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Abstract: We investigated the landscape epidemiology of a globally distributed mammal, the wild pig (Sus

scrofa), in Florida (U.S.), where it is considered an invasive species and reservoir to pathogens that impact the

health of people, domestic animals, and wildlife. Specifically, we tested the hypothesis that two commonly cited

factors in disease transmission, connectivity among populations and abundant resources, would increase the

likelihood of exposure to both pseudorabies virus (PrV) and Brucella spp. (bacterial agent of brucellosis) in

wild pigs across the Kissimmee Valley of Florida. Using DNA from 348 wild pigs and sera from 320 individuals

at 24 sites, we employed population genetic techniques to infer individual dispersal, and an Akaike information

criterion framework to compare candidate logistic regression models that incorporated both dispersal and land

cover composition. Our findings suggested that recent dispersal conferred higher odds of exposure to PrV, but

not Brucella spp., among wild pigs throughout the Kissimmee Valley region. Odds of exposure also increased in

association with agriculture and open canopy pine, prairie, and scrub habitats, likely because of highly localized

resources within those land cover types. Because the effect of open canopy on PrV exposure reversed when

agricultural cover was available, we suggest that small-scale resource distribution may be more important than

overall resource abundance. Our results underscore the importance of studying and managing disease

dynamics through multiple processes and spatial scales, particularly for non-native pathogens that threaten

wildlife conservation, economy, and public health.
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INTRODUCTION

Host ecology is a major contributing factor to the patterns

of pathogen emergence across a landscape. The movement

of individual animals, particularly dispersal or migration of

infected hosts, drives the spread of directly transmitted

diseases by introducing a pathogen to naı̈ve populations

(Russell et al. 2004; Hosseini et al. 2006; Macdonald and

Laurenson 2006; Altizer et al. 2011). As infected hosts

disperse across the landscape, they affect the rate of pa-

thogen spread, spatial distribution of infection, and the

likelihood of new exposures (Cullingham et al. 2008).

Landscape composition influences a host’s exposure to

pathogens either by facilitating or hindering contact be-

tween individuals or groups (Blanchong et al. 2008; Rees

et al. 2008; Root et al. 2009; Barton et al. 2010; Tardy et al.

2018). For example, high rates of dispersal and contact

among individual white-tailed deer (Odocoileus virginianus)

have been suggested as a potential mechanism for long-

distance spread of chronic wasting disease (CWD), a prion

disease of cervids (Kelly et al. 2010; Cullingham et al. 2011),

and of bovine tuberculosis (bTB) among sympatric elk

(Cervus canadensis) subpopulations (Vander Wal et al.

2013).

Because patterns of host dispersal influence that of

pathogens, the identification of environmental variables

that influence host movement also contribute to spatial

distribution and occurrence of disease agents, vectors, and

reservoirs (Ostfeld and LoGiudice 2003; Collinge et al.

2005; Storm et al. 2013; McAlpine et al. 2017), and deter-

mine pathogen exposure (Langlois et al. 2001; Riley 2007;

Cullingham et al. 2008; Biek and Real 2010; Meentemeyer

et al. 2012). Identifying land cover features correlated with

the distribution of invasive species carrying non-native

pathogens may therefore facilitate protection of both bio-

diversity and human health via habitat and land use

management.

Wild pigs (Sus scrofa) are one of the most widely dis-

tributed mammals in the world and are considered invasive

species on multiple continents, including North America.

In the USA, a recent and rapid range expansion has led to

the establishment of free-ranging populations in as many as

44 states (Barrios-Garcia and Ballari 2012; Bevins et al.

2014). The rapid spread of wild pigs has been related to

both intrinsic (e.g., ability to adapt to diverse habitat types)

and extrinsic causes (e.g., human-mediated movement)

throughout the whole country (Seward et al. 2004; Bevins

et al. 2014). Regionally, a long and continuous history of

anthropogenic movement has become the principal source

of wild pig introductions and dispersal in places like

Florida, which is evident in the high intermixing of wild

pigs from different genetic backgrounds (Hernández et al.

2018). However, despite their broad geographic distribu-

tion and adaptability, wild pigs have physiological and re-

source limitations that may influence individual movement

patterns and fine-scale distribution (McClure et al. 2015;

Snow et al. 2017). Wild pigs depend on habitats with

suitable natural or artificial forage resources, and water and

cover to thermoregulate during periods of high tempera-

tures (Choquenot and Ruscoe 2003; Mayer and Brisbin Jr

2009). Specifically, hardwood forests provide hard mast

(Geisser and Reyer 2005) and shade cover (Choquenot and

Ruscoe 2003), and wetland-riparian systems provide

important wallowing, cooling, and feeding opportunities

(Gaston et al. 2008). Cropland and pastures also concen-

trate high densities of wild pigs due to their attraction to

abundant artificial food resources (Schley and Roper 2003;

Herrero et al. 2006). By contrast, open canopy habitats such

as Gulf Coast pine forests, wet, and dry prairies, Florida

scrubland, and human settlement areas are less frequently

utilized by the species, which is likely due to limited cover

and resource availability (Mayer and Brisbin Jr 2009; Saito

et al. 2012; Keiter and Beasley 2017). Previous studies have

explored how the combination of large-scale patterns of

dispersal and local patterns of land cover composition af-

fects disease exposure rates on wild pigs (e.g., Cowled et al.

2012; Pearson et al. 2014), contributing to address the

growing concern surrounding the spread of pathogens by

the species, some of which can severely impact public

health, domestic animals, and wildlife (Seward et al. 2004;

Meng et al. 2009).

