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Abstract
Purpose With the coronavirus disease 2019 (COVID-19) pandemic spreading across the world, protective measures for
containing the virus are essential, especially as long as no vaccine or effective treatment is available. One important measure
is the so-called physical distancing or social distancing.

Methods In this paper, we propose an agent-based numerical simulation of pedestrian dynamics in order to assess the
behavior of pedestrians in public places in the context of contact transmission of infectious diseases like COVID-19, and to
gather insights about exposure times and the overall effectiveness of distancing measures.

Results To abide by the minimum distance of 1.5 m stipulated by the German government at an infection rate of 2%, our
simulation results suggest that a density of one person per 16m2 or below is sufficient.

Conclusions The results of this study give insight into how physical distancing as a protective measure can be carried out
more efficiently to help reduce the spread of COVID-19.

Keywords SARS-CoV-2 · COVID-19 · Pedestrian dynamics · Agent-based simulation · Social-force model · Numerical
simulation

Introduction

Starting at the end of 2019, the coronavirus disease 2019
(COVID-19) was first described in Wuhan, China (Zhou
et al. 2020), and rapidly spread world-wide over the past
months causing an unprecedented pandemic with more than
431,541 deaths so far (first wave of disease) (World Health
Organization 2020). The illness is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Despite drastic restrictions in everyday life, new infections
are still on the rise (Dong et al. 2020). Hence, special
attention should be given to the protection of vulnerable
patients with high risk of a severe course of the disease.
The diagnostic gold standard to identify SARS-CoV-2
infection is reverse transcription polymerase chain reaction
(RT-PCR) of viral ribonucleic acid (RNA) collected by a
combined nasopharyngeal swab (NPS) and oropharyngeal
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swab (OPS) (Zou et al. 2020). As long as no vaccine or
at least no therapy is available, only exit restrictions and
social distancing can slow the spread of COVID-19. Social
distancing, also called “physical distancing” means limiting
face-to-face contact with others. A model developed to
support pandemic influenza planning (Ferguson et al. 2006;
Halloran et al. 2008) was adapted using the data of the
COVID-19 outbreak in Wuhan to explore scenarios for
the United States and Great Britain (Ferguson et al. 2020)
resulting in the advice of social distancing of the whole
population and household quarantine of infected individuals
as well as school and university closures. By simulating
the COVID-19 outbreak in Wuhan using a deterministic
stage-structured SEIR (susceptible, exposed, infectious,
recovered) model over a 1-year period, Prem et al. (2020)
came to the conclusion that a reduction in social mixing can
be effective in reducing magnitude and delaying the peak
of outbreak. These British epidemiologists from the London
School of Hygiene & Tropical Medicine suspect that a
second wave of COVID-19 disease could only be prevented
if exit and contact restrictions were maintained over the
long term or at least resumed intermittently. It is therefore
increasingly important to know what distances must be

/ Published online: 1 April 2021

Journal of Public Health (2023) 31:221–228

http://crossmark.crossref.org/dialog/?doi=10.1007/s10389-021-01489-y&domain=pdf
https://orcid.org/0000-0001-8477-481X
https://orcid.org/0000-0002-8767-0669
http://orcid.org/0000-0002-2530-8197
mailto: frank.weichert@tu-dortmund.de


maintained to avoid infection. As far as these distances are
concerned, the study of Bischoff et al. (2013) revealed that
healthcare professionals within 1.829 m of patients with
influenza could be exposed to infectious doses of influenza
virus, primarily in small-particle aerosols. This led to the
advice of keeping a minimum distance of 1–2 m from the
Robert Koch Institute (RKI) (Robert Koch Institute 2020a),
which is evaluating available information of the corona virus
and estimating the risk for the population in Germany. The
RKI and the German Federal Ministry of Health has in
response published a handout (Robert Koch Institute 2020b)
stating that in public, a minimum distance of 1.5 m must
be maintained wherever possible. Besides, it is relevant
whether people are next to each other, staggered behind each
other, or directly behind each other. Especially in indoor
areas (e.g., shopping), corresponding constellations occur in
combination. Simulations can help to make the necessary
distance measures easier to understand. Different distance
scenarios can be simulated and recommendations for the
distance can be suggested.

In their call to action, (Squazzoni et al. 2020) give an
overview of computational models for global pandemic
outbreak simulation and their limitations and Chang et al.
(2020) propose a microscopic model for the simulation of
the COVID-19 outbreak in Australia. The model consists of
over 24 million individuals with different characteristics and
social context and was calibrated with the 2016 census data
of Australia.

