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Abstract: Incidence of Lyme disease, a tick-borne illness prevalent in the US, is increasing in endemic regions

and regions with no previous history of the disease, significantly impacting public health. We examined space–

time patterns of Lyme disease incidence and the influence of ecological and social factors on spatial synchrony,

i.e., correlated incidence fluctuations across US counties. Specifically, we addressed these questions: Does Lyme

disease incidence exhibit spatial synchrony? If so, what geographic patterns does Lyme disease synchrony

exhibit? Are geographic patterns of disease synchrony related to weather, land cover, access to health care, or

tick-borne disease awareness? How do effects of these variables on Lyme disease synchrony differ geographi-

cally? We used network analysis and matrix regression to examine geographical patterns of Lyme disease

synchrony and their potential mechanisms in 399 counties in the eastern and Midwestern US. We found two

distinct regions of synchrony in Northeast and upper Midwest regions exhibiting opposing temporal fluctu-

ations in incidence. Spatial patterns of Lyme disease synchrony were partly explained by land cover, weather,

poverty, and awareness of tick-borne illness, with significant predictive variables changing regionally. However,

the two regions may have become more synchronous over time, potentially leading to higher-amplitude

nation-wide fluctuations in disease incidence.
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INTRODUCTION

In biological systems such as the dynamics of animal

populations or disease incidence, temporal fluctuations are

commonly correlated across many locations, a phe-

nomenon known as spatial synchrony (Liebhold et al. 2004;

Walter et al. 2017). Synchrony can be caused by a variety of

different mechanisms, including the ‘‘Moran effect,’’ in

which spatially correlated environmental effects, such as

climate and weather variation, impart synchrony through

their influence on biological processes, dispersal, or inter-

actions with synchronized species (Liebhold et al. 2004).

Synchrony plays a key role in large-scale ecological and

epidemiological dynamics as fluctuations that are sharedCorrespondence to: Asad E. Ali, e-mail: asadeali10@gmail.com
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across locations are amplified in the aggregate, and studies

of synchrony have provided new insights into how envi-

ronmental drivers shape biological dynamics (Koenig &

Liebhold 2016; Walter et al. 2017). Recent studies have

emphasized that synchrony often exhibits complex geo-

graphic patterns that reflect spatiotemporal patterns of

underlying drivers of synchrony or of mechanisms that

modify the effects of underlying drivers on local popula-

tions (Walter et al. 2017). An emerging approach to

studying geographies of synchrony envisions a network of

locations linked by synchronous dynamics and investigates

the structure of these networks to understand the nature

and causes of synchrony (Walter et al. 2017; Anderson et al.

2018; Moustakas et al. 2018).

Synchrony is a prominent feature of disease outbreaks

such as whooping cough, measles (Rohani 1999), and

influenza. Viboud et al. (2006) found high levels of syn-

chrony in flu outbreaks in urbanized, densely populated

areas in the US, such as cities including New York and Los

Angeles. In a plant disease system, Penczykowski et al.

(2015) found increasing synchrony in the fungal pathogen

Podosphaera plantaginis as plant exposure to freezing de-

creased during the period of 2001–2013. Thus, spatial

synchrony can be observed not only in animal and plant

populations, but also disease outbreaks which affect plant,

animal, and human populations. However, spatial syn-

chrony in diseases of humans has mainly been studied in

highly contagious viruses and bacteria, rather than patho-

gens arising from animal-vectored pathogens, and so

investigations have naturally focused on transmission net-

works, as opposed to ecological effects of weather and

habitat conditions.

Lyme disease is a tick-borne illness caused by infection

of the Borrelia burgdorferi bacterium, incidence of which is

increasing through time and expanding into new areas

(Schwartz et al. 2017; Bisanzio et al. 2020; Gardner et al.

2020). According to the US Centers for Disease Control

and Prevention (CDC), an estimated 476,000 people are

treated for Lyme disease each year (2021). The geographic

range where Lyme disease cases are likely locally acquired

has expanded over time from its initial core in the north-

eastern US (Bisanzio et al. 2020; Eisen et al. 2016; Gardner

et al. 2020; Kugeler & Eisen 2020). Today, areas of high

incidence are concentrated in the Northeast and upper

Midwest (Schwartz et al. 2017); in both regions, the

number of counties with high incidence of Lyme disease

expanded dramatically (> 320% and&250%, respectively;

Kugeler et al. 2015).

