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Summary Digital transformation in medicine refers
to the implementation of information technology-
driven developments in the healthcare system and
their impact on the way we teach, share, and prac-
tice medicine. We would like to provide an overview
of current developments and opportunities but also
of the risks of digital transformation in medicine.
Therefore, we examine the possibilities wearables
and digital biomarkers provide for early detection
and monitoring of diseases and discuss the poten-
tial of artificial intelligence applications in medicine.
Furthermore, we outline new opportunities offered
by telemedicine applications and digital therapeutics,
discuss the aspects of social media in healthcare, and
provide an outlook on “Health 4.0.”
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Digitale Gesundheit – High Tech oder High
Touch?

Zusammenfassung Digitale Transformation der Me-
dizin bezieht sich auf den Einzug von Entwicklungen
der Informationstechnologie in das Gesundheitswe-
sen und deren Auswirkungen auf die Art und Weise,
wie Medizin gelehrt und praktiziert wird. Wir wollen
einen Überblick über aktuelle Entwicklungen, Chan-
cen, aber auch Risiken der digitalen Transformation
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in der Medizin geben. Dafür beleuchten wir die Mög-
lichkeiten, die Wearables und digitale Biomarker in
der Früherkennung und Überwachung von Krankhei-
ten bieten, und diskutieren das Potenzial von Anwen-
dungen künstlicher Intelligenz in der Medizin. Dar-
über hinaus werden telemedizinische Anwendungen
und digitale Therapeutika dargestellt, Aspekte von So-
cial Media im Gesundheitswesen beschrieben, und es
wird ein Ausblick auf „Gesundheit 4.0“ gegeben.

Schlüsselwörter Künstliche Intelligenz ·
Maschinelles Lernen · Tiefe neuronale Netze ·
Digitale Therapeutika · Telemedizin

Introduction

Our healthcare system faces major challenges, neces-
sary changes, but most importantly, unique opportu-
nities. The Coronavirus disease 2019 (COVID-19) pan-
demic has provided an unprecedented boost for many
transformations and disrupted several of our tradi-
tional approaches. Within days, whole clinics were
forced to switch to remote care and, in order to relieve
the burden on outpatient facilities, expanded their re-
mote monitoring programs [1]. In areas struck with
large caseloads of COVID-19, physicians and other
healthcare professionals quickly connected on social
media and other platforms to share cases and clinical
experience as well as diagnostic and treatment algo-
rithms and to collaborate in rapidly setting up clinical
trial protocols [2]. Besides increases in efficiency and
the facilitations in daily medical care, digital trans-
formation and the collection of “big data” now al-
low large-scale scientific analyses, which in the past
usually required large investments and expenditures.
Widespread use of health apps and so-called wear-
ables creates an immense quantity of digital biomark-
ers each second and, if integratively analyzed, may
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allow early detection of subclinical changes in health
and prediction of later diseases [3].

Remote monitoring of implanted devices such as
pacemakers and defibrillators dramatically reduces
unnecessary outpatient visits on the one hand, and
on the other hand, may signal potentially life-threat-
ening aberrations at an early stage and trigger lifesav-
ing medical interventions [4]. Artificial intelligence as
well as machine learning and its applications exhibit
a large potential in automatic imaging detection of
diseases and understanding of complex connections.
Other potential applications in the near future in-
clude the analysis of large datasets and application
of personalized medical treatments based on digital
and biochemical biomarkers also within the field of
pharmaceutics [5, 6].

In light of the pandemic and stay-at-home or-
ders, digital teaching has experienced a lot of push,
and within a few weeks of the pandemic situation,
online meetings and educational activities became
the norm. Social media use within the scientific
and medical community boomed, and now provides
unprecedented possibilities for education, commu-
nication, and collaboration. But can that replace
personal communication? Can medical education
be delivered within 280 characters of short “tweets”?
What are the risks of big health data in the hands of
private companies? Who will be reliable for the mis-
takes of the digital radiologist? Herein, we would like
to provide an overview of current developments and
chances but also of the risks of digital transformation
in medicine.