Two infectious pathogens harbored by wild pig pop-

ulations throughout their global distribution are pseu-

dorabies virus (PrV or Aujeszky’s disease—caused by Suid

alphaherpesvirus) and Brucella spp. (bacterial agent of

brucellosis). Both pathogens are directly transmitted by

exposure to oro-nasal fluids or sexual contact, and expo-

sure typically leads to lifelong infection accompanied by

neutralizing antibodies in wild pigs (Müller et al. 2011;

Leiser et al. 2013). Although mortality is rarely associated

with either PrV or Brucella spp. in adult wild pigs (Müller

et al. 2011; Leiser et al. 2013), both pathogens can be lethal

to other non-suid species. For example, PrV is lethal to

mammalian carnivores and is an emerging health threat to

the endangered Florida panther (Puma concolor coryi),
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which preys on wild pigs (Glass et al. 1994). Brucella spp. is

also a major zoonotic pathogen globally, and Brucella suis is

one of the most prevalent zoonotic pathogens affecting

Floridians (Florida Department of Health 2017). The pa-

thogen produces serious, lifelong health complications in

humans if untreated (Franco et al. 2007). Commercial

livestock in the USA are considered free of PrV and Brucella

spp., yet both pathogens are widespread in free-living wild

pig populations throughout the country, which increases

the risk of reintroduction of the diseases into commercial

herds (Pedersen et al. 2012, 2013). Although both PrV and

Brucella spp. can severely impact wildlife conservation,

public health and the livestock industry, little is known

about how host-dependent and environmental factors

could predict the risk of pathogen exposure in wild pigs. In

this regard, further studies are warranted to inform efficient

management and control decisions on the spread of wild

pigs and diseases at the landscape level.

This study tested two main hypotheses concerning the

effect of movement and land cover composition on PrV

and Brucella spp. exposure among wild pigs across the

Kissimmee Valley of Florida (USA). First, because wild pig

migration may enhance contact rates between pathogen-

exposed and susceptible individuals, we hypothesized that

recent dispersal would be predictive of a higher likelihood

of PrV and Brucella spp. exposure in individual wild pigs.

Second, because habitats with high resource availability,

like hardwood forests, freshwater wetlands and agriculture,

would theoretically support a higher occurrence and den-

sity of wild pigs, we hypothesized that animals would ex-

hibit a higher likelihood of pathogen exposure in high

resource habitats than in limited resource habitats.

METHODS

Sample Collection

Between January 2014 and March 2016, we collected blood

and/or hair samples from 348 wild pigs at 24 sites across

the Kissimmee Valley of Florida (U.S.) (Fig. 1). We sam-

pled animals opportunistically as part of a national wild pig

disease monitoring effort led by the United States Depart-

ment of Agriculture (USDA), Animal Plant and Health

Inspection Service, Wildlife Services, National Wildlife

Disease Program. Sampled pigs were either trapped and

euthanized during animal control efforts conducted by

USDA, or legally harvested by hunters at hunter check

stations on federal and state wildlife management areas,

military bases, and private properties. We recorded

demographic data for each animal, which included sex, age,

and sampling location. Specifically, we used body size,

reproductive traits, and tooth eruption patterns (Matschke,

1967) to classify animals as adults (� 1 year), sub-adults

(2 months–1 year), or juveniles (< 2 months). For PrV

and Brucella spp. serological analyses, we collected up to

35 ml blood from 320 of the 348 wild pigs using 9 ml

Covidien� serum separator tubes (Covidien AG, Dublin,

Ireland). Samples were immediately refrigerated at 4 �C
and centrifuged within 12 h of collection. Serum from each

wild pig was aliquoted into 2 ml Corning� cryovials

(Corning Incorporated, Lowell, Massachusetts, USA) and

refrigerated for up to 4 days prior to shipment on ice packs

to a designated National Animal Health Laboratory Net-

work facility (see serological analyses subsection). For

population genetic analyses, we collected an additional

0.5 ml whole blood from 301 of the 348 animals by cardiac

puncture or orbital draw. The sample was stored imme-

diately in 1 ml mammalian lysis buffer (Qiagen, Valencia,

CA, USA) on ice packs prior to refrigeration at 4 �C. Due

to logistic constraints, we collected additional whole blood

from only a subset of the individuals. From the remaining

47 animals, we collected hair, which was stored in paper

envelopes in the field. Both whole blood and hair samples

were transported to the University of Florida and stored at

- 80 �C until DNA could be extracted. The University of

Florida’s Institutional Animal Care and Use Committee

approved the protocol for this study.

Serological Analyses

Serological tests indicated the presence or absence of host

antibodies to a pathogen. Because both PrV and Brucella

spp. induce a lifelong infection and antibody production, a

positive antibody test indicated that an animal was either

previously exposed and infected but not currently infected,

or exposed and infected. Seroprevalence data for PrV and

Brucella spp. have previously been used to determine dis-

ease prevalence and risk of transmission in wildlife popu-

lations (Cross et al. 2007; Pannwitz et al. 2012). We

included serological data for wild pigs if the sample was

unequivocally determined to be either seropositive or

seronegative for PrV and/or Brucella spp., and the sex and

age of the animal were known. Serological tests were per-

formed at the Kentucky Federal Brucellosis Laboratory

(KY-FBL). Sera were screened for PrV using the PrV-gB

enzyme-linked immunosorbent assay per the manufac-
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turer’s recommendations (ELISA; Idexx Laboratories,

Westbrook, Maine, USA). Samples with S/N ratios � 0.6

were determined as PrV-seropositive, while samples with

values > 0.7 were considered as PrV-seronegative. Sera

were screened for Brucella spp. using the fluorescence

polarization assay (FPA), as described by Nielsen et al.