However, much remains unknown about large-scale

spatiotemporal patterns and drivers of Lyme disease inci-

dence. Lyme disease transmission is affected by a wide

variety of factors, including the pathogen life cycle, pa-

thogen–vector and vector–host ecology (Levi et al. 2012,

2015; Halsey et al. 2018; Ostfeld et al. 2018), habitat and

land cover change (Wood & Lafferty 2013; Kilpatrick et al.

2017; Conte et al. 2021; Diuk-Wasser et al. 2021; López-

Pérez et al. 2021; VanAcker et al. 2019), climate and climate

change (Burtis et al. 2016; Ostfeld & Brunner 2015;

Brownstein et al. 2005; Kotchi et al. 2021), and social fac-

tors that may predispose certain populations for a higher

risk of contracting Lyme disease (Couper et al. 2021; Scott

& Scott 2018; Springer and Johnson 2018). Despite con-

siderable effort into resolving the ecological and epidemi-

ological factors shaping Lyme disease dynamics, whether

Lyme disease incidence exhibits spatial synchrony, and if so

what the patterns and drivers are, is to our knowledge

unknown. Resolving these questions is consequential given

the importance of synchrony for determining regional-scale

disease dynamics.

The purpose of this study is to determine if spa-

tiotemporal patterns in Lyme disease occurrence exhibit

spatial synchrony, and the patterns and drivers of spatial

synchrony in Lyme disease in the US. We focus on the

following research questions: (1) Does Lyme disease inci-

dence exhibit spatial synchrony, and if so, what geographic

patterns does Lyme disease synchrony exhibit? (2) Are

geographic patterns of Lyme disease synchrony related to

weather, land cover, access to health care, or awareness of

tick-borne disease? (3) How do the effects of these variables

on Lyme disease synchrony differ geographically? By

answering these questions and establishing links between

the spread of Lyme disease with land cover, climate, and

socioeconomic phenomena, we can better contextualize the

complex spatiotemporal patterns of a disease which, along

with affecting hundreds of thousands of Americans each

year, exhibits ecologically and epidemiologically distinct

trends across the range of endemic regions in the US.

METHODS

We used multiple analyses to characterize the spatial syn-

chrony of Lyme disease incidence and infer potential

mechanisms. We first used network analysis to examine

geographies of Lyme disease synchrony in our study region

(Walter et al. 2017), focusing on identifying groups of U.S.
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counties having synchronous temporal patterns of Lyme

disease incidence. We then tested whether land cover

characteristics, weather, health care access, and awareness

of tick-borne illness explain geographic patterns of spatial

synchrony in Lyme disease incidence.

Data

We determined county-level Lyme disease incidence (re-

ported cases per 1000 people) across US counties by

obtaining annual 2000–2018 Lyme disease case data from

the US Centers for Disease Control and Prevention (CDC

2021) and annual aggregated population time series from

the US Census Bureau (USCB 2021). Annual case counts

were normalized by county population in that year. To

satisfy requirements of our statistical tests, we removed all

counties which had three or more years of zero reported

cases, and because we were interested in places where Lyme

disease is not rare, we omitted counties with time-averaged

incidence rates below 1 in 100,000 people. Counties

meeting this criterion were overwhelmingly located in the

Great Lakes region and in the eastern USA from North

Carolina northward, so we also removed from our dataset

the small number of geographically isolated counties, such

as in California, outside these regions. Additionally, in the

western US, Lyme disease is transmitted by a different

vector, Ixodes pacificus (MacDonald et al. 2017).

