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Abstract: Lyme disease (LD) is the most common vector-borne disease in the United States (U.S.). This paper

assesses how climate change may influence LD incidence in the eastern and upper Midwestern U.S. and the

associated economic burden. We estimated future Ixodes scapularis habitat suitability and LD incidence with a

by-degree approach using variables from an ensemble of multiple climate models. We then applied estimates

for present-day and projected habitat suitability for I. scapularis, present-day presence of Borrelia burgdorferi,

and projected climatological variables to model reported LD incidence at the county level among adults,

children, and the total population. Finally, we applied an estimate of healthcare expenses to project economic

impacts. We show an overall increase in LD cases with regional variation. We estimate an increase in incidence

in New England and the upper Midwestern U.S. and a concurrent decrease in incidence in Virginia and North

Carolina. At 3�C of national warming from the 1986–2015 baseline climate, we project approximately 55,000

LD cases, a 38-percent increase from present-day estimates. At 6�C of warming, our most extreme scenario, we

project approximately 92,000 LD cases in the region, an increase of 145 percent relative to current levels.

Annual LD-related healthcare expenses at 3�C of warming are estimated to be $236 million (2021 dollars),

approximately 38 percent greater than present-day. These results may inform decision-makers tasked with

addressing climate risks, the public, and healthcare professionals preparing for treatment and prevention of LD.
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INTRODUCTION

In the eastern United States (U.S.), Ixodes scapularis Say, or

the eastern blacklegged tick, is the primary vector of Bor-

relia burgdorferi sensu stricto and B. mayonii, the patho-

genic causative sources of Lyme disease (hereafter, ‘‘LD’’)

(Brownstein et al., 2005; Dolan et al., 2016). There are a

multitude of symptoms associated with LD. Acute symp-
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toms may include an erythema migrans rash, fever, chills,

headache, fatigue, muscle and joint aches, and swollen

lymph nodes. Days to months after a tick bite, and if

symptoms are un- or under-treated, more severe sequelae

can occur, including chronic neurodegenerative, rheuma-

tological, and arthritic conditions (estimated in approxi-

mately 12% of U.S. cases; Halperin, 2013) and cardiac

outcomes such as heart arrhythmia or Lyme carditis (esti-

mated 1–10% of U.S. cases; Bush & Vazquez-Pertejo, 2018;

Kullberg et al., 2020; Radesich et al., 2022). Health effects in

children are comparable to those of adults, although the

overall lifetime impact may be magnified given the

potential for children to live for many more years than

adults with life-altering conditions such as juvenile arthritis

or carditis (Steere et al., 1977, 2016; Beach et al., 2020; Mac

et al., 2020). Furthermore, illness may prevail as post-

treatment Lyme disease syndrome (PTLDS) (CDC, 2022),

which can manifest in a variety of ways including long-term

cognitive effects, chronic fatigue, and muscular and joint

pain (Steere et al., 2016; Wong et al., 2022).

Healthcare costs in the U.S. for LD vary and depend on

the severity of illness (Adrion et al., 2015). Overall annual

incidence in the U.S. approaches 106.6 cases per 100,000

individuals (Nelson et al., 2015). Nationwide studies

determined that LD-related annual healthcare expenses,

inclusive of short- and long-term medical care, have ranged

from $345 million to $1.3 billion ($391 million to $1.88

billion in 2021; Adrion et al., 2015; Hook et al., 2022).

Hospitalization rates are estimated by Bloch et al. (2022) as

6.98 per 100,000 cases annually. One study assessed median

expenses as $11,688 (2016 dollars; approximately $13,234

in 2021 dollars) per patient, per hospitalization (Schwartz

et al., 2020). Another study estimated mean LD hospital-

ization costs at $33,440 (2018–2019 dollars; approximately

$35,229 in 2021 dollars) (Bloch et al., 2022). Non-hospi-

talization treatment estimates were far less (Zhang et al.,

2006; Hook et al., 2022). Adrion et al. (2015) found the

average cost of treatment as $2968 (2008 dollars; approxi-

mately $4282 in 2021 dollars), inclusive of inpatient and

outpatient treatment. LD symptoms and healthcare ex-

penses can have broad implications for individual patients.