In the context of the simulation of pedestrian dynamics,
there exists a variety of comprehensive surveys (Shiwakoti
et al. 2008; Schadschneider et al. 2009; Caramuta et al.
2017). Models were differentiated mainly into macroscopic
and microscopic. In macroscopic models, the crowd is
assumed as the smallest entity. These models allow the
representation of high-density crowds, but cannot model
the interaction between pairs or groups of pedestrians.
Microscopic models assume one pedestrian as the smallest
entity. They are roughly divided into physical force models,
cellular automata, or queueing models. This work focusses
on the so-called social force model by Helbing (1991, 2000,
2001, 2002) which can be categorized as a physical force
model.

The main contributions of this work are

– adaptable social force-based model for pedestrian
dynamics in realistic environments

– exposure time measurement for assessment of the
spreading of diseases

– discussion of the effects of distancing measures on
exposure times.

This paper is organized as follows. Firstly, “Related
work” gives an overview of existing models for simulations
of the spread of diseases. In “Materials and methods”, we set

forth the agent-based model and the accompanying simula-
tion we used for our experiments. “Experiments” describes
the experiments concerning the simulation of pedestrian
dynamics in realistic environments, the effectiveness of dis-
tancing measures, and measuring of exposure time in the
context of infectious diseases in general and COVID-19 in
particular. Following, in “Results”, we present the results
from the experiment, and in “Discussion” we give a short
conclusion/summary and outlook.

Related work

As far as the simulation of the spreading of diseases is
concerned, most approaches are based on macroscopic
models. The so-called compartment models (Brauer 2008)
divide the population of interest into compartments with
different characteristics. The simplest model is the SIR
model. It consists of three compartments susceptible,
infectious, and recovered. The population is split into these
three compartments. Entities in the susceptible group model
the entities most likely to be infected. The entities in the
infectious group are the ones already infected, and the
entities in the recovered group have recovered from the
infection. An entity transfer from for example susceptible to
infectious state and from infectious to recovered state could
be modeled. Thus, re-infection with the modeled disease
would not be depicted by this model. A plethora of different
variations of this scheme exist with varying numbers of
compartments (Hethcote 2000). The independent variable
in the compartment models is time t . The transfer ratios
of the population from one compartment to another are
expressed as derivatives with respect to t , thus resulting in
differential equations for the compartments of the model.
One of the shortcomings of these models is that each
individual in the population is modeled with the same
set of features. This is overcome by the introduction of
metapopulations (Brockmann et al. 2006; Balcan et al.
2009) building sub-compartments of, e. g., entities with
natural immunity or asymptomatic individuals. Still, each
of the metapopulations share a homogeneous set of model
parameters.

With the rapid growth of available processing power,
individual-based models (IBM) or agent-based mod-
els (ABM) are used to model infectious disease out-
breaks. Willem et al. (2017) and Nepomuceno et al. (2019)
give comprehensive overviews of IBM/ABM usage in the
field of epidemiology. Based on the work by Brockmann
(2010), Frias-Martinez et al. (2011) propose an agent-based
model of epidemic spread based on social network informa-
tion from data of base transceiver stations (BTC) captured
during the 2009 H1N1 outbreak in Mexico. By simulating
an outbreak of measles that occurred in Schull, Ireland, in
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2012 based on open data, Hunter et al. (2018) have shown
recently, that agent-based modeling in combination with
open data leads to regionally transferable models. Bobashev
et al. (2007) discuss the combination of compartment mod-
els and microscopic agent-based models into a so-called
hybrid multi-scale model.

In this paper, we propose a microscopic model for
simulating pedestrian dynamics in the context of infectious
disease spread, including monitoring of contacts and
exposure times in realistic scenarios. The simulation
devised in this work runs in real-time, giving instantaneous
feedback about the considered scenario and thus allowing
for visual assessment, in addition to resulting statistics.

Materials andmethods

In the following, we describe in detail the underlying
physical model of pedestrian dynamics and the simulation
we implemented. Our simulation is adapted to realistic
scenarios in the context of the assessment of infectious
disease spread, with focus on exposure time measurement.
Specifically, we apply it to a supermarket scenario and the
corresponding measures taken with regard to the COVID-19
pandemic.