(1999). Samples with a result of 20 millipolarization units

or above were determined as Brucella spp.-seropositive,

while samples with values < 20 were considered as Bru-

cella spp.-seronegative.

DNA Isolation and Microsatellite Genotyping

We extracted DNA from blood or hair using the Qiagen

DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA)

or the QIAamp DNA Micro Kit (Qiagen, Valencia, CA,

USA), respectively. For both procedures, we followed the

manufacturer’s protocol, with slight modifications reported

previously (see Hernández et al. 2018). We stored isolated

DNA at - 20 �C. Sixty-one microsatellite markers were

initially selected for multilocus genotyping and have been

Figure 1. Distribution of wild pig (Sus scrofa) collection sites through the Kissimmee Valley of Florida, USA, 2014 to 2016.
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previously described (Ellegren et al. 1993; Robic et al. 1994;

Alexander et al. 1996; Rohrer et al. 1996; Hernández et al.

2018). Ultimately, 52 markers were multiplexed for PCR

(Hernández et al. 2018). We analyzed PCR products by

capillary electrophoresis on an ABI 3130xl Genetic Analyzer

(Applied Biosystems, Foster City, CA, USA) and scored

using GeneMarker version 2.6.2 (SoftGenetics, State Col-

lege, PA, USA) at the University of Florida. Validation of

genotypes, comparison of genotypes from different

biosamples, and calculation of genotyping error have been

previously reported (Hernández et al. 2018).

Population Genetic and Dispersal Analyses

To quantify the level of genetic differentiation (i.e., genetic

distance) across wild pig sampling locations, we calculated

the overall FST across all genotypes and loci, and their

statistical significance tested by 999 permutations using the

G-statistic Monte Carlo test implemented in the R package

hierfstat 0.04-26 (Goudet 2005). We also calculated pair-

wise FST values between sampling locations (Weir and

Cockerham 1984) and their statistical significance deter-

mined by 999 permutation using GenAlEx version 6.5

(Peakall and Smouse 2012).

We estimated population-wide dispersal among loca-

tions in the Kissimmee River Valley by estimating the mean

posterior proportion of individuals that migrated between

each pair of locations. We calculated 95% credible intervals

(CI) for pairwise migration estimates between sampling

locations, considering credible intervals that did not in-

clude zero to be statistically significant.

We identified the individuals within those locations

that were either first- or second-generation immigrants,

measured as individual ancestry. This parameter estimated

the probability that an individual originated from a dif-

ferent location (first-generation immigrant) or was an F1

descendant of the immigrant and a local animal (second-

generation immigrant). To estimate the probabilities, we

ran 100,000,000 Markov chain Monte Carlo iterations of a

model that characterized changes in gene frequencies across

populations due to migration. We used a 10,000,000-step

burn-in period and a sampling interval of 500 steps. We

tested multiple delta values for the mixing parameters of

migration, allele frequencies and inbreeding values, where

delta values were defined as the maximum amount a

parameter could be changed between each iteration. Delta

values set to 1 resulted in optimal acceptance rates for

changes to each mixing parameter (between 20 and 60%).

We conducted multiple runs initialized with dispersed

starting values and compared the posterior mean parameter

estimates for convergence. Migration rates and individual

probability of being an immigrant were estimated using

BAYESASS version 3.0 (Wilson and Rannala 2003).

Land Cover Categorization

Land cover data were categorized into six cover types: (1)

closed canopy hardwood forest; (2) open canopy pine,

prairie, and scrub (hereafter referred to as ‘‘open canopy’’);

(3) freshwater wetland; (4) lake and river; (5) agriculture;

and (6) anthropogenic cover (Table 1). We created these

broad-scale groups using the Cooperative Land Cover v3.2

Raster layer (10 m2 resolution derived from aerial pho-

tography, ground-truthing, and local knowledge; FWC and

FNAI 2016) pursuant to the classification schemes de-

scribed by Anderson et al. (1976), Knight et al. (2010) and

Kawula (2014). We estimated the available land cover at

each sampling site within a uniform spatial buffer with a

radius of 5.75 km (area = 103.9 km2). This area encom-

passed the average home range size of wild pigs in the Gulf

Coast forest habitat of the southeastern United States

(mean = 4.8 km2, Garza et al. 2018) and thus represented

the heterogeneity of the biophysical environments wild pigs

might encounter within its home range. As such, this area

represented a conservative proxy of the landscape scale

where pathogens may interact with hosts across the studied

ecological system (Meentemeyer et al. 2012). For sites

where the exact location of wild pigs at time of death was

unknown (i.e., where sampling occurred at hunter check

stations), we placed the buffer around the geographic

center of the managed area per the boundaries provided by

the Florida Conservation Lands (FLMA) shapefile (FNAI

2016). For sites with exact geographic data for samples (i.e.,

where sampling occurred at the location of euthanasia), we

overlaid the buffer around the geographic center of the

site’s cluster of sampling points. The buffered area was then

assessed for the proportion of the six land cover types, and

the same measures of proportional land cover were as-

signed to all individuals within a given site. All spatial data

collection was performed in ArcMap 10.4.1 (ESRI 2016).