For instance, LD-related sequelae may lead to socioeco-

nomic effects through healthcare costs or missed work

(Johnson et al., 2011; Hirsch et al., 2018; Schwartz et al.,

2020; Maxwell et al., 2022). There also may be a dispro-

portionate burden on low-income, uninsured, or under-

insured individuals who do not have sick leave or lack the

means to seek care (Hirsch et al., 2018). Further, the

aggregate healthcare costs for pediatric cases may be greater

over their lifetime than adult cases, resulting from the

potential for younger patients to live for many more years

with chronic conditions.

There are fundamental connections between climate

and LD incidence. Climate factors influence multiple dri-

vers of LD incidence including the behaviors of the tick

vector, reservoir hosts, and humans. Humid environments

support adult tick survival by preventing desiccation (Eisen

et al., 2016a, b; Ginsburg et al., 2017), although larval and

nymphal I. scapularis can withstand colder, drier temper-

atures (Eisen et al., 2016a; Thomas et al., 2020). As climate

change has increased temperatures and changes in precip-

itation patterns, there have been increases in the prevalence

and geographic range of tick vectors, B. burgdorferi, and LD

(Eisen et al., 2016a; Burtis et al., 2022; Zhang et al., 2022).

Additionally, the prevalence and range of ticks and LD

incidence are affected by climate-related changes in the

behavioral traits of hosts that are suitable reservoirs for the

spirochetes (e.g., rodents, raccoons, birds, humans,

domesticated animals) (Ostfeld et al., 1995). For instance,

climate change may alter the duration of time in which host

species are active during conditions favorable to tick

development and spirochete transfer, as well as the extent

of the geographic range of hosts (Giardina et al., 2000;

LoGiudice et al., 2003). Climate change also has been

linked to a northward expansion in the habitat ranges of

hosts that are not suitable reservoirs for B. burgdorferi, such

as skinks (Giery & Ostfeld, 2007; Ginsburg et al., 2021).

Changes in human behaviors (e.g., increased outdoor

recreation earlier or later in the year, urban development

patterns) over recent decades have led to an increase in

humans encroaching on tick habitat, thus creating more

opportunities for exposure to I. scapularis and B. burgdor-

feri (Diuk-Wasser et al., 2021; Hook et al., 2021; Kugeler

et al., 2022).

Following approaches consistent with the U.S. Envi-

ronmental Protection Agency’s (EPA 2021) Climate

Change Impacts and Risk Analysis (CIRA; www.epa.gov/c

ira) 2.0 project (Martinich & Crimmins, 2019), this analysis

advances the literature by projecting age-related incidence

of LD along the East Coast and in the Northeast and Upper

Midwest regions of the U.S. for multiple climate-warming

scenarios and estimating healthcare costs following a by-

degree approach. By describing potential impacts associ-

ated with a change in temperature, this analysis can inform

public health interventions such as messaging to influence

human behavior change, greenhouse gas mitigation deci-
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sions, education of healthcare practitioners and the public,

implementation of vector surveillance and control activi-

ties, or vaccination campaigns, should an LD vaccine for

children and adults become widely available (Beck et al.,

2021; Eisen & Stafford, 2021; Tiffin et al., 2022).

METHODS

Data Sources

Climate, Land Cover, and Elevation Data

We drew on multiple data sources to conduct this study.

Baseline climate data were drawn from Livneh et al. (2015)

for the years 1986–2005. For the baseline, we used a multi-

year aggregation of precipitation and temperature data to

create bioclimatic variables for estimating habitat suitability

for I. scapularis, relying on the dismo and modleR packages

in R [(R Version: ‘‘Spotted Wakerobin’’ Release (e7373ef8,

2022-09-06) for Windows; RStudio 2022.07.2 Build 576 (R

Core Team, 2021)]. (The dismo package creates 19 biocli-

matic variables to model temperature and precipitation

variability. Find the full list of bioclimatic variables at h

ttps://github.com/cran/dismo/blob/master/R/biovars.R.)

