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Abstract: Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has sig-

nificantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological

models, the standard for predicting and managing the spread of infectious disease, assume that contacts

between susceptible and infectious individuals depend on their relative frequency in the population. The

behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a

class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions

driving host contact. Referred to as ‘‘economic epidemiology’’ or ‘‘epidemiological economics,’’ the approach

explores the determinants of decisions about the number and type of contacts made by individuals, using

insights and methods from economics. We show how the approach has the potential both to improve pre-

dictions of the course of infectious disease, and to support development of novel approaches to infectious

disease management.
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ECONOMIC EPIDEMIOLOGY AND

EPIDEMIOLOGICAL ECONOMICS

Economic behavior is known to play a key role in disease

transmission. Throughout history, new pathogens have

emerged with the opening of new markets or trade routes.

The Black Death in the fourteenth century, and the sixteenth

century Columbian exchange—which brought smallpox and

typhus to the Americas, and syphilis to Europe, are the best-

known examples (McNeill 1977; Yoo et al. 2010). In the last

few decades, the growth of global trade and travel have been

implicated in the emergence of human infectious diseases

such as plague, cholera, HIV (Tatem et al. 2006a, b), West

Nile virus (Lanciotti et al. 2000), SARS (Guan et al. 2003;

Hufnagel et al. 2004), as well as livestock diseases such as

H9N2 Avian influenza, Bovine Spongiform Encephalopathy,

Bluetongue or Foot and Mouth disease (Rweyemamu and

Astudillo 2002; Karesh et al. 2005; Fevre et al. 2006; Purse

et al. 2008), and diseases of wildlife—potentially white-nose

syndrome in bats (Pikula et al. 2012). In the USA, many other

wildlife diseases and zoonoses have been linked to live animal

imports (Smith et al. 2009a). Trade and travel affect the

likelihood that pathogens are spread internationally by

altering the number and variety of infectious-susceptible

contacts (Smith et al. 2007; Jones et al. 2008; Suhrcke et al.

2011; Daszak 2012; Kilpatrick and Randolph 2012). In the

same way, the decisions people make to engage with others in

their own community affect the spread of disease nationally.

Since people take account of potential disease risks, it is

possible to analyze the spread of disease as a function of the

costs and benefits of disease risk management.

In recent years, work at the boundary between ecology,

epidemiology, and economics has shed new light on the

way that economic behavior affects the spread of pests and

pathogens (reviewed in Perrings 2014). The approach, re-

ferred to either as economic epidemiology or as epidemi-

ological economics (hereafter EE), initially focused on the

relationship between preventive behavior and disease

prevalence (Philipson 2000). More recently, it has focused

on the economic causes and epidemiological consequences

of the number and type of contacts people make (Gersovitz

and Hammer 2003, 2004; Barrett and Hoel 2007; Funk et al.

2009; Funk et al. 2010; Springborn et al. 2010). That is, the

economic factors behind contact and mixing decisions are

treated as part of the disease transmission mechanism. The

approach provides a deeper understanding of the dynamics

of epidemics, and opens up a new set of disease manage-

ment options that target either the contact rate (Kremer

1996; Auld 2003) or the probability that contact leads to

infection (Geoffard and Philipson 1996).

EE models extend classic compartmental epidemio-

logical models that divide the population into compart-

ments defined by health and demographic status. The

classic models focus on the basic reproductive ratio of the

disease, R0—the number of secondary cases in a naı̈ve,

wholly susceptible, and disease-free population that result

from the initial introduction of pathogen (Kermack and

Mckendrick 1929; Anderson and May 1979, 1991). In the

simplest models, R0 is the product of three factors: the

contact rate, the conditional probability of transmission per

contact, and the duration of the infectious period. It is used

to indicate whether or not the infection prevalence will

increase or decrease. When R0 > 1 the pathogen may

spread, when R0 < 1 it will not. The basic reproductive

ratio, or variants such as the effective reproduction number

(which measures transmission in a population that may be

only partially susceptible) and the control reproduction

number (which measures transmission in a susceptible

population with control measures in place), are then used

to inform disease management (Brauer and Castillo-Chavez

2013). The EE approach treats the reproduction number as

a function of the decisions that underpin contact between

susceptible and infected individuals. It thus opens up a

different set of management options.

