Skip to main content

Advertisement

Log in

Iridocorneal contact as a potential cause of corneal decompensation following laser peripheral iridotomy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the relationship between corneal decompensation following laser peripheral iridotomy (LPI) and iridocorneal endothelial contact.

Study design

Retrospective observational case series.

Methods

Specular microscopy images of LPI recipients with narrow angles were taken at the central cornea and the 8 midperipheral corneal regions at approximately 3 mm from the center. Eleven eyes of 11 patients had a minimum of  ≤ 1600 cells/mm2 among 8 midperipheral corneal endothelial cell densities (ECDs). Radial scans of the angles in the 8 directions were taken with ultrasound biomicroscopy (UBM) in the supine and face-down positions. The minimum and maximum angle opening distance at 750 μm from the scleral spur of the 8 directions were defined as the narrowest and widest angles, respectively. The ECD of the narrowest angle direction was compared with the ECD of the widest angle direction.

Results

When UBM was performed with the subject in the supine position, the iris and cornea at the narrowest angle were in contact in only 4 of 11 eyes, while in the face-down position, the iris and the cornea at the narrowest angle were in contact in 10 of the 11 eyes. In the face-down UBM, the midperipheral ECD of the narrowest angle direction was significantly smaller than the midperipheral ECD of the widest angle direction (P = 0.006).

Conclusion

The ECD of the narrow angle direction can decrease after LPI. This suggests that corneal endothelial cell damage following LPI may be due to mechanical damage from iridocorneal endothelial contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.

    Article  CAS  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    Article  Google Scholar 

  3. Radhakrishnan S, Chen PP, Junk AK, Nouri-Mahdavi K, Chen TC. Laser peripheral iridotomy in primary angle closure: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125:1110–20.

    Article  Google Scholar 

  4. Pollack IP. Current concepts in laser iridotomy. Int Ophthalmol Clin. 1984;24:153–80.

    CAS  PubMed  Google Scholar 

  5. Schwartz AL, Martin NF, Weber PA. Corneal decompensation after argon laser iridectomy. Arch Ophthalmol. 1988;106:1572–4.

    Article  CAS  Google Scholar 

  6. Zabel RW, MacDonald IM, Mintsioulis G. Corneal endothelial decompensation after argon laser iridotomy. Can J Ophthalmol. 1991;26:367–73.

    CAS  PubMed  Google Scholar 

  7. Jeng S, Lee JS, Huang SC. Corneal decompensation after argon laser iridectomy—a delayed complication. Ophthalmic Surg. 1991;22:565–9.

    CAS  PubMed  Google Scholar 

  8. Wilhelmus KR. Corneal edema following argon laser iridotomy. Ophthalmic Surg. 1992;23:533–7.

    CAS  PubMed  Google Scholar 

  9. Lim LS, Ho CL, Ang LPK, Aung T, Tan DTH. Inferior corneal decompensation following laser peripheral iridotomy in the superior Iris. Am J Ophthalmol. 2006;142:166–8.

    Article  Google Scholar 

  10. Shimazaki J, Amano S, Uno T, Maeda N, Yokoi N, Japan Bullous Keratopathy Study Group (2007) National survey on bullous keratopathy in Japan. Cornea 26:274–8

    Article  Google Scholar 

  11. Ang LPK, Higashihara H, Sotozono C, Shanmuganathan VA, Dua H, Tan DTH, et al. Argon laser iridotomy-induced bullous keratopathy a growing problem in Japan. Br J Ophthalmol. 2007;91:1613–5.

    Article  Google Scholar 

  12. Shimazaki J, Uchino Y, Tsubota K. Late irreversible corneal oedema after laser iridotomy. Br J Ophthalmol. 2009;93:125–6.

    Article  CAS  Google Scholar 

  13. Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22:1079–84.

    Article  CAS  Google Scholar 

  14. Fiore PM, Richter CU, Arzeno G, Arrigg CA, Shingleton BJ, Bellows AR, et al. The effect of anterior chamber depth on endothelial cell count after filtration surgery. Arch Ophthalmol. 1989;107:1609–11.

    Article  CAS  Google Scholar 

  15. Gazzard G, Friedman DS, Devereux JG, Chew P, Seah SK, et al. A prospective ultrasound biomicroscopy evaluation of changes in anterior segment morphology after laser iridotomy in Asian eyes. Ophthalmology. 2007;110:630–8.

    Article  Google Scholar 

  16. He M, Friedman DS, Ge J, Huang W, Jin C, Cai X, et al. Laser peripheral iridotomy in eyes with narrow drainage angles: ultrasound biomicroscopy outcomes. The Liwan eye study. Ophthalmology. 2007;114:1513–9.

    Article  Google Scholar 

  17. Cheung CY, Zheng C, Ho CL, Tun TA, Kumar RS, El Sayyad F, et al. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark. Br J Ophthalmol. 2011;95:955–9.

    Article  Google Scholar 

  18. Nonaka A, Kondo T, Kikuchi M, Yamashiro K, Fujihara M, Iwawaki T, et al. Cataract surgery for residual angle closure after peripheral laser iridotomy. Ophthalmology. 2005;112:974–9.

    Article  Google Scholar 

  19. Imai K, Sawada H, Fukuchi T. Prone position ultrasound biomicroscopy for two plateau iris configuration cases with decreased corneal endothelial cells after laser iridotomy. J Jpn Ophthalmol Soc. 2015;119:68–76 ((in Japanese)).