We believe that if used purposefully, digital tech-
nologies have immense potential for supporting
physicians and other healthcare personnel with some
of the time-consuming repetitive tasks that they are
tasked and overwhelmed with, in helping the scien-
tific field to understand complex relationships in big
data, and, ultimately, in allowing physicians to focus
on their main task: working with their patients.

Case presentation

Tomake several of the discussed areas of digitalmedicine
more vivid, we will accompany a fictious patient with
heart failure on his journey through a partially digital-
ized medical system in 2022. Heart failure is a chronic
disease with well-studied and efficient medications and
device-based treatments available [7]. A major focus
in treating this disease is to prevent episodes of de-
compensation and complications, which are associated
with cost- and treatment-intensive hospitalizations
and worsening in the baseline status after recompensa-
tion. Our 55-year-old patient with chronic heart failure
is on guideline-recommended adequately dosed medi-
cation and remained stable over several years. Over the
past 2 weeks, however, he has felt a sudden worsening of
performance and an increasing shortness of breath. On
his 56th birthday, his nephew gave him a smartwatch

to better follow up on his leisure activities. Shortly after
putting on his new gift, he received an alarm for atrial
fibrillation. He presented to the cardiology outpatient
clinic where the rhythm disorder was confirmed, and he
was admitted to the cardiology ward due to decompen-
sation.

Wearables and digital biomarkers

Wearable health sensors, often integrated into smart-
watches, wristbands, rings, or smart patches, facilitate
close monitoring of specific body parameters. These
digital biomarkers can be gathered continuously dur-
ing different times of the day and in various circum-
stances, and may therefore create a more representa-
tive patient image compared to occasional measure-
ments conducted during single office visits or by con-
ventional self-monitoring strategies [8]. This poten-
tially allows an early detection of subclinical changes
in health and prediction of later diseases.

Photoplethysmography (PPG)-based detection of
the pulse and thereof derived heart rate measure-
ments are among the most common applications of
wearable health sensors. A photodiode sensor inte-
grated into the wearable device emits light into the
capillary bed and detects the pulse-related change in
blood volume by measuring wavelength alterations
of the reflected light. Since this technology is also
used in pulse oximetry, it is clinically validated for
heart rate measurements and is already integrated
into many devices on the wearable market [9]. How-
ever, a study has demonstrated that the signal quality
might be significantly reduced in patients with darker
skin tones or obesity [10]. In addition, arrhythmia
diagnostics can also be performed based on a PPG-
recorded pulse signal, although this approach has
methodological limitations due to the absence of
electrocardiographic information. Some study groups
and manufacturers try to compensate for this with
machine learning-based signal analysis approaches
[11]. However, the advantage of PPG-based arrhyth-
mia diagnostic methods is that they can be applied
in the background without active patient interaction
and may therefore detect asymptomatic episodes of
atrial fibrillation.

Some devices even allow the acquisition of elec-
trocardiographic (ECG) signals. For example, a single-
channel ECG vector can be obtained by using a smart-
watch’s metal bottom part touching the wrist as one
electrode and connecting it to a second electrode in-
tegrated into a hardware button on the device sur-
face. This requires active user interaction by placing
one finger of the opposite hand on it. However, the
thereby gained electrocardiographic signal facilitates
a methodically correct detection of atrial fibrillation.
This method and its implementations were evaluated
in large feasibility trials conducted by several device
manufacturers; some have already received approval
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as medical devices for the detection of atrial fibrilla-
tion by the FDA [12–14].