The EE approach is ultimately grounded in bioeco-

nomic models of renewable resource management (Clark

1973, 1976, 1979). EE models focus on the optimal disease

avoidance strategy and how that feeds back into the spread

of infectious diseases of people (Geoffard and Philipson

1996; Kremer 1996; Auld 2003; Francis 2008) and animals

(Horan and Wolf 2005; Horan et al. 2010, 2011). The

approach also considers the consequences of disease risk

management for economic development (Barrett and Hoel

2007) and growth (Grossman 1972; Boucekkine and Laff-

argue 2010; Chakraborty et al. 2010). In what follows, we

focus on two risk management strategies—contact reduc-

tion and selective mixing. However, we note that consid-

erable attention has also been paid to vaccination (Francis

1997, 2004; Boulier et al. 2007; Cook et al. 2009).

A common feature of EE models is that behavior af-

fects, and is affected by, the disease risks involved in both

contact and mixing decisions (Fenichel et al. 2011; Aadland

et al. 2013; Fenichel and Wang 2013; Morin et al. 2013).

While the term risk is used in many non-economic appli-
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cations to denote the probability of an undesirable or bad

outcome, we use the term risk to denote the product of the

probability and the value of the bad outcome. It is an ex-

pected cost. Hence, disease risk is the probability of infec-

tion multiplied by the cost of infection. There is a

considerable literature on the impact of disease risk, in the

expected cost sense, on behavior (Francis 1997; Auld 2003;

Chen 2004; Del Valle et al. 2005; Bootsma and Ferguson

2007; Klein et al. 2007; Chen 2009; Funk et al. 2009; Reluga

2010; Chen et al. 2011; Gersovitz 2011), at least some of

which is empirically based (Caley et al. 2008; Gersovitz

2011; Fenichel et al. 2013). The evidence suggests that the

expected cost of disease, or at least the part of cost that is

carried directly by decision-makers, is weighed amongst the

benefits and costs of contact and mixing decisions. An

improved understanding of how these behavioral responses

feed back into infectious disease dynamics strengthens

capacity to predict the course of epidemics (Bauch and

Earn 2004; Reluga 2010; Perra et al. 2011; Fenichel and

Wang 2013).

Beyond improved prediction, the EE approach has the

potential to reduce the social cost of disease management

relative to classical approaches. Specifically, it allows public

health authorities to go beyond traditional control methods

such as vaccination, treatment, or social distancing, and to

use economic incentives that change the course of epi-

demics by changing private contact and mixing decisions

(Francis 2004; Chowell et al. 2009a; Fenichel 2013). In this

paper, we review the development of the EE approach, and

show how it is creating new options for the way epidemics

are evaluated and managed.

THE BASIC STRUCTURE AND RESULTS OF EE
MODELS

It is useful to distinguish between the private decision

problem (the decision-problem facing susceptible and

infectious individuals, or those trading potentially infected

animals or animal products) and the social decision-

problem (the decision-problem facing public health or

sanitary authorities). The main elements of both problems

are an objective function describing the decision-maker’s

goals, a constraint set describing the dynamics of the system

being managed, a control or choice set—the mechanisms

by which the decision-maker is able to influence those

dynamics, and the feedback loops that link these compo-

nents.

To illustrate the EE approach, consider the private

decision-problem faced by susceptible individuals seeking

to manage the risks of an infectious disease of humans. Let

the disease dynamics be described by a three-compartment

(susceptible, infected and infectious, and recovered) dis-

crete time S, I, R model:

Stþ1 � St ¼ �Cðwct; St ; It ;RtÞbðwht;HtÞStPðwmt; St ; It ;M
SI
t Þ

Itþ1 � It ¼ Cðwct; St ; It ;RtÞbðwht;HtÞStPðwmt; St ; It ;M
SI
t Þ � Itm;