    Google Scholar 

  20. Esaki K, Ishikawa H, Liebmann JM, Ritch R. A technique for performing ultrasound biomicroscopy in the sitting and prone positions. Ophthalmic Surg Lasers. 2000;31:166–9.

    Article  CAS  Google Scholar 

  21. Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol. 2003;135:584–90.

    Article  Google Scholar 

  22. Sano R, Kurokawa T, Kurimoto Y, Miyazawa D, Yoshimura N. Comparison between the anterior chamber configuration in the supine position and that in the prone position in patients with narrow angle. J Jpn Ophthalmol Soc. 2001;105:388–93 ((in Japanese)).

    CAS  Google Scholar 

  23. Kumar RS, Baskaran M, Friedman DS, Xu Y, Wong H-TT, Lavanya R, et al. Effect of prophylactic laser iridotomy on corneal endothelial cell density over 3 years in primary angle closure suspects. Br J Ophthalmol. 2013;97:258–61.

    Article  Google Scholar 

  24. Sihota R, Agarwal E, James M, Verma M, Kumar L, Dada T, et al. Long-term evaluation of specular microscopic changes following Nd:YAG iridotomy in chronic primary angle-closure glaucoma eyes. J Glaucoma. 2017;26:762–6.

    Article  Google Scholar 

  25. Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR. Cellular migration and morphology in corneal endothelial wound repair. Investig Ophthalmol Vis Sci. 1985;26:443–9.

    CAS  Google Scholar 

  26. Robin AL, Pollack IP. A comparison of neodymium: YAG and argon laser iridotomies. Ophthalmology. 1984;91:1011–6.

    Article  CAS  Google Scholar 

  27. Lim L, Seah SK, Lim AS. Comparison of argon laser iridotomy and sequential argon laser and Nd:YAG laser iridotomy in dark irides. Ophthalmic Surg Lasers. 1996;27:285–8.

    Article  CAS  Google Scholar 

  28. Hong C, Kitazawa Y, Tanishima T. Influence of argon laser treatment of glaucoma on corneal endothelium. Jpn J Ophthalmol. 1983;27:567–74.

    CAS  PubMed  Google Scholar 

  29. Wu SC, Jeng S, Huang SC, Lin SM. Corneal endothelial damage after neodymium:YAG laser iridotomy. Ophthalmic Surg Lasers. 2000;31:411–6.

    Article  CAS  Google Scholar 

  30. Park HYL, Lee NY, Park CK, Kim MS. Long-term changes in endothelial cell counts after early phacoemulsification versus laser peripheral iridotomy using sequential argon:YAG laser technique in acute primary angle closure. Graefe’s Arch Clin Exp Ophthalmol. 2012;250:1673–80.

    Article  Google Scholar 

  31. Sung KR, Lee KS, Hong JW. Baseline anterior segment parameters associated with the long-term outcome of laser peripheral iridotomy. Curr Eye Res. 2015;40:1128–33.

    Article  Google Scholar 

  32. Higashihara H, Sotozono C, Yokoi N, Inatomi T, Kinoshita S. The blood-aqueous barrier breakdown in eyes with endothelial decompensation after argon laser iridotomy. Br J Ophthalmol. 2011;95:1032–4.

    Article  Google Scholar 

  33. Yamagami S, Yokoo S, Suzuki M, Usui TAS. Mechanism of bullous keratopathy development after laser iridotomy: macrophage theory. J Eye. 2007;18:885–90 ((in Japanese)).

    Google Scholar 

  34. Kaji Y, Oshika T, Usui T, Sakakibara J. Effect of shear stress on attachment of corneal endothelial cells in association with corneal endothelial cell loss after laser iridotomy. Cornea. 2005;24:S55–8.

    Article  Google Scholar 

  35. Yamamoto Y, Uno T, Joko T, Shiraishi A, Ohashi Y. Effect of anterior chamber depth on shear stress exerted on corneal endothelial cells by altered aqueous flow after laser iridotomy. Investig Ophthalmol Vis Sci. 2010;51:1956–64.

    Article  Google Scholar 

  36. Jiang Y, Chang DS, Zhu H, Khawaja AP, Aung T, Huang S, et al. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan angle-closure prevention trial. Ophthalmology. 2014;121:1699–705.

    Article  Google Scholar 

  37. Peng PH, Nguyen H, Lin HS, Nguyen N, Lin S. Long-term outcomes of laser iridotomy in Vietnamese patients with primary angle closure. Br J Ophthalmol. 2011;95:1207–11.

    Article  Google Scholar 

  38. Kumar RS, Baskaran M, Chew PTK, Friedman DS, Handa S, Lavanya R, et al. Prevalence of Plateau Iris in primary angle closure suspects. An ultrasound biomicroscopy study. Ophthalmology. 2008;115:430–4.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing and Mr. Steven Yoell for his English language advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Imai.

Ethics declarations

Conflicts of interest

K. Imai, None; H. Sawada, None; T. Hatase, None; T. Fukuchi, Grant (Alcon, HOYA), Grant, Lecture fee (Abbott, Otsuka, Senju, Santen), Lecture fee (Pfizer, AbbVie, NIDEK, Novartis, Glaukos, Alcon).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Kazuyuki Imai

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, K., Sawada, H., Hatase, T. et al. Iridocorneal contact as a potential cause of corneal decompensation following laser peripheral iridotomy. Jpn J Ophthalmol 65, 460–471 (2021). https://doi.org/10.1007/s10384-021-00830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-021-00830-y

Keywords

Navigation