We obtained land cover data (2011 conditions; 30-m

spatial resolution) from the National Land Cover Database

(NLCD 2021) and used it to compute the percent forest,

percent developed, and density of forest edges (length of

forest edge per county area; m/ha) for each county. Percent

forest is the total percent (by area) of each county com-

prised of the Deciduous Forest, Evergreen Forest, and

Mixed Forest NLCD classes. Percent developed is the total

percent (by area) of each county comprised of the Devel-

oped–Open Space, Developed–Low Intensity, Developed–

Medium Intensity, and Developed–High Intensity NLCD

classes. Although I. scapularis is more strongly associated

with deciduous broadleaf than evergreen needleleaf forests

(Ginsberg et al. 2004), deciduous and mixed forest made

up 85% of forest in our study area, so for simplicity we

considered all forest types together. We used data from

PRISM (NACSE 2020) to quantify weather variables

thought to influence the population dynamics of Lyme

disease vectors or hosts (Burtis et al. 2016; Ostfeld &

Brunner 2015; Brownstein et al. 2005; Kotchi et al. 2021).

PRISM data are available at 4 km spatial resolution, and

temperature time series were obtained from the spatial

centroid of each county. We computed the number of hot,

dry days (T > 25 �C, precipitation = 0) per year, taken

over the full year and in shorter phenological windows

based on the life cycle of blacklegged ticks. To correspond

generally with the nymphal life stage, we summed the

number of hot, dry days from May through July, while to

correspond generally with the larval life stage we summed

the number of hot, dry days from August through

September (Burtis et al. 2016). Additionally, we computed

the annual time series of average winter (January through

March) minimum temperature. Following findings by

Couper et al. (2021), we also considered two human pop-

ulation variables: the percentage of residents living in

poverty (averaged over 2000–2018; USCB 2021), and

temporal patterns in the frequency Google searches for

‘‘tick’’ from 2004 (the first year data were available) to 2017

reported by Google Trends. The latter were available at the

level of Designated Metropolitan Areas (DMAs), and for

our analyses, the time series for a DMA was considered to

apply to all counties comprising it. Like Couper et al.

(2021), we considered poverty, the percentage of county

population living under the poverty line, an index of access

to healthcare and Google searches an index of public

awareness of tick-borne illness.

Prior to analysis, all-time series were linearly de-

trended, transformed to approximate normality using a

Box-Cox procedure, and scaled to have unit variance.

Analyses

We first used a network modularity analysis to identify

groups of counties having relatively high within-group

spatial synchrony but relatively weak between-group syn-

chrony of spatially synchronous counties (Newman 2006).

We constructed a weighted synchrony network by quanti-

fying spatial synchrony in Lyme disease incidence among

all pairs of counties using Pearson correlation. Pearson

correlation is a standard measure of synchrony (Liebhold

et al. 2004; Walter et al. 2017) ranging - 1 to 1; positive

values correspond to synchrony. We then used an elabo-

ration of the algorithm of Newman (2006) to networks

with positive and negative weights (Walter et al. 2021) to

detect network modules. This algorithm has a built-in

stopping criterion that acts as a test of whether subdivisions

of the dataset have statistical support.

We next used matrix regression on similarity matrices

(MRM; Lichstein 2007; Haynes et al. 2013) to assess evi-
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dence for potential weather, land cover, and human pop-

ulation mechanisms of geographic variation in spatial

synchrony. MRM tests the hypothesis that the structure of a

response matrix is more similar than expected by chance to

that of one or more predictor matrices, while controlling

for effects of other predictor matrices. Thus, MRM exam-

ines evidence for likely drivers of synchrony and for

mechanisms that do not cause synchrony per se but instead

modify its strength based on statistical similarity of geo-

graphic pattern. As above, spatial synchrony in Lyme dis-

ease incidence was represented as the matrix of all pairwise

Pearson correlation coefficients among county-level Lyme

disease incidence time series. Predictors considered in-

cluded: spatial synchrony in hot, dry days (all year, nym-

phal period, larval period); spatial synchrony in winter

average minimum temperature; spatial synchrony in Goo-

gle searches for ‘‘tick’’; similarity in percent forest land

cover; similarity in percent developed land cover; similarity

in forest edge density; similarity in percent of residents in

poverty; and spatial proximity. In all cases, synchrony was

measured using pairwise Pearson correlation. Similarities

were transformations of pairwise Euclidean distances using

the equation similarity = 1 - (dij/max(dij)), where d is the

Euclidean distance in whatever metric between counties i

and j. MRM can equivalently be applied to distance

matrices, or a mix of distance and similarity matrices, but

since synchrony is a kind of similarity, we expressed all

other variables as similarities to aid interpretation of

regression coefficients.