We used data from the 2016 National Land Cover Database

to measure forest cover (U.S. Geological Survey [USGS],

2016). Elevation data also came from USGS (2018). This

paper used a by-degree-of-warming approach: analyzing

impacts by degree of climate change while holding constant

socioeconomic variables, thus allowing for the construction

of damage functions and clarified the influence of climate

without confounding changes in other variables (Sarofim

et al., 2021). For future climate, we used data to estimate six

levels of warming, relying on a set of selected general cir-

culation models (GCMs) using Representative Concentra-

tion Pathway (RCP) 8.5. The selection of these models and

data were consistent with the CIRA framework and appear

in Table 1.

Tick Distribution and Lyme Disease Incidence Data

The annual county-level incidence of LD from 2008 to 2019

was obtained through a data request to the U.S. Centers for

Disease Control and Prevention’s (CDC) Division of Vec-

tor-Borne Diseases and the National Notifiable Diseases

Surveillance System: Lyme Surveillance Data 2008–2019

(CDC, 2022b). The dataset included LD incidence among

children (defined in the dataset as ages 0–19) and adults

(defined in the dataset as ages � 20); however, in some

cases, these data were missing or masked to protect per-

sonally identifiable health information where county-level

counts were low and thus too small to ensure anonymity.

We collapsed the case data at the county level by averaging

across 2008–2019 to account for any years in which LD

data were not available, and to account for any deviations

that may have resulted from underreporting. For the

baseline distribution of LD incidence by county, please

reference Table A1 (Supplemental). In cases where LD cases

were not broken into adult and child cases, we estimated

this breakdown in two ways. When fewer than 25 percent

of the data were missing, we distributed LD cases using the

same distribution of reported cases for children and adults

as in the baseline period. When more than 25 percent of the

data were missing, we distributed the cases based on the

national distribution of adult and child cases, 72 percent

and 28 percent, respectively (Kugeler et al., 2022). County-

level population counts for individuals aged 19 or younger,

and individuals aged 20 or older, consistent with the age-

ranges for the LD incidence data, were obtained from the

U.S. Census 5-Year American Community Survey (U.S.

Census, 2020). County-level information on the presence of

B. burgdorferi and the presence of I. scapularis was sourced

from the CDC (CDC, 2022b, 2022c). We considered I.

scapularis ‘‘present’’ in a county when the tick was recorded

as ‘‘established’’ in the CDC dataset (at least six ticks, or

Table 1. General Circulation Models and the Year Each Reaches

Degrees of Warming for RCP 8.5: (Central Years for the 11-Year

Time-Periods Used for Each GCM).

GCM (RCP 8.5) 1�C 2�C 3�C 4�C 5�C 6�C

CanESM2* 2011 2033 2048 2062 2076 2091

CCSM4� 2011 2037 2059 2077 2091 –

GISS E2 R� 2025 2052 2082 – – –

HadGEM2 ES§ 2013 2029 2044 2055 2064 2077

MIROC5k 2017 2033 2050 2067 2081

GFDL CM3} 2013 2032 2049 2061 2071 2087

*Canadian Earth System Model second generation.
�Community Climate System Model version 4.
�Goddard Institute for Space Studies version E2 R.
§Hadley Centre Global Environment Model version 2.
kModel for Interdisciplinary Research on Climate version 5.
}Geophysical Fluid Dynamics Laboratory Climate Model version 3.

This table demonstrates six General Circulation Models and different years

for each degree of warming for RCP 8.5. Each cell represents the central

year when the 11-year moving average of annual temperatures exceeds a

given temperature threshold for that climate model.
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two or more life stages, were observed in a county within a

12-month period) (CDC, 2022b).

Healthcare Costs Data

We adjusted estimates from Adrion et al. (2015) to project

the healthcare costs associated with LD. Adrion et al.

(2015) considered medical claims for patients diagnosed

with LD over a 12-month period and reported the average

added healthcare costs compared to a control population.

This estimate included medical insurance claims such as

inpatient care, outpatient care, medications, laboratory

testing, and other expenses.

Modeling Framework

The analysis involved several steps for estimating future LD

incidence and associated costs under different climate

scenarios (Fig. 1).