Today, PPG-based blood pressure measurements
do not provide an equivalent alternative to conven-
tional cuff-based devices regarding their accuracy and
are currently more likely to be classified as consumer
products. Further development is needed to achieve
the accuracy required for reliable medical blood pres-
sure monitoring [15]. However, cuff-based devices are
available that can store measured data in cloud-based
services for further analysis after being connected to
a smartphone. Other exemplary applications are con-
tinuous glucose measurement using smart patches
[16], sleep apnea tracking using PPG sensors [17],
and built-in accelerometers for fall detection or to
monitor the course of Parkinson’s disease [18]. Data
access and protection are key issues, since health data
gathered via wearables are often stored in proprietary
cloud services and access to these by treating physi-
cians is currently mostly unregulated. Appropriate
legal frameworks must be in place to protect patients
from data misuse.

As the patient fulfilled the criteria for implantation
of a three-chamber pacemaker and defibrillator, im-
plantation was performed the day before discharge [7].
He was asked to participate in a remote-monitoring
option for his implanted pacemaker for early detec-
tion of decompensation and rhythm disorders as well
as in a remote, app-based outpatient program. Within
the program, the patient is asked to record his weight,
blood pressure, heart rate, and signs and symptoms of
heart failure. After a few weeks of clinical stability, an
increase in body weight was recorded and forwarded to
a specialized heart failure nurse who then adapted the
medication with the patient in a remote visit.

Telemedicine and digital therapeutics

Telemedical applications have experienced an enor-
mous expansion, not least due to the COVID-19 pan-
demic [1]. Because of today’s broad availability and
wide acceptance of teleconferencing technologies,
certain parts of the medical workflow, such as anam-
nesis, discussion of results, or periodic follow-ups,
can alternatively take place in the form of telecon-
sultations instead of physical in-person meetings.
This not only enables low-threshold access to spe-
cialized health resources from rural areas but also
allows consideration of the special needs of patients
with impaired mobility. In a 2021 member survey
conducted by the American Medical Association, 85%
of the responding physicians indicated the use of
telehealth applications, with more than 80% stating
“facilitating patients better access to care” as their
main motivation [19].

Remote monitoring of implanted devices such as
pacemakers and implantable cardioverter-defibrilla-
tors (ICD) enables early detection of even subclini-
cal events and, thus, allows timely, potentially life-

saving interventions. Furthermore, periodic routine
device checkups that have previously taken place in
an in-person outpatient setting can be performed re-
motely. Therefore, devices connect automatically to
small home-monitoring base stations, for example,
located in patients’ bedrooms, to transmit recorded
anomalies to a control server via a secured cellular
network connection. This allows timely assessment
of potential medical events or device malfunctions
by healthcare professionals [4]. Real-time monitoring
and thus integration into emergency medical services
is currently not possible that way. In the future, AI-
supported methods of signal analysis may help to pri-
oritize the emerging number of reported events more
efficiently.

In addition to securing data transmission and data
storage, there are concerns about security issues af-
fecting the direct device safety. Since the data trans-
mission is one-way only (read-only for remote mon-
itoring), the security threat is theoretically limited to
the interception of transmitted data by unauthorized
persons. A potential harmful reconfiguration of device
parameters by compromising the remote-monitoring
connection seems therefore technically not feasible.

Digital therapeutics (DTx) are digital healthcare so-
lutions that apply software-driven interventions—
sometimes combined with hardware sensors—to
prevent, manage, or treat diseases [20]. Although
typically accessed using smartphones or tablet com-
puters, these products differ from consumer-targeted
health applications like fitness trackers, calory coun-
ters, step counters, or nutrition diaries, as they aim
to perform evidence-based therapeutic interventions
on patients and therefore need to be approved by
regulatory bodies after proving clinical efficacy and
safety. These solutions may be implemented as stand-
alone approaches or combined with pharmacologi-
cal therapies to enhance their effects, e.g., optimize
their intake or dosage, for example, combined with
a hardware push sensor on inhalers in treatment of
chronic obstructive pulmonary disease. DTx cover an
expanding range of medical applications, including
managing and accompanying treatment of chronic
diseases like cancer, diabetes, multiple sclerosis, or
Parkinson’s disease [21]. But also the area of mental
health offers a wide range of applications for disor-
ders such as depression or anxiety. In many of these
applications, there is a focus on accurately record-
ing the course of symptoms and providing treatment
recommendations based on that information. In ad-
dition to direct therapeutic effects, DTx can promote
the patient’s disease awareness and thus indirectly
increase patient autonomy. As of today, the German
Federal Institute for Drugs and Medical Devices lists
35—partly temporarily—approved DTx applications
for which reimbursements are offered in Germany
[22]. Because data collected by DTx are often stored
in vendor-owned systems, access to these data by
attending physicians must be an integral part of the
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solution. This can be achieved by alternatively stor-
ing data into public electronic health record systems
or providing data access on the base of public data
exchange standards (e.g., HL7) in the future.