Predictors of PrV and Brucella spp. Exposure

in Wild Pigs

Within an Akaike information criterion (AIC) framework

for model comparison (Burnham and Anderson 2002), we
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used logistic mixed effect regression models to assess the

effect of the probability of recent (first or second-genera-

tion) individual migration, the proportion of each land

cover type, age class (juvenile, sub-adult, or adult), and sex

(male or female) on the odds of PrV and Brucella spp.

exposure (seropositive = 1, seronegative = 0). We also in-

cluded two-way interactions of agriculture with the other

five land cover types to assess the influence of agricultural

expansion on the relationship between PrV and Brucella

spp. exposure and non-agricultural land cover. Prior to

their inclusion in the models, predictor variables were

tested for collinearity using Pearson correlation coefficients,

and we found no terms exceeding the 0.7 threshold (Booth

et al. 1994). To account for heterogeneity of PrV and

Brucella spp. exposure across sampling sites, we included a

random site-specific intercept in all models. Exploratory

analyses indicated that including the random site effect

significantly (p < 0.001) improved the overall model fit

over the fixed-effects model (which included variables of

migration, land cover, age class, sex and two-way interac-

tions between land cover types). However, because the land

cover types were spatially varying along with the site-

specific random effect, the estimates for the regression

coefficients of the fixed effects were confounded with the

random intercepts. To alleviate the confounding of land

cover with the random effects, we projected the random

effects into the null space of the land cover variables so that

the site-specific intercepts only accounted for variation not

already explained by land cover (Reich et al. 2006). We fit

all models and calculated regression coefficients and 95%

Table 1. Classification Scheme of Land Cover Types Relevant to Wild Pig Biology.

Hardwood forest Pine, prairie, and scrub

(open canopy)

Freshwater wetland Lake and river Agriculture Anthropogenic

Upland hard-

wood forest

High pine and scrub Freshwater non-forested wet-

lands

Lacustrine Cropland/pasture Cultural-terres-

trial

Mesic hammock Scrub Prairies and bogs Natural lakes

and ponds

Orchards/groves Rural

Slope forest Sand pine scrub Marshes Cultural—lacus-

trine

Vineyard and

nurseries

Extractive

Xeric hammock Coastal scrub Isolated freshwater marsh Riverine Other agriculture Bare soil/clear

cut

Mixed hardwood-

coniferous

Upland pine Floodplain marsh Natural rivers

and streams

Improved pas-

ture

Low-intensity

urban

Maritime ham-

mock

Sandhill Freshwater forested wetlands Cultural—river-

ine

Sugarcane High-intensity

urban

Pine flatwoods and dry

prairie

Cypress/tupelo (including

Cypress/tupelo mixed)

Transportation

Dry flatwoods Cypress Communication

Mesic flatwoods Isolated freshwater swamp Utilities

Scrubby flatwoods Strand swamp

Dry prairie Floodplain swamp

Palmetto prairie Other coniferous wetlands

Shrub and brushland Wet flatwoods

Tree plantations Other hardwood wetlands

Baygall

Hydric hammock

Non-vegetated wetland

Cultural—palustrine

Dome swamp

Basin swamp

Fine-scale land cover types drawn from the Cooperative Land Cover v3.2 Raster—State Classes layer (FWC and FNAI 2016).
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confidence intervals (CIs) using the R package mgcv v1.8-

16 (Wood 2006) and performed a likelihood ratio test as a

measure of goodness of fit using the R package lmtest v0.9-

36 (Zeileis and Hothorn 2002). Odds ratios for all variables

were calculated by exponentiating the logistic regression

coefficients, and statistical significance was determined as a

95% CI that did not include one.

RESULTS

Population Genetic and Dispersal Analyses

The overall FST = 0.09 was statistically significant across all

genotypes and loci (G-statistic = 26,334.4, p < 0.05). All

pairwise FST values estimated between sampling locations

were significantly different from zero (p < 0.05), which

indicated genetic differentiation among sampling locations.

FST values ranged from 0.020 (between locations 9 and 17)

to 0.165 (between locations 1 and 2). Ten of 24 sampling

sites showed moderate levels of genetic differentiation (all

FST values > 0.05) compared to the rest of sampling sites

(see Online Resource 1).

Analysis of dispersal patterns via estimation of migra-

tion rates revealed low and statistically insignificant

migration among most sampling locations. However, we

found significant mean posterior proportion of individuals

that migrated between one site (location 17) and 15 other

adjacent sampling sites throughout the Kissimmee Valley

(ranging from 4 to 14% migrants between sites) (see Online

Resource 2). For locations that had significant migration

rates between them and location 17, we identified 130 of

156 wild pigs that exhibited a probability > 0.9 to be ei-

ther first or second-generation immigrant from a source

location different than the sampling location.

Predictors of PrV and Brucella spp. Exposure

Total sample sizes of wild pigs after omissions were 297 (25

juveniles, 24 sub-adults, 248 adults) for PrV exposure, and

291 (24 juveniles, 22 sub-adults, 245 adults) for Brucella

spp. We observed roughly equivalent sex ratios within both

sample populations (PrV: 148 males, 149 females; Brucella

spp.: 146 males, 145 females). PrV-seropositive animals

were detected at 21 of 23 sites (91.3%), and Brucella spp.-

seropositive individuals were found at 14 of 23 sites

(60.9%). Within each sampled population, 166 (55.9%; CI

50.0–61.6%) exhibited PrV-specific antibodies in their

serum, and 35 (12.0%; CI 8.5–16.3%) exhibited Brucella

spp.-specific antibodies.