Rtþ1 � Rt ¼ Itm

wct, wht, and wmt denote the costs of contact, Ct, prophy-

lactic measures, Ht, and mixing decisions, Mt
SI. The func-

tion C(�) is the rate at which susceptible individuals make

contact with others within the population, b(�) is the

probability that an infectious contact results in infection,

P(�) is the conditional probability that a susceptible person

will encounter an infected person—the outcome of sus-

ceptible individuals’ mixing choices, and v is the recovery

rate. In the simplest epidemiological models, the functions

C(�)b(�) are assumed to be the same for all individuals

regardless of health status. Indeed, it is common to find

C(�)b(�) combined into a single parameter that assumes

contacts to be proportional to the size of the population.

Mixing is also commonly assumed to be homogeneous: i.e.,

P(�) is assumed to take the form, It/N. We make no special

claims about the value of the S, I, R over other compart-

mental epidemiological models. We use it only to dem-

onstrate an approach that has been applied to many

different models.

In EE models, the time paths of C(�)b(�) and P(�) are

derived from the solution to an economic decision problem

in which individuals seek to meet their goals by choosing,

respectively, the number of contacts they make, precau-

tionary measures that reduce the probability that a contact

will lead to an infection, and/or the effort they commit to

avoiding contact with infectious hosts. One example of C(�)
allows contact choices to vary with health status, as indi-

viduals in different health classes make different choices

(Fenichel et al. 2011; Fenichel 2013). The contact function

between susceptible and infected individuals takes the

form:

CSI
t ð�Þ ¼ CS

t CI
t NðStC

S
t þ ItC

I
t þ RtC

R
t ;

where CS, CI, and CR is a measure of the average number of

contacts an individual in the health classj makes. Another

example derives the contact rate from the individual’s

aversion to disease risk. The number of contacts an indi-

vidual makes is assumed to depend on the exposure, and
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the resulting probability of infection, they are willing to

accept (Aadland et al. 2013). In both variants, the key

implication is that contact choices vary over time, and by

health class, in response to changes in the cost of disease

and disease mitigation arising from changes in the states

S, I, and R. Models that focus on mixing rather than

contact decisions have their roots in the affinity-based

mixing models developed in the 1990s to explore the

consequences of the choice of with whom to mix with,

rather than how much to mix (Dietz and Hadeler 1988;

Busenberg and Castillo-Chavez 1991; Hadeler and Castillo-

Chavez 1995; Morin et al. 2010; Galeotti and Rogers 2013).

In such models, susceptible individuals choose P(�) rather

than C(�), the value of P(St, It, Mt
SI) depends on the efforts

susceptible individuals make to avoid mixing with infec-

tious individuals. Whether people choose P(�) or C(�), their

choices people depend on the costs and benefits of alter-

native actions. Specifically, people balance the benefits from

making contacts (e.g., the benefits from buying or selling

goods or services) against the costs of disease. They choose

the number of contacts and/or the disease class with whom

to make contact so as to maximize some index of wellbeing

(utility), balancing the benefits of contact against the ex-

pected cost of disease and disease mitigation, conditional

on the current states so that the choices change over time.

The likelihood of becoming infected depends on the

number of contacts made, and the riskiness of those con-

tacts. Typically, the contact choices of a forward-looking

susceptible individual are modeled as the solution to a

dynamic programing problem:

VtðSÞ ¼ max
CS

t MSI
t

�
USðSt ;C

S
t ;M

SI
t Þ

þq
X

j

QSjðCS
t ;M

SI
t ; St ; It ;RtÞðVtþ1ðjÞÞ

�
;

where q is a discount factor; QSj is the probability of

transition from health state S to health state j conditional

on the choice of Ct
S and/or Mt

S, and on the current state of

the system (the health state of others); and Vt+1(j) is the

future value of being in health state j. In solving the

problem, people increase disease risk mitigation up to

the point where the marginal cost of mitigation equals

the state-dependent marginal benefit of reductions in dis-

ease risk.