First, we used the reported distribution of I. scapularis

and present-day climate and land use (forest cover and

elevation) data to develop a model for habitat suitability for

the tick vector in counties in the Upper Midwest, North-

eastern, and East Coast U.S. Next, we used estimates of

current LD incidence at the county level to create a present-

day LD incidence model based on the present-day habitat

suitability estimated above, present climate, land use, hu-

man population, and the presence of B. burgdorferi in a

county.The sample of states includes Connecticut, Dela-

ware, District of Columbia, Illinois, Indiana, Iowa, Maine,

Maryland, Massachusetts, Michigan, Minnesota, New

Hampshire, New Jersey, New York, North Carolina, Ohio,

Pennsylvania, Rhode Island, Vermont, Virginia, West Vir-

ginia, and Wisconsin.

To create future estimates of I. scapularis habitat

suitability, we applied the coefficient estimates from a

present-day habitat suitability model to the future biocli-

matic variables produced by the six different climate

models described above. To create future estimates of LD

incidence, we applied the coefficients from the present-day

LD model to the future bioclimatic variables, estimated

future I. scapularis habitat suitability, and present-day land

use, human population, and B. burgdorferi presence. We

created a single LD estimate for a county by averaging

across climate model results for each of the six temperature

scenarios. Finally, we estimated associated economic costs

by multiplying the number of predicted cases by the case-

level cost for each additional case of LD. Each of these steps

is described in more detail below.

Modeling Present-Day I. scapularis Habitat Suitability and

LD Incidence

We used the following generalized linear model to project

the habitat suitability of I. scapularis, for present and future

climate scenarios:

Pr I: scapulari scð Þ ¼ b0 þ X0 Biovar scð Þ þ c0 Land Usecð Þ
þ c

ð1Þ

where the likelihood of I. scapularis in county c was mod-

eled as a function of bioclimatic variables Biovars and ter-

restrial variables including forest cover and elevation (Land

Use). To create a model of present-day habitat suitability,

we used modleR to select the variables to estimate habitat

suitability and validate our model at the county level. (A

full list of bioclimatic variables appears in Table 2.)

During the modeling process, we created five samples

of the data, where each iteration estimated a model on four

of the samples and validated against the leave-out sample.

Each sample’s model produced a predicted probability of

tick habitat suitability at the county level. The present-day

habitat suitability results for each county and climate

Es�mate �ck habitat 
suitability model using 

baseline data

Use �ck habitat 
suitability model to 

predict habitat suitability 
under different climate 

scenarios 

Es�mate LD incidence 
model using baseline 

data and habitat 
es�mates

Use LD incidence model 
to predict LD incidence 
under different climate 

scenarios

Figure 1. Process for Estimating Future LD Cases. Notes. This figure corresponds with the modeling framework outlined in the text. Estimating

LD incidence proceeds in four steps. First, we estimated a present-day model for habitat suitability (Eq. 1). Second, we inputted future

bioclimatic variables into the estimated baseline model to product future habitat suitability estimates. Third, we used the present-day habitat

suitability estimates in our zero-inflated negative binomial model to estimate a model for the relationship between bioclimatic variables, habitat

suitability, the presence of B. burgdorferi, and land-use variables (Eq. 2). Fourth, we inputted future bioclimatic variables into the estimated

model to project the count of LD under future climate scenarios.

H. Yang et al.



model in this analysis were the average of the predicted

habitat suitability across the five samples.

We used our present-day habitat suitability estimates

to estimate current LD incidence using the following zero-

inflated negative binomial model. We used a zero-inflated

model due to the number of counties not reporting any

incidence of LD. We also tested our zero-inflated negative

binomial model against a zero-inflated Poisson model. The

log-likelihood test favors the zero-inflated negative bino-

mial model over the zero-inflated Poisson model (Eq. 2),

where we regressed the count of LD (i.e., LD incidence) for

county c onto the predicted I. scapularis habitat suitability,

the bioclimatic variables, and land-use variables described

in Eq. (1). We included all the bioclimatic variables in

Table 2 except for mean temperature of the coldest quarter

and temperature annual range, which were omitted due to

collinearity. We also included B. burgdorferi presence as an

indicator for whether the spirochete has been detected in a

county. We used this model to estimate the count of LD

cases when LD has been detected in a county. We included

human Population and Habitat Suitability as estimators in

the model when LD had not been reported in a county. The

variable Lyme Disease represented the previously detected

presence of LD in a county.