We summarized the PrV and Brucella spp. seropreva-

lences, and the probability of recent migration and pro-

portion of each land cover type as predictors of pathogen

exposure across sampling locations (see Online Resource

3). The best-ranked AIC model predicting PrV exposure

included the probability of recent migration, age class, open

canopy, agriculture, and the interaction between agricul-

ture and open canopy (Table 2). Odds of PrV exposure

were over three times higher (odds ratio [OR] = 3.25) for

recent migrant than for non-migrant wild pigs, and almost

four times higher (OR = 3.56) for adults than for juveniles

(Table 3). Odds of PrV exposure were also over 100 times

higher for wild pigs on lands dominated by open canopy

(OR = 214.86) and agriculture (OR = 170.72) than wild

pigs in areas without these land cover types. Though both

open canopy and agriculture had positive main effects on

PrV exposure, the effect of open canopy on PrV exposure

became increasingly negative as agricultural cover increased

(Fig. 2). Both null and fixed-effects-only models exhibited

DAIC > 2, and likelihood ratio tests confirmed that the

best-ranked AIC model fit the PrV data significantly better

than the null model (v2 = 89.50, df = 18.10, p < 0.001)

and the fixed-effects-only model (v2 = 28.05, df = 3.10,

p < 0.001). None of the remaining variables (sex, hard-

wood forest, freshwater wetland, lake and river, or

anthropogenic land covers) were significantly related to

changes in PrV exposure across all the candidate logistic

regression models.

The best-ranked AIC model predicting Brucella spp.

exposure only included the probability that an individual

was a first- or second-generation immigrant (Table 2). The

odds of Brucella spp. exposure (odds ratio [OR] = 2.23)

did not increase significantly for wild pigs that were recent

immigrants (Table 3), but the 95% CIOR marginally in-

cluded one. None of the remaining variables (any land

cover class, age class, or sex) was a significant predictor of

Brucella spp. exposure.

DISCUSSION

Our findings suggest that wild pig dispersal and landscape

composition influence pathogen exposure for PrV among

wild pigs throughout the Kissimmee Valley of Florida.

First- and second-generation immigrants contributed to

increased PrV seroprevalence in wild pig populations, likely

504 F. A. Hernández et al.
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due to increased contact among infectious and susceptible

individuals. Similarly, agriculture-dominated areas, which

attract high densities of wild pigs due to the availability of

abundant artificial food resources, had higher PrV sero-

prevalence than other land cover types. Contrary to

expectations, the odds of PrV exposure were also higher at

sites dominated by the resource-limited open canopy

habitat. The mechanism driving these two apparently

contradictory relationships may be the patchiness of re-

sources within both land cover types. Indeed, the effect of

open canopy on PrV exposure reversed when agricultural

cover was available, suggesting that local distribution of

resources may play a role in pathogen transmission. These

results underscore the necessity for large-scale sampling

both within and among populations to elucidate landscape-

level disease dynamics and interactions among driving

factors.

The role of movement in PrV exposure observed here

corroborates previous observations that dispersal (both

natural and anthropogenic) increases contact rates between

pathogen-exposed and susceptible individuals, which con-

tributes to disease spread at the population level (e.g.,

Zanardi et al. 2003; Hampton et al. 2006; Keuling et al.

2008; Pearson et al. 2014; Franckowiak and Poché 2018). In

Florida, wild pig dispersal has been strongly influenced by

successive events of human-assisted movement that have

contributed to the geographical expansion of wild pigs

throughout the Kissimmee Valley and adjacent regions

(Hernández et al. 2018). Escapes from holding facilities,

legal and illegal transport and release, and hunting pres-

sures have contributed to the movement of wild pigs into

areas that have less human disturbance or are unoccupied

by wild pig social groups (Zanardi et al. 2003; Keuling et al.

2008). In the present study, much of the pattern of

movement was driven by movement of animals into and

out of location 17, which was within close proximity to a

private hunting club known to transport animals into and

out of the property. This anthropogenically induced

movement likely resulted in the high levels of admixture

and production of F1/F2 individuals from the mating be-

tween animals from location 17 and other source popula-

tions (see Hernández et al. 2018 for details), potentially

affecting the opportunity for contact between naı̈ve and

infectious individuals, as suggested by previous studies

(e.g., Zanardi et al. 2003; Cowled and Garner 2008). Be-

cause the movement of individual wild pigs transcended

property boundaries and was facilitated by human-assisted

movement, land managers wishing to control the spread of

PrV among wild pigs, and from wild pigs to livestock and

native wildlife, may benefit from cooperative efforts among

public agencies and private landowners as well as from

enforcement of animal movement laws in the state.

In addition to an animal’s dispersal history, the in-

crease in PrV exposure was also associated with an increase

in the proportion of both agricultural and open canopy

cover within an animal’s home range. This finding suggests

that small-scale spatial and temporal distribution of re-

sources may be more important to the spread of directly

transmitted diseases than overall resource abundance.

Agricultural lands offer reliable access to diverse crop types

(Genov 1981; Herrero et al. 2006), artificial water sources

(Carrasco-Garcia et al. 2015; Payne et al. 2015) and sup-

plemental feeding areas (Cross et al. 2007; Campbell et al.

2013). The availability of these resources not only drives

Table 3. Summary of the Predictors of Pseudorabies Virus (PrV) and Brucella spp. Exposure, Respectively.