Because the choices people make change infectious

disease transmission rates, they also change epidemiological

dynamics. It follows that disease dynamics are sensitive

both to the cost of disease (the income forgone during

illness and the direct cost of illness) and the cost of disease

avoidance. If the cost of disease is very low there is little

incentive to avoid it, and disease dynamics will be those

associated with proportionate mixing. If the cost of illness

is very high, people will invest substantial resources in

disease avoidance. In extreme cases, private decisions about

selection of contacts can lead to an effective quarantine on

infected individuals—an effect that would never occur in

classical models. Disease dynamics are also sensitive to the

benefits of contact. People trade-off disease risks against the

benefits of contact. If there is much to be gained from

contact they will accept much greater disease risks than if

there is little to be gained (Areal et al. 2008; Fenichel et al.

2010; Gramig and Horan 2010; Horan et al. 2010).

Improved understanding of the behaviors that influ-

ence disease dynamics improves disease management. It

increases both the number of control options open to

public health authorities, and identifies how much public

intervention is warranted. Depending on people’s goals,

their resources, and the opportunities open to them, the

behavior of some individuals may slow epidemics, while the

behavior of others can speed them up (Kremer 1996;

Aadland et al. 2013). If the private and social costs of dis-

ease and disease avoidance are the same, then the decisions

people make in their own self-interest coincide with the

decisions they would make if they were acting with the

interests of society in mind. If the private and social costs of

disease and disease avoidance are different—if people make

private decisions that are not in the social interest—then

public health authorities can use an understanding of the

private decision process to incentivize people to make

different decisions. In so doing, they can minimize the

expected social cost of the disease and its control.

This opens up a novel set of disease management

instruments aimed at confronting individuals with the

external costs of their actions or compensating them for the

external benefits their actions provide. Specifically, public

health managers may select instruments that change the

course of disease by changing contact and mixing incen-

tives. The same costs of disease and disease avoidance that

drive private contact and mixing decisions become poten-

tial points of leverage on contact and mixing behavior. If

the social decision-maker is able to alter those costs

through, for example, taxes, subsidies, access fees, penalties,

and so on, then the social decision-maker is also able to

change private behavior and disease dynamics (Francis

1997; Auld 2003; Francis 2004). For example, where

tracking mechanisms allow the sale of diseased animals to
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be traced back to a specific hub in the supply chain,

opening the responsible individuals up to legal penalties

provides them with an incentive to exercise care. By

increasing the private payoff to actions that confer benefits

on others, it is possible to enhance the public good even if

individuals act only in their private self-interest (Francis

1997; Sandler and Arce 2002).

EVIDENCE

There are as yet relatively few empirical studies of the

relation between the costs and benefits of contact, the

decisions that people make involving trade or travel con-

tacts, and the spread of either animal or human diseases.

However, those studies that do exist are informative. They

test two of the main hypotheses suggested by theoretical

work on private disease risk mitigation: (a) that efforts to

reduce contact with infected people are likely to be

increasing in the cost of disease and decreasing in the cost

of avoidance, and (b) that disease risk mitigation reduces

disease prevalence and lengthens disease epidemics (Figs. 1,

2) (Chowell et al. 2007, 2009b; Fenichel et al. 2011). Since

the cost of disease avoidance is greater the more difficult it

is to identify infected individuals, the first of these

hypotheses also implies that risk mitigation is likely to be

increasing in the quality of the signals about which indi-

viduals are infected (Fenichel and Horan 2007b).

On the first hypothesis, the effort made to avoid risk, and

so disease prevalence, has been found to be increasing in the

cost of disease (Mummert and Weiss 2013). There is evidence

that people are willing to pay more to avoid diseases they

believe to be serious, and that their willingness to pay changes

as their perception of the seriousness of the disease changes.

A study of the number of passengers missing previously

purchased flights during the 2009 swine flu or A/H1N1

influenza epidemic used flight records, Google Trends and

the World Health Organization’s FluNet data to show that

concern over H1N1 accounted for a small proportion

(0.34%) of missed flights during the epidemic. The authors

estimated that this represented around $50 M in travel-

related benefits. They noted that while this was consistent

with a self-protective response to the epidemic, the timing of

responses correlated poorly with FluNet data. They con-

cluded that responses were motivated by subjective rather

than objective perceptions of risk (Fenichel et al. 2013).