The simulation we present is an agent-based approach
based on the model of Helbing (1991, 2000, 2001, 2002).
The simulation is carried out on a static scenery with a
defined number n ∈ N of agents or particles pi . Each agent
has an individual starting point si and destination point di (t)

(both ∈ R
2), the former being static and the latter varying

with time t ∈ R≥0.
Motion of an individual pi is governed by Eq. 1, which is

composed of the term for self-propelling aself and external
forces f acting upon pi

dx2i (t)

dt2
= aselfi + 1

mi

·
⎛
⎝∑

j

(fsocij + fph
ij ) + fwalli )

⎞
⎠ . (1)

Here, xi ∈ R
2 denotes the position of pi , and mi (in kg) its

mass.
Self-acceleration of agents, as defined in Eq. 2, is the

adjustment of the actual velocity vi (t) to the desired velocity

aselfi (t) = v0i e
0
i (t) − vi (t)

τ
. (2)

The parameter τ ∈ R>0 (in s) determines the amount of
delay time for an agent to adapt. The desired velocity of
an agent pi is the product of its speed v0i and the desired
direction of movement e0i (t). The latter depends on the
destination di (t) and is determined by the pre-computed
navigation method described below.

The model by Helbing mainly consists of different types
of forces acting upon an agent, social and physical forces.
The social forces fsoc model a pedestrian’s endeavor to avoid
contact with other pedestrians, while the physical forces
fph model effects arising when pedestrians are so close that
there is actual contact between them. While in the original
model of Helbing et al. the social force is only comprised
of a normal component (called fnorm here), in this paper, we
add an additional tangential term ftang.

The social force thus takes the following form:

fsoc = fnorm + ftang. (3)

The accompanying force in normal direction is defined
as usual (Helbing 1991, 2002):

fnormij (t) = A · exp
(

rij − dij (t)

B

)
· nij (t) ·

(
λ + (1 − λ)

1 + cosφij (t)

2

)
.

(4)

where A determines the force (in N) and B the range (in m)
of repulsive interactions, and λ ∈ [0, 1] the (an-)isotropy.
The vector nij (t) denotes the normal from pi to pj of
unit length, φ the angle between current direction ei (t) of
particle pi and nij (t). The scalar value rij is the sum of
the respective radii ri and rj of the considered particles,
while dij (t) = ‖xi (t) − xj (t)‖ is the distance between
their centers, both quantities are measured in meters.
Note that for the experiments performed, the distance d ′

ij

between the perimeters is measured. This is defined as
d ′
ij = dij − rij . With regard to the measures taken by

the German government for prevention of the spread of
COVID-19, we set the critical distance dmin for a possible
transmission to 1.5 m. Figure 1 shows different aspects
of agent interaction. Figure 1a and b show interaction in
the simulation with regard to the critical distance, while
Fig. 1c shows associated quantities of the mathematical
model between two particles.

The tangential term ftang (5) is now defined as a fraction
γ ∈ R of the normal term, but in direction tij , orthogonal to
nij . Furthermore, this term is added only if the pedestrians
involved, pi and pj , are heading into opposite directions.
This is taken care of by the function ψij (6).

ftang(t) = ψij (t) · γ · ‖fnormij (t)‖ · tij (t). (5)

The value of γ ∈ [0, 1] determines the amount of
normal social force added in tangential direction. For the
experiments performed, we set γ = 0.7. The function ψ

(6) determines the pedestrians’ directions by evaluating the
dot product between their respective directions of movement
ei (t) = vi (t)‖vi (t)‖ :

ψij (t) =
{
1 〈ei (t), ej (t)〉 ≤ 0

0 otherwise.
(6)

The added tangential term makes for a more realistic
movement of the agents, as they evade each other early, if
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(a) (b) (c)

Fig. 1 Agent interaction in the simulation. (a) Visualization of the running simulation. (b) The measuring of distances. (c) The associated
quantities of the underlying physical model

applied. This is even more noticeable in conjunction with
the method we employ for pathfinding, as described below.

Physical forces acting between pedestrians are also
defined in conformance to Helbing et al:

fphij (t) = k ·Θ(rij −dij (t)) ·nij (t)+κ ·Θ(rij −dij (t)) ·	vt
ji (t) ·tij (t).