Pathogen Parameter OR 95% CIOR

PrV Intercepta 0.07 (0.02, 0.25)

Migrationa 3.25 (1.70, 6.23)

Sub-adult age class 0.84 (0.23, 3.00)

Adult age classa 3.56 (1.35, 9.30)

Open canopy (OC)a 214.86 (22.20, 2079.74)

Agriculture (AG)a 170.72 (6.69, 4359.01)

AG 9 OCa 1.26e-17 (1.44e-28, 1.11e-6)

Brucella spp. Intercepta 0.08 (0.04, 0.14)

Migration 2.23 (0.99, 5.00)

Odds ratio (OR) and 95% confidence interval (95% CIOR) for each predictor are presented. Parameter values of the best-ranked AIC models are presented.
aVariables with significant confidence intervals (95% CIOR)
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overall wild pig densities up to four times higher in crop-

land and pasture than in surrounding habitat types (Caley

1993; Kay et al. 2017), but also attracts higher animal

concentrations around the individual sources of food and

water, creating local conditions for heightened exposure to

directly transmitted pathogens. In contrast, water, thermal

refugia, and highly preferred food resources are limited in

open canopy (i.e., pine, prairie, and scrub) habitat, relative

to hardwood forest and freshwater wetland habitats (Mayer

and Brisbin Jr 2009; Saito et al. 2012; Keiter and Beasley

2017). However, the temporal patchiness of resources, ei-

ther as food (Kurz and Marchinton 1972; Hughes 1985) or

refugia from hunting (Gaston et al. 2008; Franckowiak and

Poché 2018), within open canopy habitat may mimic the

supplemental resources provided by agricultural areas in

elevating local concentrations of wild pigs around discrete

resources. This apparent role of small-scale distribution of

resources in modulating disease transmission is bolstered

by our finding that increasing agricultural cover reversed

the effect of open canopy on PrV exposure. The local

presence of artificial food and water sources may have al-

lowed wild pigs to commute to agricultural fields from less

attractive and sparse nutritional conditions in open canopy

habitat, as demonstrated by previous studies (Gerard et al.

1991; Schley and Roper 2003; Herrero et al. 2006; Keuling

et al. 2009). Consequently, contact and therefore pathogen

exposure may be reduced among animals within the adja-

cent open canopy. Combined with the effects of wild pig

dispersal, these results suggest that the processes driving

pathogen exposure operate at a variety of spatial and

temporal scales, reiterating the need for collaborative

management efforts in controlling the spread of this non-

native pathogen to species of conservation concern.

We detected no influence of land cover composition

on Brucella spp.; while we found that wild pig dispersal

weakly related to Brucella spp. exposure, we may be

tempted to interpret recent migration as contributing to

the persistence of this bacterial agent among wild pig

populations. However, the relatively low number of wild

pigs exposed to Brucella spp. (12%; 35/291) likely impeded

our power to detect any significant predictor variables from

the models. There are several known limitations of existing

serological diagnostic tests for Brucella spp. (e.g., limited

sensitivity and specificity and cross-reactivity with other

pathogens) that tend to underestimate the proportion of

wild pigs exposed to the bacteria (Pedersen et al. 2014,

2017). Larger sample sizes using improved serological tests

would facilitate our understanding of the roles of animal

movement and land cover for this pathogen.

While we suggest that host dispersal and resource-

driven contacts predict the likelihood of PrV exposure

among wild pigs, our study has methodological caveats that

Figure 2. Main effects of (a) open canopy cover (pine, prairie, and

scrub) and (b) agricultural cover (crop and pasture) proportions,

and (c) two-way interaction between open canopy with agricultural

as predictors of the probability of pseudorabies virus (PrV) exposure

in wild pigs. In Figure 2c, X-axis and top legend depict the range of

open canopy and agricultural cover proportions, respectively,

estimated across 23 collection sites of the Kissimmee Valley of

Florida.
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warrant a more cautious interpretation of results. First,

considering that population density modulates the infec-

tion dynamics of several pathogens due to its impact on

contact rates (Penrith et al. 2011; Pearson et al. 2016),

variability in host population density may act as a potential

confounding variable that influences PrV transmission

between infected and susceptible individuals (e.g., Cowled

et al. 2012). Unfortunately, lack of wild pig density data

prevented us to include an independent measure of host

density as potential predictor of pathogen exposure in our

statistical models (i.e., there are no systematic records of

hunting bag numbers across hunter check stations or

public/private properties in the state of Florida). Second,

the extreme odds of PrV exposure related to landscape

composition were likely caused by the imbalanced number

of animals opportunistically sampled across sites (range: 3–

45 wild pigs per site after omissions), which may limit our

inferences about the contribution of land cover on the risk

of PrV spread among wild pigs.

Because of the risk of pathogen spill-over to other

species, the findings presented here have direct implications

to carnivore conservation. Movement of wild pigs infected

with directly transmitted or water-borne pathogens has the

potential to increase the risk of infection for other sym-

patric species (Hampton et al. 2006; Franckowiak and

Poché 2018), and PrV is highly lethal to mammalian car-

nivores (Stallknecht and Howerth 2008). The results of this

study suggest that patterns of wild pig dispersal and land

cover composition may be used to predict habitats that

present a high risk for cross-species transmission of PrV to

endangered carnivores such as the Florida panther. Pan-

thers are highly susceptible to this pig-borne pathogen

(Glass et al. 1994), yet pigs represent the largest component

of the Florida panther’s diet (Maehr et al. 1990). More

globally, our approach could be extrapolated to understand

which habitats within sympatric distributions of wild pigs

and susceptible carnivores have a high risk of transmission

and used to guide habitat management for endangered

carnivores, such as the Iberian lynx (Lynx lynx,Masot et al.

2016) and European wolf (Canis lupus, Verpoest et al.