For animal diseases (and emerging zoonoses), it has

been shown that decisions affecting the national and inter-

national movement of livestock reflect the costs and benefits

of disease risk mitigation, and strongly influence the prob-

ability of spread (Keeling et al. 2001; Kilpatrick et al. 2006,

2009). Analyses of the 2001 foot and mouth disease (FMD)

outbreak in the UK, and the 2004 H5N1 avian influenza

outbreak in Thailand, for example, show that differences in

the compensation schemes applied in each case had signif-

icant effects on the relative costs of disease and disease

avoidance, and hence on the dynamics of the disease. In the

UK FMD outbreak, the structure of compensation to

farmers perversely reduced the cost of disease and increased

the cost of disease avoidance, so discouraging disease

avoidance (Davies 2002). In the Thailand H5N1 outbreak,

by contrast, the government offered farmers 100% com-

pensation for every animal killed (significantly above the

compensation formally allowed under the Animal Epidemic

Act), effectively reducing the private cost of disease avoid-

ance to zero (Tiensin et al. 2005).

Figure 1. The effect of disease risk

mitigation through selective mix-

ing on disease prevalence and the

duration of an epidemic. Solid lines

show prevalence and duration

where susceptible individuals mix

with other individuals randomly

(proportional mixing). Dashed

lines show prevalence and duration

where susceptible individuals avoid

mixing with infected and infec-

tious individuals (selective mix-

ing).
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Because disease risk reflects both the probability of

infection and the cost of infection, trade growth that re-

duces cost more than proportionately to the increase in the

probability of infection can, paradoxically, reduce risk

(Fenichel and Horan 2007a, b; Fenichel et al. 2010; Horan

et al. 2011, 2013). While there have been no formal tests of

this hypothesis, there is considerable empirical evidence

that people trade-off the price of goods and services against

the risks they pose (Lusk and Coble 2005), just as they

trade-off the rate of return and risk on asset holdings

(Ghysels et al. 2005).

There is less evidence that the public management of

infectious human disease is sensitive to the incentive effects

of changes in the private cost of disease and disease

avoidance. Although the World Health Organization rec-

ognizes the cost effectiveness of economic instruments

(World Health Organization 2004), applications to the

control of infectious human diseases are limited. The most

obvious and long standing examples are the use of subsidies

to lower the private cost of vaccination (Brito et al. 1991;

Geoffard and Philipson 1996, 1997; Cook et al. 2009) or

vaccination and treatment (Gersovitz and Hammer 2004;

Gersovitz 2011). By contrast, standard control measures

such as travel interdictions or enforced quarantine are

classic, and often poorly targeted, examples of command

and control instruments. Measures of this sort have, in

particular cases, proved to be extremely costly (Thompson

et al. 2002; Webby and Webster 2003; Smith et al. 2009b;

Keogh-Brown et al. 2010). In some cases, for example,

mandatory controls have increased the flow of infected

emigrants from the epicenter of infectious disease out-

breaks, so spreading the disease to uninfected sub-popu-

lations (Mesnard and Seabright 2009; Maharaj and

Kleczkowski 2012).

The use of command-and-control instruments is par-

ticularly common at the national level, where governments

have the authority to implement emergency controls on

subject populations (World Health Organization 2006; Stern

and Markel 2009; Steelfisher et al. 2012). Interestingly, it is

also the preferred approach at the international level where

the control options are prescribed by two multilateral

agreements, the International Health Regulations and the

Sanitary and Phytosanitary Agreement, even though there is

no supranational body with sovereign authority over nation

states (Perrings et al. 2010a, b). While measures of this sort do

not directly target the incentives facing susceptible individ-

uals they do have incentive effects. A study of the 2009 H1N1

epidemic in Mexico, for example, concluded that the pro-

longation of the epidemic through a second wave was

induced by the private response to social distancing measures

implemented by the health authorities (Herrera-Valdez et al.