(7)

Here, constants κ and k determine amounts of friction
and the force counteracting body compression. The term
	vt

ji = (vj − vi ) · tij describes the tangential speed
difference between agents pi and pj . The function Θ

ensures that physical forces only arise when two particles
actually touch, i. e. the distance dij between them is lower
than the sum of their radii rij :

Θ(x) =
{
0 if x < 0

x otherwise.
(8)

Finally, wall forces fwall define interaction of agents with
obstacles, like walls and stationary objects. The wall forces
are defined in analogy to particle forces:

fwalli (t) = fwsoci (t) + fwphi (t)

=
(

Awall · exp
(

ri − dib(t)

Bwall

)
+ k · Θ(ri − dib(t))

)
· nib(t)

− κ · Θ(ri − dib(t)) · (vi (t) · tib(t)) · tib(t). (9)

In Eq. 9, dib denotes the distance, and nib the normal
and tib the tangential direction towards the closest obstacle(-
point) b to pi , which are all determined directly from the
scene representation described below. Parameters Awall and
Bwall are the analogues to A and B in Eq. 4. This is a slight

deviation from the model by Helbing et al., as we define
separate social distance parameters for obstacles and for
other agents.

For the experiments conducted in this work, a scene
the agents can move around in needs to be defined.
This will define the supermarket scenario considered
in the simulation we performed with regard to the
COVID-19 measures, as described in “Experiments”. The
scene is represented as a distance transform ((Borgefors
1986; Felzenszwalb and Huttenlocher 2004)) of a two-
dimensional, binary discretized map, as depicted in Fig. 3.
This map defines the size of the simulated area, as
well as the regions within which are walkable (shown
as white) or pose an obstacle to the agents (black). The
scene in the experiments performed is represented by a
discretized map at a resolution of 8 pixels per meter.
Agent navigation depends on pre-calculated paths based
on Dijkstra’s algorithm ((Dijkstra 1959)). Accordingly,
for each destination, a map containing the directions of
movement towards it for each walkable point in the area is
generated. This way, the direction of movement ei (t) of an
agent pi is determined by looking up the given direction of
movement at position xi from the map corresponding to pi’s
current destination di (cf.“Materials and methods”). Color-
coded renderings of maps for three different destination
points are shown in Fig. 2. Agent navigation in the context
of our COVID-19 simulation, including details on how
destinations are chosen, is described in “Experiments”.

The need for the added tangential social force ftang

becomes apparent in cases of symmetry, which arise when
forces are at an equilibrium. The pre-calculated paths may
impose symmetries, as they minimize the distance towards
the destination. This means, the prescribed way can be a thin
line even though there is more space available, resulting in
unnatural behavior and building of queues, especially when
agents are approaching others head-on. In the worst case,
this can lead to “deadlocks” or clogging of pedestrians, even
in cases where the surrounding area provides enough space
for the agents to evade each other.
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Fig. 2 Color-coded direction maps for agent navigation, determining directions of movement for each position within walkable areas (a–c).
Destinations are shown as black discs with white dots.(d) How colors are mapped to directions

Experiments

The simulation was carried out with a basic “supermarket”
scenario of size 80m × 60m (cf. Fig. 3) with varying
numbers n of agents, which represent customers. The scene
is aimed to mimic a typical German supermarket with
shelves, counters, and cashiers. Within the simulated area,
a set of 34 destinations is defined (Fig. 3a), representing
points of interest within the supermarket. We performed
simulations for number of agents (population size) of n ∈
{50, 100, 200, 300}. A defined amount of the agents were
marked as “infected”.

Figure 3b shows the scene with 100 agents. Infectious
persons are marked in red in the visualization, and all
others are in green. Infected agents carry the virus and can
potentially infect others. The amount of infected agents was
varied from {0.02, 0.05, 0.1, 0.15, 0.2} in the experiments,
tantamount to ratios of 2% to 20%. The agents’ radii ri
were sampled uniformly from [0.25, 0.35]. Mass is then
determined proportionally to the individual radii as mi =
160 · ri in kg. The desired speed v0i was sampled uniformly
from the range [0.3, 0.8] (in ms).

Simulation parameters were chosen as A = 10000N,
B ∈ {0.5, 0.7, 1.0, 1.5}m, Awall = 10000N, Bwall = 0.5m,
and τ = 0.5s. As body contact hardly ever occurs, constants
k and κ supposedly have very little impact on the outcome
of the simulation, if at all. For the sake of completeness, we
set k = 20000kg · m−1 · s−1, and κ = 40000kg · s−2.