After a few years of clinical stability, our patient ex-
perienced increasing dyspnea symptoms. As remote
monitoring of his CRT system revealed no recorded
episodes of cardiac arrhythmias, the patient visited an
emergency room after consulting with his treating car-
diologist. Based on the patient’s symptoms andmedical
history, a coronary CT scan was performed to rule out
coronary ischemia. A machine learning-based diag-
nostic model was able to rule out significant coronary
stenosis. However, his medication was adjusted for
treatment of bilateral pleural effusions and a clinical
follow-up was scheduled.

Artificial intelligence and machine learning in
medicine

Machine learning, presumably the most prominent
subfield of artificial intelligence these days, refers to
strategies for solving defined tasks in which comput-
ers are not explicitly programmed with rule-based al-
gorithms, but are taught on an abstract level to acquire
a solution from existing data. These strategies aim to
develop a mathematical function that can predict an
output value based on a number of input values, for
example, to classify a patient’s condition into “crit-
ically ill” or “recovering,” or to predict a numerical
value such as the duration of treatment based on sev-
eral acquired values. Due to the large number of input
values (several thousand to evenmillions) that arise in
some applications such as image processing, the de-
rived functions are often rather complex. An essential
factor in building machine learning models is whether
training data with corresponding output values are
available during the training phase. As this facilitates
an iterative refinement process based on a feedback
mechanism while building the model, such strate-
gies are known as supervised learning strategies. If
no annotated training data are available, unsupervised
learning strategies can be applied to classify datasets
based on identified similarities or detected anomalies.

Especially advances in the field of artificial neural
networks (ANNs) and their sub-form convolutional
neural networks (CNNs) have contributed to the rapid
spread of machine learning-based applications in
healthcare. ANNs are complex mathematical func-
tions that model processes in the human cerebral
cortex in an abstract way. Each ANN is composed
of one input and one output layer which encompass
several so-called hidden layers of artificial neurons
between them. By passing a set of input values
through these successive layers of neurons, features
can be extracted in an incremental way. For exam-
ple, an ANN trained on certain images could learn to
identify edges in its first layers, shapes based on these
edges in further layers, and specific objects based on

these shapes in its final layers. The functionality and
performance of the network result from the pattern in
which the neurons are interconnected. This pattern
develops during the training process by tweaking the
weights and biases that are associated with these con-
nections. Depending on the complexity of the task,
a considerable amount of training data may there-
fore be required. Network architectures with more
than two hidden layers are referred to as deep neural
networks (DNN).

Since Esteva et al. demonstrated in a remarkable
2017 publication that a CNN trained on nearly 130,000
images performed at least equally well in classifying
lesions suspicious for skin cancer compared to board-
certified dermatologists, the field of machine learn-
ing-based applications in medicine experienced rapid
further development, with more than 85,000 listed
publications in PubMed as of today [23].