2011). Similar effects were observed in the 2007 Dengue

outbreak in Taiwan (Hsieh and Chen 2009), and the 2002–

2003 SARS epidemic (Chowell et al. 2004).

Figure 2. The symmetry between

disease risk mitigation through

contact reduction and disease risk

mitigation through selective mix-

ing. The upper panel indicates the

timing and level of optimal contact

reduction by susceptible individu-

als under each strategy (contact

reduction is zero under a selective

mixing strategy). The lower panel

indicates the timing and level of

effort committed by susceptible

individuals to avoiding infected/

infectious individuals under each

strategy (avoidance effort is zero

under a contact reduction strat-

egy).
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The question to consider is whether mandatory mea-

sures are cost effective, once the incentive effects of those

measures are taken into account. The optimal control pro-

gram in all cases depends on a number of factors, including

the nature of disease, the size of each population, the length

of the time horizon, or the discount rate applied, as well as the

characteristics of the controls (Brandeau et al. 2003). This

makes it difficult to generalize. We are unaware of empirical

studies of the relative cost effectiveness of mandatory and

incentive-based measures for the ex post control of outbreaks.

It seems clear, however, that incentive-based measures are

able to reduce the ex ante risk of disease more cost effectively

than direct controls over the mobility of people or the

movement of goods. A study of the cost effectiveness of a

number of different classes of primary disease prevention

(controls aimed at preventing new cases of disease) found

that that measures aimed at changing the environment

within which people make decisions are significantly more

cost-effective than measures aimed at clinical or nonclinical

interventions on individuals (Chokshi and Farley 2012).

Measures aimed at changing the environment within which

people make decisions include, for example, taxes designed

to increase the private cost of risky behaviors. Measures

aimed at individuals include, for example, quarantine or

screening programs. The study showed that in terms of costs

per quality-adjusted life-year the proportion of preventive

measures that are cost saving is higher among environmental

interventions (46%) than among clinical interventions

(16%) or nonclinical, person-directed interventions (13%).

Given that individual restrictions or obligations also pose

more legal and ethical challenges (National Research Council

2007), this indicates that incentive-based measures may offer

a significant advantage.

For plant diseases, a recent example of the use of

incentives, in the form of conditional market access, con-

cerns management of disease risk associated with interna-

tional plant trade. With a 2011 amendment to the Plant

Protection Act, the USDA established a new ‘‘gray list’’

designation available for plants known as ‘‘Not Approved

Pending a Pest Risk Analysis’’ (NAPPRA) for species that

might be pests, or serve as hosts of pests or pathogens (US

Department of Agriculture-Animal and Plant Health

Inspection Service 2011). This rule change made it simpler

to restrict access to US markets for particular taxa of plants

which pose a biological risk (Liebhold et al. 2012). Cur-

rently, the only mechanism for approving NAPPRA listings

for importation is a detailed pest risk assessment (PRA)

assessing the threat of pest infestation, transit, colonization,

spread, and damage. In April 2013, the USDA formally

proposed a further amendment that would allow US

import market access for NAPPRA listings conditional on

exporters’ adoption of Integrated Pest Risk Management

Measures (IPRMM) (US Department of Agriculture-Ani-

mal and Plant Health Inspection Service 2013). IPRMM

involves certification that sufficient phytosanitary measures

are being applied from the beginning of production to the

end of distribution. Market access in an IPRMM program

would be particularly flexible and dynamic. Access for ap-

proved producers could be revoked if the producer failed to

meet the conditions at any time (US Department of Agri-

culture-Animal and Plant Health Inspection Service 2013).

While the US is at the forefront of the IPRMM approach,

interest is global. In 2012 parties to the International Plant

Protection Convention adopted a standard known as

ISPM-36 which recommended and outlined the use of

integrated measures to manage pest and pathogen host risk

for international plant trade (International Plant Protection

Convention 2012). Attempts to bring pathogen introduc-

tion risks into the Fish and Wildlife Service injurious spe-

cies regulations are an effort to follow this, but so far have

not been successful.

