in addition to attenuation, speed of sound, 
and acoustic impedance, multiple indicators such as thick-
ness, density, and bulk modulus have also been compared 
[123, 124]. Acoustic characteristics have also been evaluated 
in wide space and in wide frequency bands that correspond 
with those of in vivo QUS [108, 125]. As an example of 
the results of this technology, Fig. 5 shows the multi-scale 
evaluation of the speed of sound in rat kidney. Figure 5 
shows the evaluation results only at 250 MHz. Even based 
on the results of evaluation using only a single frequency, the 
same tissue structure can be confirmed as in the pathological 
image, and physical differences in microtissues that cannot 
be detected in the pathological image can be understood. It is 
also possible to understand the multidimensional features by 
combining the evaluation results obtained at lower or higher 
frequencies [125]. These studies provide clues regarding 
the relationship between microscale acoustic properties and 
clinically observed structural-level living tissues. These are 
useful for providing direct physical quantities in the con-
struction of three-dimensional impedance maps in BSC eval-
uation, and for multi-scale accuracy verification in evalua-
tion of attenuation and amplitude envelope characteristics. In 

Fig. 4   Relationship of speed of sound, acoustic impedance, and total 
amount of fatty acid content in control (blue), simple steatosis (red), 
and NASH (yellow) livers. White circles indicate the amount of oleic 
acid in the total amount of fatty acids

Fig. 5   Multi-scale evaluation 
of speed of sound in rat kidney 
with 250-MHz ultrasound (top) 
and pathological images of the 
corresponding site (bottom)
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addition, the application of photo acoustics to this technol-
ogy [126, 127] is expected to greatly contribute to the future 
development of QUS.

Conclusion

Various QUS methods, particularly shear wave elastography, 
attenuation evaluation, and speed of sound evaluation have 
been developed and implemented in clinical equipment and 
are now being applied in a wide range of fields. The theory 
behind and full meaning of the QUS parameters produced by 
such equipment are not fully understood at present; however, 
large-scale projects (e.g., QIBA, J-QIB) are under way to 
address this problem, and working group activities are being 
actively promoted in the participating academic societies. 
Basic research to support theory and practice is also continu-
ing to develop. It is important that users of the QUS method 
not only use the technology but also recognize that their 
research results will be added to large-scale standardization 
studies that are currently under way. In addition, considering 
the wide diversity of QUS methods, it is essential to conduct 
a thorough investigation into the suitability (or unsuitability) 
of each QUS method for the particular area to be evalu-
ated. Despite current challenges, because QUS technology 
incorporates the properties and advantages of ultrasound, it 
undoubtedly has great potential for future application.
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