Modeling Future Ixodes scapularis Habitat

Suitability Lyme Disease Incidence

To model future I. scapularis habitat suitability, we esti-

mated a similar model as Eq. 1. Although we used the same

parameters, we applied forward and backward variable

selection to create the models to estimate future habitat

suitability (for the selected variables, see Table A2, Sup-

plementary). Like our methods to estimate present habitat

suitability, we created five samples of the data, where each

iteration estimated a model on four of the samples and

validated against the leave-out sample. Each model then

produced the predicted probability of future tick habitat

suitability, where the final probability was the average

across these five results.

The variable selection methods used to construct

habitat suitability for present and future climate scenarios

differ but produce similar results. For future habitat suit-

ability, we relied on the step function in R, which uses the

AIC to perform variable selection. For present habitat

suitability, we relied on modleR, which selects variables

based on correlation to other variables (i.e., removes highly

correlated variables). The qualitative difference between

these results was small; see Figure A1 (Supplemental) for a

comparison of baseline results between the two methods.

Lyme Diseasec ¼ b0 þ b1 Habitat Suitabilityc
� �

þ b2 Populationcð Þ þ c if Lyme Diseasec ¼ 0
b0 þ b1 B: burgdorfericð Þ þ X0 Biovar scð Þ þ c0 Land Usecð Þ þ c if Lyme Diseasec[0

�
ð2Þ

Table 2. Bioclimatic and Land Use Variables Used in Habitat

Suitability Model.

Variable name Variable description

Bio1 Annual Mean Temperature

Bio2 Mean Diurnal Range

Bio3 Isothermality

Bio4 Temperature Seasonality

Bio5 Maximum Temperature of Warmest Month

Bio6 Minimum Temperature of Coldest Month

Bio7 Temperature Annual Range

Bio8 Mean Temperature of Wettest Quarter

Bio9 Mean Temperature of Driest Quarter

Bio10 Mean Temperature of Warmest Quarter

Bio11 Mean Temperature of Coldest Quarter

Bio12 Annual Precipitation

Bio13 Precipitation of Wettest Month

Bio14 Precipitation of Driest Month

Bio15 Precipitation Seasonality

Bio16 Precipitation of Wettest Quarter

Bio17 Precipitation of Driest Quarter

Bio18 Precipitation of Warmest Quarter

Bio19 Precipitation of Coldest Quarter

Forest Cover Percent of County with Forest Cover

Elevation Elevation of County

Selected variables for the present-day habitat suitability model are in bold.

This table presents the list of bioclimatic variables and land-use variables used

in Eqs. (1, 2). Bolded variables were used in the present-day habitat

suitability model. The variables used in future habitat suitability models

appear in Table A5. For the list of bioclimatic variables, visit the World Clim

Bioclimatic Variables webpage.

By-degree Health and Economic Impacts of Lyme Disease, Eastern



To project LD incidence under future climate scenar-

ios, we applied the parameter estimates from the present-

day LD incidence model (Table A3, Supplemental) to the

future bioclimatic variables, B. burgdorferi indicator, land-

use variables, and projected likelihood of I. scapularis

habitat suitability under future climate scenarios.

Modeling Future Healthcare Costs of Lyme Disease

We adjusted the healthcare costs from Adrion et al. (2015)

to find a case-level cost of $4282 (2021 dollars) using the

medical care Consumer Price Index (U.S. Bureau of Labor

Statistics 2021) from the midpoint of 2008. Since this

estimate averaged costs of LD cases involving outpatient

visits as well as those requiring inpatient care, it resulted in

a lower per-patient estimate than those that focused only

on the higher costs associated with hospitalization costs or

long-term health outcomes such as PTLDS (e.g., certain

components of Adrion et al., 2015; Schwartz et al., 2020).

This lower per-patient cost was applied to more patients

and thus was inclusive of a broader range of relatively

short-term treatment options; such that all else being equal,

the aggregate total costs were higher than for studies that

focused only on cases requiring inpatient care or that in-

cluded costs associated with PTLDS. However, these costs

did not quantify other, potentially substantial costs asso-

ciated with externalities such as lost workdays or produc-

tivity.