We used MRM to examine the relationships between

Lyme disease synchrony and these predictors, considering

first all studied counties together, and subsequently each of

the modules identified in our first analysis, separately. One

reason that spatial synchrony, generally, might show dis-

tinct geographic patterns is that different drivers tend to

predominate in different places (Walter et al. 2017). Since

some predictors were collinear and had similar interpre-

tations, we tested six candidate models and selected the one

having the highest R2. Each model contained spatial

proximity, one (out of three) hot, dry days synchrony

variable, winter minimum temperature synchrony, simi-

larity in percent forest or percent developed, similarity in

forest edge density, similarity in poverty percentage, and

synchrony in web searches for ‘‘tick.’’ Statistical significance

of model terms is evaluated using a permutation-based

pseudo-t test and a permutation-based F-test provides a

test that the model produces better predictions than ran-

domness (Legendre et al. 1994). Statistical significance was

assessed at the a = 0.05 level.

Analyses were conducted in R version 4.0.3 using the

‘wsyn’ (Reuman et al. 2021) and ‘ecodist’ (Goslee & Urban

2007) packages.

RESULTS

Our analysis focused on 416 counties meeting our inclusion

criteria, located in the states of Connecticut, Delaware,

Iowa, Illinois, Indiana, Ohio, Pennsylvania, Maine, Mary-

land, Massachusetts, Michigan, Minnesota, New Hamp-

shire, New York, North Carolina, Rhode Island, Virginia,

West Virginia, and Wisconsin (Fig. 1). From 2000 to 2018,

county-level mean annual Lyme disease incidence ranged

from 0.01 to 6.4 cases per 1000 people. Interannual vari-

ability (standard deviation) in incidence ranged from 0.007

to 3.9 cases per 1000 people.

Modularity analysis detected two distinct modules in

Lyme disease spatial synchrony corresponding to groups of

counties with relatively high within-group and low be-

tween-group synchrony (Fig. 1). Module 1 (n = 235

counties) was concentrated primarily in the upper Mid-

western region of the US, while Module 2 (n = 181 coun-

ties) was concentrated primarily in the northeastern region;

both of these modules displayed strong intra-module syn-

chrony (visually apparent in the relatively high number of

links connecting gray nodes to gray nodes and black nodes

to black nodes) but low inter-module synchrony (visually

apparent in the lack of links connecting gray nodes and

black nodes). Corroborating that intra-module synchrony

was greater than inter-module synchrony, the median

spatial synchrony (Pearson correlation) between counties

in the same module was 0.26 (inter-quartile range = 0.08–

0.46) and the median spatial synchrony (Pearson correla-

tion) between counties in different modules was - 0.06

(inter-quartile range = - 0.25 to 0.13). We also found that

Modules 1 and 2 exhibited opposite patterns in mean

incidence over time, demonstrating quasi-cyclical patterns

which reached peaks and troughs at opposite points in time

until &2014 (Fig. 1; Pearson correlation = - 0.43)

(Fig. 2).

In our MRM analysis of all studied counties, the

regression model most predictive of synchrony in Lyme

disease (by R2) represented summer temperatures as hot,

dry days during the larval period and land cover compo-
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sition as percent forest. Spatial synchrony in Lyme disease

was positively related to spatial synchrony in awareness of

tick-borne disease (Google searches for ‘‘ticks’’) and simi-

larity in percent forest (Table 1); other effects were not

statistically significant at the a = 0.05 level. The model R2

was 0.008, but low R2 values for MRM models are common

(Walter et al. 2017; Anderson et al. 2018) and a highly

significant test for lack of fit (p < 0.001) allows us to reject

the null hypothesis that the model is not predictive of

geographical patterns of spatial synchrony.

In our MRM model most predictive of Lyme disease

synchrony by R2 for Module 1, which was concentrated in

Fig. 1. Map of study area in conterminous USA. Code to state abbreviations: CT, Connecticut; DE, Delaware; IA, Iowa, IL, Illinois, IN, Indiana,

OH, Ohio, PA, Pennsylvania, ME, Maine, MD, Maryland, MA, Massachusetts, MI, Michigan, MN, Minnesota, NH, New Hampshire, NJ, New

Jersey, NY, New York, NC, North Carolina, RI, Rhode Island, VA, Virginia, WV, West Virginia, WI, Wisconsin.