DISCUSSION

In some spheres of environmental management, com-

mand-and-control instruments are being replaced, or at

least supplemented, by economic instruments designed to

penalize those whose actions harm others (Stavins 2003) or

to incentivize those whose actions benefit others (Kinzig

et al. 2011). There are many such instruments already in

use for managing invasive pests and pathogens. They in-

clude charges covering the cost of inspection and inter-

ception, excise taxes, environmental bonds, damage bonds,

import deposits, restoration deposits, ballast water fees, and

tradable risk permits (Eisworth and Johnson 2002; Horan

et al. 2002; Olson 2006; Emerton and Howard 2008; Gren

2008). A number of these instruments also reverse the

burden of proof, in that they require those whose actions

are a source of risk to insure society against the conse-

quences of their actions (Perrings et al. 2002; Keller and

Perrings 2011; Barbier et al. 2013).

The potential for the use of market-based mechanisms

(taxes) to correct the external costs that infected individuals
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impose on society in the course of an epidemic has already

been demonstrated in simulation models (Goldman and

Lightwood 2002; Gersovitz and Hammer 2004, 2005).

Similar results have been found for the use of subsidies on

the cost of vaccines (Francis 2004; Chen 2006). There is,

however, scope for reducing the cost of disease avoidance

in other ways. Measures that reduce the income loss from

private disease avoidance, for example, can be particularly

effective. Just as regulations governing physical safety in the

workplace have reduced the incidence of work-related

accidents, so rights to paid sick leave can reduce infectious

disease risks (Aronsson et al. 2000; Skåtun 2003).

Given the pressure on public health authorities to

develop more targeted and cost effective disease manage-

ment strategies (Glass et al. 2006; Fenichel 2013), incentive-

based disease prevention programs are increasingly attrac-

tive options. The CDC’s current HIV prevention program,

for example, is focused on risk targeting, bringing a geo-

graphic specificity to prevention policies, and developing a

rank ordering of policies by cost effectiveness (Centers for

Disease Control and Prevention 2009). The plan explicitly

aims to ‘‘Identify, develop and evaluate effective behavioral

interventions and strategies’’ (Centers for Disease Control

and Prevention 2011). This requires measuring variables at

scales that allow prioritization of funding across locations

and risk categories. It is recognized that where the preva-

lence of disease is low, people will not take as much care to

limit their exposure as they do where prevalence is high,

making disease eradication problematic (Aadland et al.

2013). By encouraging private individuals to make deci-

sions that are in the social interest, incentive-based mea-

sures can counteract effects of this kind.

One other implication of the EE approach is that the

measures used to monitor and predict disease risk can be

broadened. In addition to prevalence measures, it becomes

possible to use measures of disease risk mitigation or the

drivers of disease risk mitigation. Aside from the travel data

used in the H1N1 study, for example, it is possible to

employ time use surveys (Zagheni et al. 2008) and home

media consumption measurement by audience research

firms. These have the appealing feature that a representative

sample of residents is monitored continuously over time

and in a consistent way across a large set of countries.

Coincident with an outbreak, deviations in television

viewership, for example, can provide a proxy for assessing

changes in time spent at home and thus in social contacts.

It is also possible to exploit the much larger data base on

avoidance behavior to other sources of human health risk

such as air pollution and drinking water contamination

(Zivin and Neidell 2013). Beyond such measures, data on

prices, sales, employment, output, exports, and imports

may be as valuable for predicting epidemics as data on

current disease status (Suhrcke et al. 2011).

In summary, the EE approach is opening up new op-

tions for both the prediction and management of epidemics.

By improving our understanding of contact behavior the

approach is strengthening capacity to project the future

course of disease. By identifying the gap between the private

and social cost of private disease risk mitigation, the EE

approach makes it possible to induce people to behave in

ways that are consistent with the public good. That is, it

helps to identify both the private choices that best serve the

public interest, and the incentives needed to lead people to

make those choices. This opens up the prospect of more

cost-effective disease control. Many governments are already

committed to subsidizing vaccines. Many also use penalties

to discourage importation of infected animals or plants.

There is, however, scope for making more and better-

informed use of instruments of this kind in the future.
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