RESULTS

Ixodes scapularis Habitat Suitability and Present-

Day Lyme Disease Incidence

Our present-day habitat suitability estimates for I. scapu-

laris showed that areas in New England, the upper Midwest,

and along the East Coast have the highest habitat suitability

for I. scapularis (Fig. 2). Notably, increases in the mean

temperature of the warmest quarter and diurnal range led

to a decrease in habitat suitability. However, increases in

precipitation during the warmest quarter of the year and

the percentage of the county with forest cover were asso-

ciated with increased habitat suitability (Tables A2 and A4,

Supplementary). The climate drivers of habitat suitability

were similar in our future I. scapularis habitat suitability

results. Given the negative association between temperature

Figure 2. Present-Day Habitat Suitability for I. scapularis in the Northeast, East Coast, Upper Midwest United States. This figure shows the

estimated present-day habitat suitability for I. scapularis by county in the Northeast, along the East Coast, and Upper Midwestern states. The

model used to produce this graphic is shown in Table A4, in the supplementary materials. As is evidenced here, the estimated probability,

reflected by darker shades of yellows, oranges, and reds, largely were concentrated in the northernmost locations.

H. Yang et al.
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and habitat suitability, we observed a contraction of habitat

suitability with each degree of warming (Table A5, Sup-

plementary).

The geographic distribution of the predicted present-

day I. scapularis habitat suitability is depicted in Figure 2.

At baseline, the geographic distribution of LD was con-

centrated in the Northeast (predominantly northern New

England), upper Midwest, and along the East Coast, with

very little incidence in the lower Midwest (i.e., Iowa,

Indiana, and Illinois).

During the baseline time-period of 1986–2015, we

observed an estimated 27,000 annual adult cases and

approximately 9000 child cases (Table 3 and Fig. 3).

Future LD Incidence

Our estimates of future LD incidence showed an increasing

trend in the Eastern and upper Midwestern U.S. following

more severe warming (Fig. 4), paralleling the present-day

geographic distributions of habitat suitability and LD cases

demonstrated in Figures 2 and 3, respectively. This was driven

by increases in LD incidence in New England and upper

MidwesternU.S.with concurrent decreases in LD incidence in

Virginia and North Carolina. The trends for the incidence of

LD among adults and children were similar, with the total

number of cases among adults remaining higher than among

children across all levels of warming. In terms of absolute

numbers of cases, our model predicted approximately 55,000

cases of LD per year at 3�C, a decrease from the projected

63,000 annual cases at 2�C. At 3�C, we observed an estimated

41,000 annual LD cases in adults (48 percent increase relative

tobaseline) and approximately 12,000 annual cases in children

(50 percent increase relative to baseline) (Table 3). However,

in the 6�C warming climate scenario, we projected a 145

percent increase in cases from the baseline, which represents

approximately 92,000 cases, or an increase of about 54,000

cases from baseline. For the model parameters used to project

LD cases for different climate scenarios, please reference

Table A6, in the supplementary materials.

Present-Day and Future Healthcare Costs of Lyme

Disease

During the baseline period, we estimated that current an-

nual reported LD cases in the region of interest (approxi-

mately 37,000) represent approximately $145 million

annually in healthcare costs, in 2021 dollars. Consistent

with the other components of this analysis, annual collec-

tive, short-term inpatient and outpatient healthcare costs at

3�C of warming were estimated as $236 million in 2021

dollars, an increase of approximately $76 million greater

than baseline expenses. At the highest temperature of 6�C,
cost projections were approximately $392 million annually,

in 2021 dollars (Table 3).

DISCUSSION

To the best of our knowledge, this is a first-of-its-kind

analysis linking climate change with projected healthcare

37,227
33,079

62,988
55,066

61,892

88,723 91,595
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50,000

75,000

100,000

Baseline 1°C 2°C 3°C 4°C 5°C 6°C

All Cases
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Figure 3. Predicted Annual LD Cases, by Temperature Bin and Lifestage (All Cases, Adult Cases, Child Cases). This graphic represents the

predicted counts of adult LD cases, child LD cases, and total LD cases by degree-bin of warming. The counts for the total LD cases, adult LD

cases, and child LD cases appear in Table 3.
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costs associated with LD along the East Coast, and in New

England and Upper Midwest of the U.S., areas that pre-

sently experience the highest rates of this illness in the

country (Kugeler et al., 2015). LD is likely to have a con-

siderable impact on the health of thousands more children

and adults over the coming decades across these regions,

particularly in more northern areas, leading to tens to

hundreds of millions of dollars in annual healthcare costs.