Fig. 2. The spatial synchrony of Lyme disease. Lyme disease exhibits two clusters having distinct dynamics; the edges and nodes depicted

represent the strongest 1% correlations among the counties. In the inset, Lyme disease incidence time series were standardized to have

mean = 0 and unit variance and averaged within module.
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the upper Midwest states, summer temperatures were

represented as hot, dry days of the nymphal phase, while

the composition of land cover was represented as percent

developed. Spatial synchrony of Lyme disease was positively

associated with spatial synchrony in poverty, Google sear-

ches, and nymphal hot, dry days, while other effects were

not found to be statistically significant (Table 2). The

model R2 was 0.047, but the significant test for lack of fit

(p < 0.001) for this model also allows us to reject the null

hypothesis that the model is not predictive of geographical

patterns of spatial synchrony.

Lastly, our best model for Module 2 counties had an R2

of 0.023 and represented summer temperatures as hot, dry

days of the larval period and land cover composition as

percent developed (Table 3). In this model, synchrony in

geographical proximity was significantly positively associ-

ated with Lyme disease synchrony, while synchrony in

winter average minimum temperature was negatively

associated with synchrony in Lyme disease. Again, given

that the model p < 0.001, we rejected the null hypothesis

that the model is not predictive of geographical patterns of

spatial synchrony.

DISCUSSION

We found that the geography of spatial synchrony of Lyme

disease from 2000 to 2018 could be characterized by two

distinct regions, the Northeast and upper Midwest, that

exhibited opposing temporal fluctuations in Lyme disease

incidence (Q1); though the northernmost portion of the

Northeast in Maine exhibited trends in incidence that cor-

related more strongly with the upper Midwest (Q1). Prior

studies have found that Lyme disease expanded into Maine

later than the rest of theNortheast (Elias et al. 2021); thismay

be a potential mechanism of the similar trends seen in this

region and the overall upper Midwest. We found that the

spatial structure of Lyme disease synchrony was related to

land cover, winter and summer temperatures, access to

health care, and awareness of tick-borne illness (Q2); how-

ever, the influence of these variables differed among regions

(Q3). For example, in the upper Midwest, (Module 1) in-

crease in Lyme disease incidence was positively associated

with nymphal-stage hot and dry days, increased poverty, and

Google searches for ‘‘ticks.’’ In the Northeast (Module 2),

however, Lyme disease incidence was positively associated

with geographical proximity and negatively correlated with

winter average minimum temperatures. These results shed

light on the broader spatiotemporal patterns of Lyme disease

in the US; moreover, they suggest that the most important

drivers of Lyme disease incidence differ regionally.

Our findings regarding the geography of Lyme disease

spatial synchrony in the US aid in contextualizing prior

Table 1. MRM Analysis, Spatial Synchrony in All Counties.

Variable Coefficient p value

Spatial proximity 0.187 0.061

Larval hot, dry days synchrony - 0.043 0.119

Winter avg. min. temperature synchrony - 0.022 0.809

Edge density similarity - 0.046 0.089

Percent forest similarity 0.044 0.010

Poverty rate similarity - 0.004 0.909

Google tick search synchrony 0.094 0.005

R2 = 0.008, model p value < 0.001.

Variables with p-value < 0.05 are italicized.

Table 2. MRM Analysis, Spatial Synchrony in Module 1

Counties.

Variable Coefficient p value

Spatial proximity - 0.017 0.807

Nymphal hot, dry days synchrony 0.088 0.015

Winter avg. min. temperature synchrony 0.210 0.119

Edge density similarity 0.010 0.748

Percent developed similarity - 0.039 0.285

Poverty rate similarity 0.149 0.006

Google tick search synchrony 0.107 0.006

R2 = 0.047, model p value < 0.001.

Variables with p-value < 0.05 are italicized.

Table 3. MRM Analysis, Spatial Synchrony in Module 2

Counties.

Variable Coefficient p value

Spatial proximity 0.305 0.025

Larval hot, dry days synchrony 0.064 0.087

Winter avg. min. temperature synchrony - 0.210 0.022

Edge density similarity 0.038 0.275

Percent developed similarity 0.036 0.284

Poverty rate similarity 0.029 0.505

Google tick search synchrony - 0.002 0.972

R2 = 0.023, model p-value < 0.001.