Initially, agents were distributed randomly across the
area, i. e. their starting points si are set to random (walkable)
positions within the scene. The set of destinations were

assigned to the agents in an even split, determining the
agents’ initial destination points di . During the simulation,
if an agent reaches its destination, a new destination is
assigned randomly from the available set of destinations
(excluding the current one). Agent movement is then
determined by the direction map corresponding to the
destination, as described in “Materials and methods”.
Thus, a typical behavior of customers walking around the
supermarket is simulated. The simulation time was set to
15 min.

During the simulation, for each agent, we keep track
of exposure time to infected agents. More precisely, the
time span an agent comes below the prescribed safety
distance dmin of 1.5m (cf. “Introduction”) to an infected
agent is accumulated per individual during the course of the
simulation.

Results

The box-and-whisker plots (Tukey 1970) in Fig. 4 show
the average deviation of the exposure time concerning the
different population sizes, distances, and infection rates,
as described in “Experiments”. The boxes represent the
interquartile range, which contains 50% of the values and
the whiskers are marking the minimum and maximum
values, excluding outliers (marked as black diamonds).

The first scenario depicted in Fig. 4a shows the results
for a minimal population of 50 agents. With a uniform
distribution of the individuals and if superstructures (cf.
Fig. 3a) are neglected a density of one individual per 96m2

Fig. 3 Supermarket scene with
walkable areas shown in white
and obstacles in black
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Fig. 4 Box-and-whisker plots of the exposure times for populations of n ∈ {50, 100, 200, 300}, desired distances of 50 cm, 70 cm, 1 m, and 1.5 m
and infection rates of 2, 5, 10, 15, and 20%

is to be expected. Thus, enough space for avoidance is
available. This is supported by the box plots. Even if a very
short desired distance of 50 cm is considered, the mean
exposure time is 7.78s (standard deviation (SD) 9.1s) for an
infection rate of 2% of the individuals. Even if very high
infection rates of 10% are considered the mean, exposure
time is below 1 m (52s, SD 29.16s). If the requested distance
of 1.5m (cf. “Introduction”) is maintained, mean exposure
time for an infection rate of 20% is 2.3s (SD 2.9s). With
the growing number of agents, exposure times are rising
(cf. Fig. 4d). Expected density with a population of 100
is one individual per 48m2. For small desired distances
and medium infection rates of 5%, the mean exposure
time is 84.95s (SD 36.5s), which is 61% higher than the
results with the same parameters and a population of 50.
As the desired distances increase, the exposure times are
decreasing. Considering the requested 1.5-m distance, the
mean exposure time for an infection rate of 20% is 19.85s
(SD 11.79s), which is 836% higher than the exposure times
for a population of 50. As far as realistic infection rates of
2% are concerned, the mean exposure time is 2.49s (SD
2.84s). The results for a population size of 200 are shown
in Fig. 4c. This population size with an expected density
of one agent per 24m2 representing the maximum density

allowed during lock down in most of German federal states
at the time of writing. For an infection rate of 2% and a
desired distance of 1.5m, the mean exposure time is 6.19s
(SD 6.02s). With an expected density of one individual
per 16m2, Fig. 4d shows the results for a simulation with
300 agents. Mean exposure time is 11.31s (SD 15.03s).
The 50% percentile (median) for all simulations with this
parametrization is below 8s (7.7s, 4.64s, 1.37s, 0s), showing
the effectiveness of distancing tactics in the minimization of
exposure times.

Discussion

We have presented a simulation of pedestrian dynamics in
realistic scenarios with a focus on the spread of infectious
diseases by contact transmission. An important measure
taken to reduce the spread of COVID-19 is the so-called
social distancing or physical distancing, aiming to reduce
close contacts between individuals in public places. In the
experiments we conducted, we showed how our simulation
can give insights about exposure time to infected individuals
and the feasibility and effectiveness of keeping distance in
realistic crowded scenarios. Our experiments suggest that, if
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we assume an infection rate of 2%, the prescribed minimum
distance of 1.5m can be maintained if a density of one
person per 16m2 is not exceeded.

In this work, we have presented a method for risk
assessment concerning pedestrian dynamics and exposure
time in conjunction with COVID-19 in particular and
infectious diseases in general. Due to the flexibility of
the approach, it can be applied to a great variety of
scenarios prone to transmission of contagious diseases. This
especially includes public places, indoor as well as outdoor.

Our simulation can serve as a tool for a better assessment
of quantities regarding the number of people to admit, or on
guidelines for distances to keep between individual persons.
Due to the nature of the simulation, it can also give insight
about optimization on the geometry of the surrounding, like
identification of bottlenecks and hotspots, in order to reduce
risks for people moving around and meeting in the place in
question.