At the peak temperature explored in this study (6�C),
we projected that climate change could increase inpatient

and outpatient healthcare costs for LD by approximately

$233 million annually relative to the present-day (2021

Figure 4. Geographic Distribution of Estimated County LD Cases, by Temperature Bins. The maps in this figure show the differences in

estimated future geographic distribution of LD incidence, following the by-degree-of-warming approach employed in this analysis. Panel a

depicts the states included in this analysis. Panel b represents present-day (baseline) temperatures and LD incidence. Panels c through h

demonstrate changes in LD cases across our region of interest following different degree-increases in temperatures. (Panel c shows change in

cases following 1�C of warming, Panel d shows change following 2�C of warming, and so forth.)
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dollars). The subsequent costs to future generations of

healthcare expenses, and lost work and wages, could have

individual-level implications for social mobility, overall

health, the healthcare industry, and the general economy

(Hirsch et al., 2018).

The estimates of habitat suitability and LD incidence at

baseline were consistent with prior work. Hahn et al. (2016)

reported similar habitat suitability regions for I. scapularis.

Schwartz et al. (2017) reported that between 2008 and

2015, 30,158 (reported in 2010) to 38,468 (reported in

2009) confirmed and probable cases LD cases were docu-

mented.

A notable caveat to these estimates is that we used

reported LD cases for this analysis. These national estimates

of costs likely are under-estimates, given that approxi-

mately only one in ten cases of LD is reported (Nelson

et al., 2015; Cartter et al., 2018; Kugeler et al., 2022). Thus,

our projections likely are under-estimates of future cases

and healthcare costs. LD can have myriad health effects on

individuals, irrespective of age, which can range from mild

to severe, and thus can lead to a wide range of healthcare-

related expenses. Thus, accurate reporting and accounting

is critical for understanding the true burden of disease,

including future healthcare costs, as we experience climate

change.

Relying on the by-degree-of-warming approach, we

show that from the baseline period, climate change and

warming may increase LD incidence at temperatures up to

6�C. Consistent with previous studies (Brownstein et al.,

2005; Kugeler et al., 2015; Ogden et al., 2018; Couper et al.,

2021), our results show counties at the northern margins of

the Northeast (predominantly New England) and Upper

Midwest regions of the U.S. are projected to experience

increases in LD cases, particularly among adults.

Interestingly, while within our region of interest,

overall incidence is increasing, the range of vectors and

pathogens, transmission patterns, and density and con-

centration of LD incidence rates are varying and, in some

locales, declining. LD incidence in counties at the southern

end of the current disease distribution (e.g., North Car-

olina, Virginia) is projected to experience an overall decline

in cases. Ohio shows decreases in incidence for mild

warming but increases at higher temperatures. That said,

these results are not surprising given similar findings

regarding LD spatial contraction within this region by

Brownstein et al. (2005), Burtis et al. (2022), and Ginsburg

et al. (2021). The projected declines likely are driven at least

in part by a change in the range of suitable habitat for I.

scapularis in the southeastern U.S. We hypothesize that

such decreases in habitat suitability may be due to high

temperatures driving and promoting tick diapause, or

reductions in spirochete transmission due to changes in

vector-host interactions and tick questing behaviors (Og-

den et al., 2018; Elias et al., 2021).

Over the coming decades, climate change is likely to

affect incidence rates of vector-borne diseases throughout

the U.S. (McDermott-Levy et al., 2021; Baker et al., 2022).

Already, warming temperatures, changes in precipitation

patterns, and changes in habitat, range, and behaviors of

vectors and hosts have led to the spread of diseases such as

LD, Zika, and others throughout the U.S. (Beard et al.,

2016). For this reason, it is important to consider the

ramifications of the total costs of cases of LD now and in

the future to provide a fuller picture of the risk to human

health.