Because these approaches perform particularly
well in pattern-recognition tasks, various studies have
been published especially in the fields of radiology
and signal analysis. Examples include publications
about (COVID-19) pneumonia detection or segmen-
tation of pulmonary embolism in thoracic CT images
[24, 25]. Interesting applications also arise in signal
analysis. Apart from studies on the detection of atrial
fibrillation based on ECG and PPG signals [11], ma-
chine learning-based approaches can also emphasize
disease markers that may have not had significance
in clinical practice yet. For example, a study by Attia
et al. demonstrated that individuals with paroxysmal
atrial fibrillation may also be identified even during
phases of sinus rhythm by analyzing standard 12-lead
ECGs. The pathophysiological background is presum-
ably based on specific patterns in the P-wave section
and alterations of the PQ interval [26].

However, this study also highlights an important
limitation of neural network classifier models—the
lack of explainability. Since the processes that arise
during the building of ANNs reach an enormous
level of complexity, the traceability of their decisions
is currently virtually impossible. Although a lot of
scientific effort goes into researching “explainable
AI,” ANNs have a reputation for resembling a black
box. Aside from legal product-liability issues, this
also raises concerns about trustworthiness, which is
an important factor for its clinical acceptance. Both
science and industry are required to address these
issues. Other important concerns are potential gen-
der and ethnic biases of ANNs, which may occur
when training datasets underrepresent certain pa-
tient populations. The impact of this topic has been
demonstrated by several studies to date. Thoughtful
selection of training data and awareness of this issue
in clinical application is of absolute necessity [27–30].

In addition to their application in diagnostics, ma-
chine learning-based approaches can help predict the
risk of disease development or certain courses for in-
dividual patients (“predictive AI”). This may help to
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reduce the onset of certain diseases through individ-
ually tailored screening and preventive measures and
to deploy resources in a more targeted manner. Used
wisely, machine learning-based applications will em-
power physicians by taking over the burden of repeti-
tive low-level tasks to provide time for more demand-
ing tasks and, not least, personal patient contact.

Social media in medicine

Within the past decade, social media has become
ubiquitous within our society with more than 3.5 bil-
lion users worldwide using a variety of platforms and
a clear prediction for further growth [31]. Users of
social media use its platforms for a large variety of
reasons such as a news source, a social tool, a place
to conduct business, and as a source of health infor-
mation. As basically all aspects of life are, to a certain
extent, represented in social media, so are medical
information, discussion, and education as well as
medical providers themselves. A search for “social
media AND medicine” on PubMed.gov revealed 6500
results up until 2018, since then the number of results
has more than doubled (16,183 as of September 30,
2022)—evidence for a strong uptake of social me-
dia within the medical community. Within the past
years, several scandals have shaken the social media
world and highlighted important vulnerabilities [32],
including potential efforts to influence elections with
the use of so-called bots [33, 34]. A seminal analysis
published in Science assessed the spread of true and
false news online [35]. The authors demonstrated
that false information spread faster, farther, deeper,
and more broadly as compared to true information.
Importantly, bots spread true and false information
at the same rate, suggesting that it is actually humans
who more likely spread falsehoods on social media.
This begs the question, is social media really the right
place for scientific discussion and medical education?

From congress coverage . . .

One area of interest for social media in medicine is
congress coverage: up until recently, medical scien-
tific meetings were in-personmeetings only and if one
could not attend, reading summaries and important
publications was the only way to catch up. Therefore,
congress coverage was probably one of the first ar-
eas where medical social media, in particular the mi-
croblogging service Twitter, flourished. An analysis of
the European Society of Cardiology congress of 2018
showed that more than 55,000 “tweets”, short mes-
sages, were created by more than 12,000 participants
within and outside of the meeting [36]. A detailed
analysis suggested that more than 80% of such tweets
were of educational nature. What are some of the ad-
vantages of social media use at medical conferences?
It allows rapid, timely, and critical discussion of novel
research findings and presented treatment guidelines.