2014). Future studies may also test alternative hypotheses,

such as the role of stress and its immunosuppressive effects

as potential stimuli for increased disease transmission

among wild pigs (Allwin et al.2015, 2016) and from wild

pigs to endangered carnivore species. Finally, future land-

scape epidemiology studies should embrace multiscale data

collection and analytical methods to better understand how

host and landscape ecology influence the spread and per-

sistence of pathogens across heterogeneous landscapes

(Meentemeyer et al. 2012).
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(2016) Pseudorabies virus infection (Aujeszky’s disease) in an
Iberian lynx (Lynx pardinus) in Spain: a case report. BMC
Veterinary Research 13:6; https://doi.org/10.1186/s12917-016-0
938-7

Matschke GH (1967) Aging European wild hogs by dentition.
Journal of Wildlife Management 31:109–113

Mayer JJ, Brisbin Jr IL (2009) Wild pigs: biology, damage, control
techniques and management. SRNL-RP-2009-00869. Savannah
River National Laboratory: Aiken, South Carolina. pp 400

McAlpine C, Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook
L, Lunney D, Liu Y, Cottin M, Smith AG, Timms P (2017)
Time-delayed influence of urban landscape change on the sus-
ceptibility of koalas to chlamydiosis. Landscape Ecology 32:663–
679. https://doi.org/10.1007/s10980-016-0479-2

McClure ML, Burdett CL, Farnsworth ML, Lutman MW, Theo-
bald DM, Riggs PD, Grear DA, Miller RS (2015) Modeling and
mapping the probability of occurrence of invasive wild pigs
across the contiguous United States. PLoS ONE 10:e0133771; h
ttps://doi.org/10.1371/journal.pone.0133771

Meentemeyer RK, Haas SE, Vaclavik T (2012) Landscape epi-
demiology of emerging infectious diseases in natural and hu-
man altered ecosystems. Annual Review of Phytopathology
50:379–402. https://doi.org/10.1146/annurev-phyto-081211-
172938

Meng XJ, Lindsay DS, Sriranganathan N (2009) Wild boars as
sources for infectious diseases in livestock and humans. Philo-
sophical Transactions of the Royal Society of London B R Soc Lond
B Biological Sciences 364:2697–2707. https://doi.org/10.1098/
rstb.2009.0086

Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Met-
tenleiter TC, Freuling C (2011) Pseudorabies virus in wild
swine: a global perspective. Archives of Virology 156:1691–1705.
https://doi.org/10.1007/s00705-011-1080-2

Nielsen K, Gall D, Smith P, Vigliocco A, Perez B, Samartino L,
Nicoletti P, Dajer A, Elzer P, Enright F (1999) Validation of the
fluorescence polarization assay as a serological test for the pre-
sumptive diagnosis of porcine brucellosis. Veterinary Microbiol-
ogy 68:245–253. https://doi.org/10.1016/S0378-1135(99)00077-2

Ostfeld RS, LoGiudice K (2003) Community disassembly, biodi-
versity loss, and the erosion of an ecosystem service. Ecology
84:1421–1427. https://doi.org/10.1890/02-3125

Pannwitz G, Freuling C, Denzin N, Schaarschmidt U, Nieper H,
Hlinak A, Burkhardt S, Klopries M, Dedek J, Hoffmann L,

510 F. A. Hernández et al.

https://doi.org/10.1007/s10393-006-0018-8
https://doi.org/10.1007/s10530-018-1667-6
https://doi.org/10.1007/s10530-018-1667-6
https://doi.org/10.1007/s10344-006-0045-3
https://doi.org/10.1890/0012-9658(2006)87%5b3037:ssoaei%5d2.0.co;2
https://doi.org/10.1890/0012-9658(2006)87%5b3037:ssoaei%5d2.0.co;2
https://doi.org/10.1186/s40462-017-0105-1
https://doi.org/10.1186/s40462-017-0105-1
https://doi.org/10.3375/043.037.0117
https://doi.org/10.1111/j.1365-2664.2010.01868.x
https://doi.org/10.1111/j.1365-2664.2010.01868.x
https://doi.org/10.1007/s10344-008-0204-9
https://doi.org/10.1007/s10344-008-0204-9
https://doi.org/10.1016/j.mambio.2008.05.007
https://doi.org/10.1016/j.mambio.2008.05.007
https://doi.org/10.1023/A:1011148316537
https://doi.org/10.1023/A:1011148316537
https://doi.org/10.1016/j.vetmic.2013.02.025
https://doi.org/10.1016/j.biocon.2006.05.007
https://doi.org/10.1016/j.biocon.2006.05.007
https://doi.org/10.1186/s12917-016-0938-7
https://doi.org/10.1186/s12917-016-0938-7
https://doi.org/10.1007/s10980-016-0479-2
https://doi.org/10.1371/journal.pone.0133771
https://doi.org/10.1371/journal.pone.0133771
https://doi.org/10.1146/annurev-phyto-081211-172938
https://doi.org/10.1146/annurev-phyto-081211-172938
https://doi.org/10.1098/rstb.2009.0086
https://doi.org/10.1098/rstb.2009.0086
https://doi.org/10.1007/s00705-011-1080-2
https://doi.org/10.1016/S0378-1135(99)00077-2
https://doi.org/10.1890/02-3125


Kramer M, Selhorst T, Conraths FJ, Mettenleiter T, Müller T
(2012) A long-term serological survey on Aujeszky’s disease
virus infections in wild boar in East Germany. Epidemiology and
Infection 140:348–358. https://doi.org/10.1017/S095026881100
0033

Payne A, Chappa S, Hars J, Dufour B, Gilot-Fromont E (2015)
Wildlife visits to farm facilities assessed by camera traps in a
bovine tuberculosis-infected area in France. European Journal of
Wildlife Research 62:33–42. https://doi.org/10.1007/s10344-015-
0970-0