Variables with p-value < 0.05 are italicized.
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studies indicating the concentration of Lyme disease cases

in the Northeastern and upper Midwestern regions

(Schwartz et al. 2017) by emphasizing the differences in

incidence trends in these regions. Specifically, our study

sheds light on the opposing patterns of Lyme disease

incidence and spatial synchrony in the Northeast and upper

Midwest regions of the US. There was an apparent cyclical

pattern in disease incidence in both modules that had Lyme

disease incidence in the two regions fluctuating in oppo-

sition through the first � of the study period. Intriguingly,

however, since &2014 the mean time series for each

module appear to be more synchronized. The geographic

range where Lyme disease cases are likely locally acquired

has expanded over time from its initial core in the north-

eastern US (Bisanzio et al. 2020; Eisen et al. 2016; Gardner

et al. 2020; Kugeler & Eisen 2020). Following invasion of a

new area, there may be a lag time before the newly estab-

lished population becomes synchronized with longer-

established populations, with rates of synchronization

depending on strength of endogenous population regula-

tion (Bjørnstad et al. 2008). If indeed formerly anti-syn-

chronous regions of relatively high Lyme disease prevalence

have become synchronized, this would have major impli-

cations for the year-to-year variance in total Lyme disease

cases in the USA, as anti-synchronous fluctuations tend to

cancel in the sum, while synchronous fluctuations reinforce

each other.

Two classical mechanisms of spatial synchrony are

synchronous weather variation and dispersal, which com-

monly manifest in part as declines in synchrony with

increasing distance (Liebhold et al. 2004). Consistent with

this expectation, we tended to find that nearby counties had

more synchronous Lyme disease incidence. We also found

that disease synchrony was positively correlated with syn-

chrony in nymphal-stage hot, dry days in the upper Mid-

west, and in the Northeast a positive association between

Lyme disease synchrony and synchrony in larval-stage hot,

dry days approached statistical significance (Tables 2, 3).

Thus, synchrony in summer weather partly explains syn-

chrony in Lyme disease incidence. In the Northeast, we also

found a negative association between Lyme disease syn-

chrony and synchrony in winter minimum temperatures.

Although some degree of decoupling between winter

weather and Lyme disease dynamics could be expected gi-

ven the ability of I. scapularis to survive cold ambient

temperatures due to insulation in microhabitats, such as

snowpacks (Linske et al. 2019), the reason for a negative

association is unclear and could possibly reflect type-1 er-

ror or correlation with some third, unmeasured variable

having a mechanistic effect on Lyme disease dynamics.

Aspects of winter weather unaddressed by this study such as

temperature variation and precipitation may also play a

role in Lyme disease dynamics (Subak 2003).

Prior studies have highlighted the significance of forest

land cover and human development on the transmission of

Lyme disease (Kilpatrick et al. 2017, Wood & Lafferty 2013,

Conte et al. 2021, Diuk-Wasser et al. 2020). For example,

that Lyme disease incidence may be positively associated

with land-use change and forest fragmentation (Allan et al.

2003; Brownstein et al. 2005; Kilpatrick et al. 2017). While

we did not find forest edge density (a metric of forest

fragmentation) to be predictive of Lyme disease synchrony,

in our analysis across all counties, we found that Lyme

disease was more synchronous between counties with a

similar percentage of forest land cover (Table 1). In our

module-specific (regional) analyses, similarity in percent-

ages of developed land was a better predictor of disease

synchrony than similarity in percent forest cover, although

these were not statistically significant predictors.

In our analysis of socioeconomic variables, we found

that Google searches for ‘‘ticks’’ were significant determi-

nants of Lyme disease synchrony in our analysis of all

counties and the upper Midwest (Module 1). This finding

is supported by a prior study by Couper et al. (2021), who

found that Lyme disease incidence was positively associated

with Google searches, used as a proxy for disease awareness

among the public. Unlike other variables we considered,

awareness of tick-borne disease is not an ecological mech-

anism of synchrony or its geography; rather, encounters

with ticks likely drive variation in web searches. Still, we

included this variable in our analyses to help constrain

variation possibly arising if awareness influences rates of

diagnosis. In contrast to results reported by Couper et al.