In particular, it allows the “regular” provider or sci-
entist to engage in a discussion with peers and lead-
ers of the field in real time without barriers, as op-
posed to a predefined discussion of opinion leaders
only, where regular attendees can only listen and not
engage. In addition, it gives early career researchers
a stage for “promotion” of their original research to
be presented at the respective meeting and for dis-
cussion with opinion leaders and peers. It can thus
provide leverage for scientific discussion and collab-
oration and connect like-minded people with simi-
lar research interests without commonly encountered
barriers. One example of fruitful collaboration facili-
tated by social media was a project that was initiated
by a young fellow who reached out to a senior expert
via social media, stayed at the senior’s institution, and
analyzed collaborative patient data from other experts
whom the senior expert only knew via social media
and published in the American Journal of Cardiology
[37, 38].

... to scientific debate

In academia, scholarly peer review is the method of
choice for assessing the suitability of a research paper
to be accepted for publication in a scientific journal.
It is a time-consuming and (usually) anonymous pro-
cess, leaving other experts or doctors and researchers
in training out of the process, whomay, in order to dis-
cuss or (legitimately) criticize the paper after publica-
tion, send a letter to the journal which may or may not
be accepted, which then, in turn, the authors may an-
swer. Such a letter-based process stems from different
times and is antiquated. Today, without having any of-
ficial rules or consequences, papers undergo a form of
second review by the medical and scientific commu-
nity after publication by the means of social media.
Two examples from the cardiovascular world deserve
mention: after presentation of the ORBITA trial at the
Transcatheter Cardiovascular Therapeutics meeting in
2017, which suggested that stenting of a coronary ves-
sel with severe stenosis does not improve symptoms
of angina, #CardioTwitter (a hashtag commonly used
by cardiovascular professionals on social media), lit-
erally exploded [39, 40]. In the first 9 days, over 1700
English-language tweets by more than 600 users were
posted, a number that by far exceeds typical citations,
even for a practice-changing clinical trial. The slow
uptake of the ORBITA results by new guidelines was
later heavily debated, another proof of the importance
of democratization made possible by social media.
Another big controversy arose over the way to treat
stenosis of the left main artery, the largest coronary
artery supplying a large part of the heart. A large study
compared coronary stenting with bypass surgery in
patients with stenosis of the left main artery. Sev-
eral aspects of the trial, including choice of statistical
methods and endpoints, caused a huge online and
offline debate involving the key opinion leaders [41].
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For fellows in training, it was an incredible opportu-
nity to learn details of trial methodology and statistical
analyses from the “live” discussions arising on social
media. While a tweet on Twitter can only contain 280
characters, several tweets can be put in a row, creat-
ing a so-called tweetorial. Two of such regarding the
controversy mentioned before should be highlighted
and are fantastic examples of “5min online continu-
ing education” for busy clinicians [42, 43].

Continuing medical education

The COVID-19 pandemic has disrupted the way we
teach and learn, from classical education in schools
and universities to medical education and training.
In times of social distancing, people gathered even
more on social media platforms. With the number
of physicians and physicians in training active on so-
cial media rising, social media may be a powerful tool
with the potential of transforming continuing medi-
cal education (CME) [44, 45]. Increasing time pressure
on physicians during their active time in the hospital
makes asynchronous learning by means of social me-
dia an attractive way of learning, allowing access to
educational content at any time, place, and pace [45].
Social media allows a more democratic form of edu-
cation, with fewer barriers to engaging in medical and
scientific discussions. This new and interactive way of
learning is different and potentially more stimulating
as compared to passive absorption of material asso-
ciated with traditional education [44]. Hashtags and
social media representation ofmajor medical societies
and journals make it easy to follow up on the newest
developments [46].

What other types of learning can be found on Twit-
ter? Twitter journal clubs, some with official CME
credits, allow global discussion of novel scientific find-
ings, reaching audiences several fold larger than con-
ventional, localized journal clubs [47]. The option of
tweetorials, providing high-quality education in an ac-
cessible format in small pieces, is yet another form of
quick, “on the go” continuous education. Two great
examples of tweetorials, one dedicated to an imaging
form, the other focusing on the clinician interested in
starting with twitter are provided [48, 49].