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in
Excel. Population genetic software for teaching and research –
an update. Bioinformatics 28:2537–2539

Pearson HE, Toribio JLML, Hernandez-Jover M, Marshall D,
Lapidge SJ (2014) Pathogen presence in feral pigs and their
movement around two commercial piggeries in Queensland,
Australia. Veterinary Record 174:325; https://doi.org/10.1136/
vr.102019

Pearson HE, Toribio JLML, Lapidge SJ, Hernández-Jover M
(2016) Evaluating the risk of pathogen transmission from wild
animals to domestic pigs in Australia. Preventive Veterinary
Medicine 123:39–51. https://doi.org/10.1016/j.prevetmed.2015.
11.017

Pedersen K, Bevins SN, Schmit BS, Lutman MW, Milleson MP
(2012) Apparent prevalence of swine brucellosis in feral swine in
the United States. Human Wildlife Interactions 6:38–47

Pedersen K, Bevins SN, Baroch JA, Cumbee JC Jr, Chandler SC,
Woodruff BS, Bigelow TT, DeLiberto TJ (2013) Pseudorabies in
feral swine in the United States, 2009-2012. Journal of Wildlife
Diseases 49:709–713. https://doi.org/10.7589/2012-12-314

Pedersen K, Quance CR, Robbe-Austerman S, Piaggio AJ, Bevins
SN, Goldstein SM, Gaston WD, DeLiberto TJ (2014) Identifi-
cation of Brucella suis from feral swine in selected states in the
USA. Journal of Wildlife Diseases 50:171–179

Pedersen K, Bauer NE, Olsen S, Arenas-Gamboa AM, Henry AC,
Sibley TD, Gidlewski T (2017) Identification of Brucella spp. in
feral swine (Sus scrofa) at abattoirs in Texas, USA. Zoonoses and
Public Health 64:647–654

Penrith ML, Vosloo W, Mather C (2011) Classical swine fever
(hog cholera): review of aspects relevant to control. Trans-
boundary and Emerging Diseases 58:187–196. https://doi.org/
10.1111/j.1865-1682.2011.01205.x

Rees EE, Pond BA, Cullingham CI, Tinline R, Ball D, Kyle CJ,
White BN (2008) Assessing a landscape barrier using genetic
simulation modeling: implications for raccoon rabies manage-
ment. Preventive Veterinary Medicine 86:107–123. https://
doi.org/10.1016/j.prevetmed.2008.03.007

Reich BJ, Hodges JS, Zadnik V (2006) Effects of residual
smoothing on the posterior of the fixed effects in disease-
mapping models. Biometrics 62:1197–1206. https://doi.org/
10.1111/j.1541-0420.2006.00617.x

Riley S (2007) Large-scale spatial-transmission models of infec-
tious disease. Science 316:1298–1301. https://doi.org/10.1126/
science.1134695

Robic A, Dalens M, Woloszyn N, Milan D, Riquet J, Gellin J
(1994) Isolation of 28 new porcine microsatellites revealing
polymorphism. Mammalian Genome 5:580–583. https://doi.org/
10.1007/BF00354935

Rohrer GA, Alexander LJ, Hu Z, Smith TPL, Keele JW, Beattie
CW (1996) A comprehensive map of the porcine genome.
Genome Research 6:371–391

Root JJ, Puskas RB, Fischer JW, Swope CB, Neubaum MA, Reeder
SA, Piaggio AJ (2009) Landscape genetics of raccoons (Procyon
lotor) associated with ridges and valleys of Pennsylvania:
implications for oral rabies vaccination programs. Vector-Borne
and Zoonotic Diseases 9:583–588. https://doi.org/10.1089/
vbz.2008.0110

Russell CA, Smith DL, Waller LA, Childs JE, Real LA (2004) A
priori prediction of disease invasion dynamics in a novel envi-
ronment. Proceedings of the Royal Society B Biological Sciences
271:21–25. https://doi.org/10.1098/rspb.2003.2559

Saito M, Koike F, Momose H, Mihira T, Uematsu S, Ohtani T,
Sekiyama K (2012) Forecasting the range expansion of a
recolonising wild boar Sus scrofa population. Wildlife Biology
18:383–392. https://doi.org/10.2981/11-110

Schley L, Roper TJ (2003) Diet of wild boar Sus scrofa in Western
Europe, with particular reference to consumption of agricul-
tural crops. Mammal Review 33:43–56. https://doi.org/10.1046/
j.1365-2907.2003.00010.x

Seward NW, VerCauteren KC, Witmer GW, Engeman RM (2004)
Feral swine impacts on agriculture and the environment. Sheep
and Goat Research Journal 19:34–40

Snow NP, Jarzyna MA, VerCauteren KC (2017) Interpreting and
predicting the spread of invasive wild pigs. Journal of Applied
Ecology 54:2022–2232. https://doi.org/10.1111/1365-2664.12866

Stallknecht DE, Howerth EW (2008) Pseudorabies (Aujeszky’s
Disease) In: Infectious Diseases of Wild Mammals, Williams
ES, Barker IK (editors), Ames, Iowa: Iowa State University
Press, pp 164-170

Storm DJ, Samuel MD, Rolley RE, Shelton P, Keuler NS, Richards
BJ, Van Deelen TR (2013) Deer density and disease prevalence
influence transmission of chronic wasting disease in white-tailed
deer. Ecosphere 4:1–14. https://doi.org/10.1890/ES12-00141.1
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