(2021), who noted no significant effect of poverty on dis-

ease incidence, we found that poverty was positively asso-

ciated with disease synchrony in the upper Midwest

(Module 1). Given the sociological complexities of poverty,

a wide variety of factors such as lower insurance coverage,

the decreased affordability of healthcare, and subsequent

underdiagnoses could be potential mechanisms of the effect

of poverty on disease synchrony. Relatedly, Springer and

Johnson (2018) found disease incidence to be associated

with higher-income areas as well as areas with a higher

percentage of vacant housing units. Taken together, our

results underscore the importance of considering both

ecological and socioeconomic factors in understanding the
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dynamics of human diseases with animal reservoirs and

vectors.

An aspect of Lyme disease ecology that we did not

address in this study was the effects of white-tailed deer and

white-footed mouse populations on disease transmission.

Addressing this variable in our analysis would have been

difficult due to the scarcity of high-resolution, county-level

data on the populations of these hosts. High mouse pop-

ulation density has been strongly correlated with Lyme

disease risk (LoGiudice et al. 2003); additionally, the 4-year

population cycle of white-footed mice has been found to

have a strong impact on tick-borne pathogen transmission

(Wang et al. 2009). Furthermore, white-tailed deer popu-

lations have functioned as hosts to amplify I. scapularis

reproduction, increasing the risk of B. burgdorferi trans-

mission (Wood & Lafferty 2013). Although to our knowl-

edge data on matching spatiotemporal scales do not exist to

use in our analyses, there is evidence that white-footed

mouse population cycles are spatially synchronous (Haynes

et al. 2009), possibly contributing to spatial synchrony in

Lyme disease by transmitting synchrony through host–pa-

thogen interactions.

Our study assumed that the Lyme disease data were

compiled in a relatively uniform, consistent manner with

minimal discrepancies from county to county. This may

not be the case in reality. While the CDC continues to

organize disease data annually, the sociopolitical determi-

nants of Lyme disease and public health reporting may have

caused noise and bias in our data. Lyme disease prevention

and reporting have been strongly associated with awareness

of the disease in the northeastern and upper Midwestern

regions, where the disease is endemic in the US (Herring-

ton et al. 1997); it may be possible, therefore, that under-

diagnoses of the disease in previously non-endemic regions

may have skewed our data on the geography of Lyme dis-

ease synchrony and incidence, especially in regard to the

lower number of cases in the mid-Atlantic region. Fur-

thermore, healthcare providers’ assumptions of patients

being infected with Lyme disease without taking a test for

the disease may also cause more cases to go unreported.

Additionally, it is possible that noise in our data due to

reporting inconsistencies contributed to the lower R2 values

across our models.

Spatial synchrony is well-known to manifest in disease

outbreaks, but prior work has focused mainly on viral and

bacterial infections that are directly transmitted between

infected hosts, such as influenza and whooping cough

(Rouhani et al. 1999, Viboud et al. 2006, Moustakas et al.

2018), and hence, these studies have focused primarily on

movements of infected hosts as mechanisms of synchrony.

In our vector-borne study system, we found evidence that

weather may synchronize Lyme disease dynamics across

regional scales, and also that spatial habitat conditions may

modify synchrony and contribute to its spatial structure.

This is consistent with the importance of vectors and

alternate hosts to the dynamics of vector-borne diseases.

Similar classes of mechanisms likely shape synchronous

dynamics of other vector-borne diseases. While to our

knowledge this seems little studied, the incidence of vector-

borne diseases may still fluctuate over orders of magnitude,

and understanding the large-scale drivers of such fluctua-

tions can improve preparedness of public health systems

and potentially suggest interventions to prevent or mitigate

large-scale outbreaks.

Given these patterns of weather potentially shaping

Lyme disease synchrony across the Northeast and upper

Midwest, our study may help in shedding light in how

broader climatic patterns such as climate change may result

in a more synchronized rise in incidence across these

geographic regions, further building on prior studies such

as those conducted by Burtis et al. (2016), Ostfeld &

Brunner (2015), Brownstein et al. (2005), and Kotchi et al.

2021.
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