The unprecedented challenges that arose with the
global outbreak of COVID-19 channeled a lot of dis-
cussion, sharing of experiences and knowledge, and
collaborative approaches to setting up trial protocols
onto social media. Webinars in addition to publica-
tion of expedited research and reviews critically relied
on social media sharing.

Discussing novel techniques

During the past decade, a new approach of perform-
ing a coronary angiogram was developed using the
radial artery instead of the femoral artery. Uptake in
the United States was slow, so Dr. Sunil Rao started

a social media campaign with the hashtag #radialfirst,
which resulted in more than 60,000 tweets by more
than 7000 users, generating more than 100 million
impressions within only 2 years [50]. Another pop-
ular hashtag is #dontdissthehis, promoting a certain
form of pacemaker stimulation. Beer and colleagues
have analyzed the uptake of this technique within the
community and have seen it mirrored and likely am-
plified by the strong presence on twitter [51].

. . . and cases

Sharing cases among colleagues and asking them for
their input, be it of diagnostic nature (ECG, imag-
ing) or regarding treatment recommendations, has
been done for decades within the medical field. A fa-
mous quote by Sir William Osler reads, “Always note
and record the unusual... When you have made and
recorded the unusual or original observation . . . pub-
lish it” [52]. Social media represents a new paradigm
of case discussions: a shear endless number of peers
and experts to discuss with and the open-access na-
ture of social media allow a “live” multispecialty dis-
cussion [53]. The possibility of sharing high-quality
images and videos has allowed more comprehensive
sharing and discussion of cases. Polls allow opin-
ions on diagnostic and therapeutic approaches of the
online colleagues to be collected. With knowledge
accumulating more quickly than can be garnered by
conventional means, social media provides a fast,
enriched, multimedia-based way to learn and share
medical knowledge. The COVID-19 pandemic pro-
vided the latest evidence of the usefulness of social
media for the scientific medical field. Today, using
social media can be seen as part of the professional
skillset of a modern physician and scientist [54].

Reaching out to patients

Ultimately, social media has the potential to be used
to inform patients and to battle disinformation. Days
or weeks dedicated to certain diseases that are heavily
promoted on social media may have the potential to
reach out and inform (undiagnosed) patients. On
the international familial hypercholesterolemia (FH)
awareness day, dedicated to a chronically under-
diagnosed but life-threatening disease, a significant
increase in FH-related twitter metrics was observed
[55]. Finally, such outreach programs can be used for
patient recruitment to clinical trials [56] outside of
the classical hospital-centered clinical research atmo-
sphere in so-called remote clinical trials fostered by
the COVID-19 pandemic [57].

Scientific opportunities

The fast and widespread uptake of wearables and mo-
bile health applications by the public in combination
with electronic health record data has generated im-
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mense data pools and unprecedented opportunities
for research [58]. In addition, nationwide registries of
diseases and other electronic health records together
with available pharma claims data allow outcome re-
search combined with detailed information regarding
drug prescription and uptake without the immense
costs of building and following up huge databases
for clinical trials. Challenges, however, include han-
dling, analyzing, interpreting, and securing such im-
mense data collections. When done correctly, such
data-driven analyses could potentially revolutionize
the way we practice medicine and may introduce true
personalized medicine.

COVID-19 has in some way revolutionized the way
clinical trials may be conducted. In the classical
clinic-based, randomized controlled trial approach,
patients are recruited within a clinic and once en-
rolled, data and endpoint collection are done at the
clinic with a large amount of additional trial visits
necessary. While this certainly remains the gold stan-
dard, such trials are inflexible, cost a lot of money,
and are lengthy, all aspects that render them unfeasi-
ble in a surging pandemic. Pragmatic, adaptive, and
even remote trials were designed and rolled out at
immense speed at the upcoming of the pandemic [59,
60]. About 1 month after the World Health Organiza-
tion declared the COVID-19 outbreak a pandemic, first
patients were remotely enrolled in a trial evaluating
two pharmaceutical agents with potential beneficial
effects [61]. Enrollment, randomization, medica-
tion dispersion, symptoms, COVID tests, and even
ECGs were recorded remotely. Similar trials, includ-
ing some within the healthcare workforce, followed
rapidly [62–64].