Potential effects on children’s health are worthwhile

noting. While there are few differences in the manifesta-

tions of health effects in children versus adults, we stratify

by age to demonstrate the numbers of children who may be

affected in the future. In aggregate, children may experience

greater effects and thus healthcare costs given the potential

for longer life-years to live with adverse health outcomes.

We anticipate that children with PTLDS will have greater

lifetime healthcare costs as a result. Additional data on the

incidence rates and costs of PTLDS and acute healthcare

costs in children would allow more accurate projections.

This study has some limitations. The use of RCP8.5

does not imply a judgment regarding the likelihood of that

scenario. The relationship between LD and temperature

then could be interpreted in the context of any future

scenario, as RCP8.5 encompasses the broadest range of

possible future temperatures. Research has shown that 2�C
of warming in RCP8.5 results in similar effects as those

projected to result from 2�C of warming in other warming

scenarios (Sarofim et al., 2021).

The underdiagnosis and underreporting of LD is a

well-known issue (Nelson et al., 2015; Cartter et al., 2018;

Kugeler et al., 2022). This may lead to an underestimation

of current and future LD cases by our algorithm, as it has

been trained on reported data. Additionally, there are some

limitations to our habitat suitability and LD incidence

models. Although our habitat modeling results are consis-

tent to similar studies (Ogden et al., 2014, 2018; Burtis

et al., 2022; Hahn et al., 2016), our predictions relied on the

known presence of I. scapularis in a county. These data are

obtained through vector surveillance efforts, which vary

H. Yang et al.



substantially by county. Our LD modeling framework does

not account for factors such as tourism leading to LD

diagnosis in a county different from the county where the

infection took place (Chiu et al., 2011; Turrisi et al., 2021),

the recent spread of ticks and their hosts into previously

unsuitable habitat, or for increases in B. burgdorferi

prevalence in the tick population. These factors may result

in a new region with high LD risk.

Additionally, there are factors that this study has not

considered that could lead to an increase in the total as-

sessed impacts of climate on LD incidence. We choose to

limit the geographic region for this analysis to states with

historically high incidence of LD. However, it is likely that

LD risk will expand beyond these regions under future

climate change. In addition, we did not estimate economic

impacts from LD cases in the western U.S. The study does

not consider different subpopulations of I. scapularis, or

evolution of future subspecies, that may have questing

behaviors or other characteristics that lead to more ability

to adapt to climate changes (Arsnoe et al., 2015, 2019;

Ginsburg et al., 2014, 2017). We rely on present-day esti-

mates of forest cover for the present-day and future habitat

suitability and LD models. As such, this study does not

capture the potential expansion of suburban areas well-

suited for host species in the future, which may increase

human-tick encounters (Keesing et al., 2009). Human

behavior and susceptibility may be affected by future

education measures, tick control efforts, public health

measures, or vaccine development, leading to a reduction

in LD incidence (e.g., Eisen, 2021; Behler et al., 2020; Po-

land, 2001). Finally, there are additional health effects of B.

burgdorferi (such as PTLDS) and other tick-borne diseases

(e.g., anaplasmosis, babesiosis, rickettsia) that are not ad-

dressed in the present study and could increase healthcare

costs. Our dataset does not reflect diagnosis nor treatment

received via primary care providers or hospitalization; thus,

we apply a single cost estimate of direct medical costs to

encompass all related expenses.

CONCLUSION

This study estimates the change in LD incidence in the

Northeast, Upper Midwest, and along the East Coast U.S.

due to climate change, including age-related effects and

estimates of healthcare costs. The presentation of the results

using a by-degree framework adds to the body of work that

EPA has developed, and thus, this research can be used in

applications that require damage functions, and makes the

results broadly applicable. We project that climate warming

likely will lead to a notable regional increase in LD inci-

dence and associated healthcare costs, especially when

aggregated across the Midwest and Northeastern U.S., and

predominantly in northern New England. This is despite

projected overall decreases in LD incidence rates in more

southerly areas that may experience higher temperatures.

These results may serve to inform policymakers tasked with

addressing climate risks, the U.S. public, and healthcare

professionals who are preparing for treatment and pre-

vention of LD.
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