It should be noted that there may be further factors to be
taken into consideration which we do not cover in the cur-
rent version of our simulation. Especially for indoor envi-
ronments, ventilation, air flow, and corresponding aspects
of fluid dynamics might be of importance for more com-
plete assessment of the risk of virus transmission (Kumar
and Morawska 2019; Morawska and Milton 2020).

There already are studies on the topic of indoor
ventilation (Licina et al. 2015; Jung et al. 2015; Nielsen
2009), also with focus on COVID-19 (Morawska et al.
2020) and fluid flow in particular (Bhagat et al. 2020).
Integration of approaches like these into the simulation we
presented could make for a more accurate risk assessment
of public spaces. This constitutes a promising subject for
future research.

With the COVID-19 pandemic affecting countries all
over the world at the time of writing, the urgent need
of models and tools for better assessment of situations
in public places is apparent. We are confident that our
simulation results can serve as a basis for better risk
assessment in public places in the context of infectious
diseases, and for further research in this area.
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C, Seyfried A (2009) Evacuation Dynamics: Empiri-
cal Results, Modeling and Applications, pp 3142–3176.
https://doi.org/10.1007/978-0-387-30440-3 187

Shiwakoti N, Sarvi M, Rose G (2008) Modelling pedestrian
behaviour under emergency conditions—state-of-the-art and
future directions. 31st Australasian Transport Res Forum ATRF
2008:457–473

Squazzoni F, Polhill JG, Edmonds B, Ahrweiler P, Antosz P, Scholz
G, Chappin E, Borit M, Verhagen H, Giardini F, Gilbert N (2020)
Computational models that matter during a global pandemic
outbreak: A call to action. J Artif Societ Soc Simul 23(2):10.
https://doi.org/10.18564/jasss.4298

Tukey J (1970) Exploratory data analysis. Limited Preliminary Ed.,
Addison-Wesley Publishing

Willem L, Verelst F, Bilcke J, Hens N, Beutels P (2017) Lessons
from a decade of individual-based models for infectious disease
transmission: A systematic review (2006-2015). BMC Infect Dis
17:612. https://doi.org/10.1186/s12879-017-2699-8

World Health Organization (2020) Coronavirus disease (COVID-
2019) situation report 147 (15 June 2020). prefix https://www.
who.int/docs/default-source/coronaviruse/situation-reports/
20200615-covid-19-sitrep-147.pdf, last visited 2020-06-16

Zhou P, Yang X, Wang X et al (2020) A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature
(579):270–273

Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang
M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J
(2020) SARS-CoV-2 viral load in upper respiratory specimens of
infected patients. New England J Med 382(12):1177–1179

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

228 J Public Health (Berl.) (2023) 31:221–228

https://doi.org/10.1038/nature04795
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1002/bs.3830360405
https://doi.org/10.1002/bs.3830360405
https://doi.org/10.1371/journal.pone.0208775
https://doi.org/10.1016/j.buildenv.2014.11.026
http://www.sciencedirect.com/science/article/pii/S0360132314003989
http://www.sciencedirect.com/science/article/pii/S0360132314003989
https://doi.org/10.1016/j.cacint.2020.100033
http://www.sciencedirect.com/science/article/pii/S2590252020300143
http://www.sciencedirect.com/science/article/pii/S2590252020300143
https://doi.org/10.1111/ina.12177
https://doi.org/10.1093/cid/ciaa939
https://doi.org/10.1016/j.envint.2020.105832
http://www.sciencedirect.com/science/article/pii/S0160412020317876
http://www.sciencedirect.com/science/article/pii/S0160412020317876
http://arxiv.org/abs/1902.02784
https://doi.org/10.1098/rsif.2009.0228.focus
https://doi.org/10.1016/S2468-2667(20)30073-6
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktreduzierung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktreduzierung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Transport/Handzettel.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Transport/Handzettel.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Transport/Handzettel.pdf?__blob=publicationFile
https://doi.org/10.1007/978-0-387-30440-3_187
https://doi.org/10.18564/jasss.4298
https://doi.org/10.1186/s12879-017-2699-8
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200615-covid-19-sitrep-147.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200615-covid-19-sitrep-147.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200615-covid-19-sitrep-147.pdf

	Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment
	Abstract
	Conclusions

	Introduction
	Related work
	Materials and methods
	Experiments
	Results
	Discussion
	Declarations
	References