Health 4.0

The disruption of traditional healthcare systems
caused by the COVID-19 pandemic has dramatically
fueled innovations targeted at improving the quality
and efficiency of care outside of the traditional office-
based healthcare system [65]. Health 4.0 is a novel
concept loosely based on the concept of Industry
4.0 or the Fourth Industrial Revolution, which de-
scribes the rapid change of technologies, industries,
and societal patterns, blurring the lines between the
physical, digital, and biological worlds. The idea
of Health 4.0 builds on and leverages technologies
such as artificial intelligence, gene editing, advanced
robotics, quantum computing, an increasing inter-
connectivity between machines enabling smart au-
tomation, the emergence of the internet of things,
ultrafast wireless internet, and augmented reality to
provide a better, more efficient, and cost-effective
healthcare for all [66]. It may integrate the internet
of health things [67], medical cyber-physical systems
[68], health cloud, and health fog [69], and combine
big data analytics with machine learning, smart al-
gorithms, and blockchain [70]. Six design principles

have been described [70]: interoperability, virtualiza-
tion, decentralization, real-time capabilities, service
orientation, and modularity. Ultimately, Health 4.0
may disrupt the current healthcare business model
and enhance interaction and improve flexibility, cost-
effectiveness, and reliability, and ultimately translate
to better healthcare and satisfied patients. Health
4.0 applications may target the patient, healthcare
professionals, and healthcare systems. Building such
applications is complex and requires reliable data
collection and transfer as well as privacy and security
operations. Ethical, legal, technical, and security is-
sues need to be addressed globally and on a national
basis to ensure the safe rollout of Health 4.0 applica-
tion from which all patients should ultimately benefit.
The COVID-19 pandemic provided a first opportunity
to “beta-test” a few potential future applications and
laid out potential applications for ongoing or potential
future pandemics. These include the field of assisted
diagnostics, augmented environments, disease pre-
dictions, and medical robotics that can be used in
the prevention of contagion, improved diagnostics,
digital teaching, and remote healthcare services [65].

Here, we can only provide a concise overview of
some of the technologies currently being developed;
for further reading, we recommend the references out-
lined in this section [70, 71].

Conclusion and outlook

Digital transformations are changing all aspects of
the life we know, including health and healthcare.
They have the potential for both enormous, large-
scale global benefits for all but also for disruptions in
many areas. Designing proper governance of digital
technologies should therefore be guided by public in-
terests and not private profits, ensuring digital rights
and trust in digital health and regulation of private
partners [72]. A recently published thought piece
by The Lancet and Financial Times commission on
“governing health futures 2030: growing up in a dig-
ital world” has designated digital transformations as
a key determinant of health [72]. With evidence gaps
at the interface of digital technologies and health per-
sisting, the commission argues for a precautionary,
mission-oriented and value-based approach to the
governance of digital transformations to succeed in
improving health for all. Children and young peo-
ple that grow up in a digital world and thus face
the highest exposure to digital health need to be
put at the center of attention. The collection and
use of health data should be based on the concept
of data solidarity protecting the individual’s rights
while ensuring utilization of such data to serve the
public good. Governments and other decision-mak-
ers are urged to create roadmaps and priorities as
well as a general framework for digital transforma-
tion of healthcare. The immense potential of digital
technologies in healthcare and associated research
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provides the opportunity for equitable and evidence-
based care for all and may allow healthcare personnel
to focus on their main task—the interaction with the
patient.
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